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Preface

The role of machine learning is to generalize from a data sample. In order to generalize, ev-
ery learning algorithm must be biased. Experience indicates that when this bias comes from the
domain knowledge, the algorithm has a chance to generalize better. A typical domain knowledge
encountered in applications of machine learning are the statements about orders and about rela-
tionships among these orders in data. Indeed, although experts may fail in providing quantitative
relationships between attributes of a system under study, they can usually describe their qualita-
tive characteristics in terms of orders of value sets of these attributes, and in terms of monotone
dependencies between these orders (e.g., “the higher, the better”), which happen to be the relations
that are the easiest to express.

In the problem of ordinal classification (also referred to as ordinal regression), the purpose is
to predict for a given object one of the ordered class labels. In this thesis, we require a stronger
assumption: a meaningful ordering exists not only between class labels, but also on the value set
(domain) of each attribute. Moreover, we assume that we are given a domain knowledge about the
problem expressed by the monotonicity constraints: a higher value of an object on an attribute,
with other values being fixed, should not decrease its class assignment. Thus, we focus on the
problem of ordinal classification with monotonicity constraints. The monotonicity constraints are
commonly encountered in real-life applications, but rarely taken into account in the theoretical
considerations in machine learning. Neglecting the constraints may lead, however, to worse accuracy
of the classifiers and to inconsistencies in the model. On the other hand, taking the monotonicity
constraints into account requires a dedicated, specific approach. Such an approach, along with
in-depth analysis of the problem, is proposed in this thesis.

The success of the data analysis was possible due to a continuous improvement of computing
resources, but also due to the invention of efficient and accurate algorithms. Those algorithms
mainly come from two different research fields – statistics and artificial intelligence, subfield of
computer science. Although these two fields have very different origins, it soon have become clear
that they heavily overlap. Statistics has a great impact on the development of artificial intelligence,
but also artificial intelligence made an influence on the way of thinking in statistical community.

Having in mind the above, we aim in this thesis at providing a statistical framework for ordinal
classification with monotonicity constraints. Up to our knowledge, such a framework has not
been introduced before. We explain existing nonparametric approaches within this framework
and propose a generalization of these approaches. We also explain the Dominance-based Rough
Set Approach (DRSA) from statistical point of view. DRSA has its roots in logic and was the
first theory of ordinal classification problems with monotonicity constraints. We provide a natural
probabilistic extension of this theory, Stochastic DRSA, and show its connections with statistical
estimation and Bayesian decision theory.

Apart from theoretical foundations of the considered problem, we also propose efficient methods
for solving it. The methods are based on decision rules, combined into an ensemble of classifiers.
This corresponds to a modern approach to rule induction, which employs boosting strategy to



vi

learning. We provide a theoretical analysis which shows that the monotonicity assumptions allow
us to bound the difference between the performance of a rule ensemble and the performance of
an optimal classifier in terms of the empirically measurable value of the so called margin. High
performance and good scalability of the proposed rule ensemble methods are verified in an extensive
computational experiment.

Acknowledgments. Numerous people contributed to my research in different ways. I would
like to deeply thank to my supervisor Professor Roman Słowiński for his tremendous support,
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Chapter 1

Introduction

1.1 Problem Setting

Classification. Machine learning originated in the field of artificial intelligence but also has deep
connections with probability theory and statistics (Duda et al., 2000; Friedman et al., 2003; Vapnik,
1999; Koronacki and Ćwik, 2005). It concerns designing algorithms which have ability to learn. The
learning is done by providing the algorithm a set of previously observed training examples (also
called objects or observations), described by a set of attributes. Here we deal with a classification
problem, in which for all the training objects we know a priori the values of a particular attribute
with finite domain, called class (or decision) attribute. The goal of the learning process is to predict
the value of the class attribute (class label) on unseen objects as accurate as possible, using the
known values of other attributes.

Domain knowledge. A very important issue in the learning process is the utilization of the
domain (expert) knowledge. In order to generalize, every learning algorithm must be somehow
biased (prefer some hypothesis over the others although their similar behavior on the data sample),
and when it is biased by the domain knowledge it has a better chance to be biased in the right
way (Wolpert, 1996). This results in the improvement of prediction accuracy, but it is not the
only advantage: the model consistent with domain knowledge is easier to interpret and easier to be
accepted by the domain experts. Notice that although interpretability issues cannot be expressed
in a quantitative way, they often play much more important role in real-life applications than a
small gain in accuracy.

A typical knowledge encountered in real-life applications of machine learning is the knowledge
about order and monotonicity. Exploiting this kind of knowledge in the learning process is the main
purpose of this thesis.

Ordinal classification. An ordinal classification problem consists in assignment of objects to
classes, for which a meaningful order exists. A good example is the classification of documents
into three groups “irrelevant”, “partly relevant”, “relevant” (Herbrich et al., 1999). As another
example, consider classifying patients receiving the chemotherapy with respect to the severity of
nausea into the classes “none”, “mild”, “moderate” and “severe” (Anderson, 1984). The distances
between class labels are usually meaningless, since the scale is assumed to be purely ordinal.

The ordinal classification problem shares some characteristics of multi-class classification and
regression. However, on the contrary to the classification, the order between class labels cannot be
neglected, and on the contrary to the regression, the scale on the output attribute is not cardinal.
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Monotonicity constraints. In the ordinal classification with monotonicity constraints we re-
quire a meaningful ordering not only between class labels, but also on the value set of each attribute.
Moreover, we assume that monotonicity constraints are present in the data: a higher value of an
object on an attribute, with values on other attributes being fixed, should not decrease its class
assignment; in other words, the expected class label should not decrease with increasing values on
condition attributes.

As an example, consider the customer satisfaction analysis (Greco et al., 2006), which aims at
determining customer preferences in order to optimize decisions about strategies for launching new
products, or about improving the image of existing products. The monotonicity constraints are
of fundamental importance here. Indeed, consider two customers, A and B, and suppose that the
evaluations of a product by customer A on a set of attributes are better than the evaluations by
customer B. In this case, it is reasonable to expect that also the comprehensive evaluation of this
product (its class label) by customer A is better (or at least not worse) than the comprehensive
evaluation made by customer B.

As another example, consider the problem of house pricing, i.e. classification of houses with
respect to their prices, into one of the following classes: “cheap”, “moderate”, “expensive”, “very
expensive”. The classification is based on the following attributes: lot size, number of bedrooms,
bathrooms, garages, whether house contains air conditioning, basement, etc. (Koop, 2000). It is
apparent that the price of house A should not be less than that of house B if, for instance, house
A has greater number of bedrooms and bathrooms than B, and opposite to B, has basement, and
is as good as B on the other attributes.

Problems of ordinal classification in the presence of monotonicity constraints are commonly
encountered in real-life applications, where ordinal and monotone properties follow from the do-
main knowledge about the problem. They are encountered in such problems as bankruptcy risk
prediction (Słowiński and Zopounidis, 1995; Greco et al., 1998; Ryu and Yue, 2005), breast cancer
diagnosis (Ryu et al., 2007), house pricing (Potharst and Feelders, 2002), Internet content filtering
(Jacob et al., 2007), credit rating (Doumpos and Pasiouras, 2005), liver disorder diagnosis (Sill and
Abu-Mostafa, 1997), credit approval (Feelders and Pardoel, 2003), surveys data (Cao-Van, 2003)
and many others. The problem of ordinal classification with monotonicity constraints is widely con-
sidered under the name multicriteria sorting within multicriteria decision analysis (MCDA) (Roy,
1996; Grabisch, 1996; Greco et al., 2001a, 2002a; Słowiński et al., 2005; Greco et al., 2008). Thus,
we should add to the above list numerous applications of multicriteria sorting methods to real-life
decision problems.

Nevertheless, ordinal classification with monotonicity constraints is rarely considered in the
machine learning community. There are only few methods which take the monotone nature of data
into account. What is even worse, no comprehensive theoretical approach has been established.
This thesis aims at creating such approach from the statistical point of view.

1.2 Problem Statement

In this section, we overview the statistical theory of machine learning and introduce the concept
of ordinal classification and dominance relation. This will serve as a basis for the definition of
ordinal classification with monotonicity constraints in Chapter 2.

1.2.1 Statistical Theory for Machine Learning

Classification problem. In the classification problem (Friedman et al., 2003), the aim is to
predict the unknown class label y ∈ Y for a given object (assign object to a class), where Y =
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{1, . . . ,K} is the set of K class labels. This is usually done by using the available knowledge about
the object, expressed in terms of a vector of attributes x = (x1, . . . , xm) ∈ X, where X is called
attribute space. Here, we assume without loss of generality that the value set of each attribute is a
subset of R, so that X ⊆ Rm. It is assumed that objects are generated independently according to
some fixed but unknown probability distribution P (x, y).

Classification is performed by constructing a function h(x) (called classifier) which predicts
accurately the value of y. The accuracy of the single prediction is measured in terms of the loss
function L(y, h(x)), which reflects the cost of predicting the class label h(x) when the actual
(observed) value is y. The overall accuracy of the classifier h(x) is measured by the expected loss
(risk) according the data distribution P (x, y):

R(h) = E[L(y, h(x))]. (1.1)

Bayes classifier. Thus, the optimal prediction function is the function minimizing the risk (1.1):

h∗ = arg min
h
R(h), (1.2)

which is called Bayes classifier (Berger, 1993), and R∗ := R(h∗) is called Bayes risk. From the
definition it follows that Bayes risk is the minimal possible risk achievable by any prediction function
in a given problem.

It follows from statistical decision theory (Berger, 1993) that Bayes classifier is obtained by
minimizing the risk according to so called posterior distribution P (y|x). The derivation of this fact
is the following. First, decompose P (x, y) as P (y|x)P (x). Then:

R(h) =
∫
L(y, h(x))dP (x, y) =

∫ (∫
L(y, h(x))dP (y|x)

)
dP (x) (1.3)

which is a decomposition of the form E[·] = E [E[·|x]]. From (1.3) it follows that the Bayes classifier
must minimize the term in parenthesis for any x:

h∗(x) = arg min
z

∫
L(y, z)dP (y|x) = arg min

z
E[L(y, z)|x] (1.4)

Empirical risk minimization. Since the probability distribution P (x, y) is unknown, we cannot
obtain h∗. The learning procedure uses a training set D = {(x1, y1), . . . , (xn, yn)} ⊂ X only to
construct h to be a good approximation of h∗. Usually, it is performed by minimization of the
empirical risk :

Remp(h) =
1
n

n∑
i=1

L(yi, h(xi)), (1.5)

where function h is chosen from a restricted, predefined class of functions H (linear functions,
classification trees, etc.), for which we believe that h∗ ∈ H or at least that h∗ may be approximated
by some function from H. This procedure is usually called empirical risk minimization (ERM)
(Vapnik, 1999).

Loss functions In the most general case, the loss function takes the matrix form [lyk]K×K , where
lyk = L(y, k). An obvious assumption is that lkk = 0 for every k = 1, . . . ,K (the correct prediction
is not penalized), and lyk > 0 for each y 6= k (any incorrect prediction is penalized).

The most popular loss function for classification is zero-one loss, defined as:

L0−1(y, h(x)) =

{
0 if y = h(x)
1 if y 6= h(x)

, (1.6)
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R1

R2

R3

Figure 1.1: An example of Bayes decision boundary between three classes on R2

so that the misclassification is always penalized with unit loss, and for correct classification no
penalty is imposed. This corresponds to the matrix with zeros on the diagonal and ones anywhere
else, lyk = 1y 6=k1. The Bayes classifier has the form:

h∗0−1(x) = arg maxy∈{1,...,m}P (y|x) (1.7)

so it indicates the most probable class at x. The Bayes classifier divides the attribute space X into
K separate regions R1, . . . ,RK , such that h∗(x) = k if and only if x ∈ Rk. The boundary between
those regions is called Bayes decision boundary. It consists of points, for which there are more than
one class with the highest probability (mode of the distribution is not unique). A simple example
is shown in Figure 1.1, with X = R2. Although in each region there might be nonzero probability
for any class, in the region Rk class k is always the most probable.

1.2.2 Ordinal Classification and Monotonicity Constraints

Ordinal loss matrix. In the ordinal classification setting, the loss matrix should be “consistent”
with the order between class labels in the sense that the loss should not decrease, as the predicted
value “moves away” from the true value. Thus, for any loss matrix [lyk]K×K we assume that each
row of the loss matrix is V-shaped (Lin and Li, 2007):

ly,k−1 > lyk if k 6 y,

lyk 6 ly,k+1 if k > y, (1.8)

for each y, k = 1, . . . ,K. Such matrix will be called ordinal loss matrix. It is straightforward to
see that 0-1 loss (1.6) is a proper ordinal loss matrix, however it does not take order into account,
because every misclassification is given the same penalty. This is different for other two popular
ordinal loss matrices: absolute and squared error loss. Absolute error loss is defined as:

Labs(y, h(x)) = |y − h(x)|, (1.9)

11c is the indicator function, i.e. 1c = 1 if c is true, otherwise 1c = 0
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so that the penalty for misclassification grows linearly with the difference between real and predicted
class labels. One can show (Berger, 1993; Friedman et al., 2003) that the Bayes classifier for absolute
error loss has the form:

h∗abs(x) = med(y|x), (1.10)

the median of the conditional distribution P (y|x). Notice that the median is a purely ordinal
operation: if class labels were encoded by arbitrary real numbers, the Bayes classifier would remain
the same. This is not the case of another ordinal loss matrix, squared error loss:

Lsqr(y, h(x)) = (y − h(x))2, (1.11)

The Bayes classifier is then (Berger, 1993; Friedman et al., 2003):

h∗sqr(x) = E[y|x], (1.12)

the expected value over the conditional distribution P (y|x). Taking the expected value is not an
ordinal operation, because it depends on the particular encoding of class labels and usually does not
belong to {1, . . . ,K}. Thus, we state that absolute loss is the canonical loss for ordinal classification.

There is another approach for incorporating the order between classes, in which the ordinal
classification is treated as a special case of a ranking problem. It is described in the Section 1.2.3.

Dominance relation and monotone functions. A dominance relation � is a binary relation
on X, defined in the following way: for any x,x′ ∈ X we say that x dominates x′, x � x′, if on
every attribute, x has evaluation not worse than x′, xj > x′j , for all j = 1, . . . ,m:

x � x′ ⇐⇒ ∀j=1,...,m xj > x′j .

The dominance relation � is a partial preorder on X, i.e. it is reflexive and transitive. A function
h : X → Y is called monotone if the following condition holds for any x,x′ ∈ X:

x � x′ → h(x) > h(x′).

The vector v = (v1, . . . , vn) is called monotone if for every i, j = 1, . . . , n:

xi � xj → vi > vj .

The difference between monotone functions and vectors is that the latter corresponds to the training
set D only, while the former – to the whole space X.

Monotonicity constraints. The concept of monotone function is the core of what we intuitively
understand by monotonicity constraints. Therefore, the problem of ordinal classification with mono-
tonicity constraints is often referred to as the problem of classification with monotone functions,
i.e. the problem of finding the accurate classifier within the class of monotone functions.

In order to justify imposing monotonicity constraints, one usually assumes that the process
generating the data has monotone nature and the aim is then to “discover” (approximate) the
process using the available training data D. Such definition is stated, more or less explicitly, in
most of the papers dealing with ordinal classification with monotonicity constraints (Ben-David,
1995; Greco et al., 1998, 1999a,b, 2001a; Potharst and Feelders, 2002; Cao-Van, 2003; Popova, 2004;
Chandrasekaran et al., 2005; Velikova, 2006). In our probabilistic setting, this corresponds to the
statement that the Bayes classifier h∗ is a monotone function. An example of decision boundaries
with monotone Bayes classifier is shown in Figure 1.2. The problem with such a formulation is
that the Bayes classifier is not a primitive concept in classification problems, it rather follows
from the form of the loss function and from the data distribution. Therefore, we postpone the
formal definition to the Chapter 2, in which we introduce a probabilistic model for monotonicity
constraints.
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R1

R2

R3

Figure 1.2: An example of monotone Bayes decision boundary between three classes on R2. Compare
with non-monotone case in Figure 1.1

Inconsistencies. The monotonicity constraints imply that it should hold:

xi � xj =⇒ yi > yj , (1.13)

for i, j = 1, . . . , n, i.e. vector y = (y1, . . . , yn) should be monotone. If such property holds, we
say that the dataset D is consistent (or monotone). However, for many real datasets, (1.13) is not
satisfied. We say that an object xi is inconsistent if there exists another object xj , such that xi,xj
violate (1.13). In other words, there is xj such that xi dominates xj but yi < yj , or such that xi
is dominated by xj but yi > yj . We say that object xi is consistent if it is not inconsistent.

Inconsistencies are usually avoided, because none monotone function can approximate accurately
inconsistent objects. Some methods for ordinal classification with monotonicity constraints work
only with consistent data. Others try to remove inconsistencies and operate only on the consistent
part of the data.

1.2.3 Rank Loss Function

Ranking and scoring. Ranking is defined on a pair of objects: we consider a ranking function
r(x,x′) such that r(x,x′) > 0 if x is ranked higher than x′. The ranking loss (Clémençon et al.,
2006) is defined as:

Lrank(r(x,x′), y − y′) = 1r(x,x′)(y−y′)<0, (1.14)

where y, y′ are ranks (class labels). Thus, ranking function is penalized with a unit loss if it makes
a ranking error: x is ranked lower (higher) than x′, while y > y′ (y < y′). The aim is to find a
prediction function minimizing the risk:

Rrank(r) =
∫
Lrank(r(x,x′), y − y′)dP (x, y)dP (x′, y′). (1.15)

The Bayes classifier has the simple form:

r∗(x,x′) = sign
(
P (y > y′|x,x′)− P (y′ > y|x,x′)

)
, (1.16)
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In the core of rank loss approach lies the assumption of the existence of the optimal scoring function
(Clémençon et al., 2006), i.e. single-argument function s∗(x) such that:

r∗(x,x′) > 0 ⇐⇒ s∗(x) > s∗(x′), (1.17)

and then the rank loss takes the form:

Lrank(s(x)− s(x′), y − y′) = 1(s(x)−s(x′))(y−y′)<0. (1.18)

The assumption (1.17) must be satisfied, otherwise there would be no function of a single argument
s∗(x) achieving Bayes risk. Herbrich et al. (1999) considered the problem of ordinal classification
as finding the scoring function (called “function inducing ordering” in their work) which minimizes
the risk (1.15) with the SVM classification method. Freund et al. (2003) proposed the extension of
AdaBoost in the rank loss formulation (RankBoost).

Analysis. The rank loss approach has nonparametric form and (seemingly) avoids imposing any
metric on the ordinal scale of ranks, as the error is measured by a number of rank inverses. However,
there are two drawbacks. The first one is a computational issue: the complexity of the problem
grows quadratically with n, making the method computationally infeasible for larger datasets.
The second drawback is more fundamental. The scoring function is real-valued, so the output of
the ranking procedure is the real number, rather than class label. Therefore, one must somehow
estimate the position of the thresholds on the scale of scoring function to change the real values
into the class labels. In (Herbrich et al., 1999) the positions of the thresholds were obtained by a
margin-based procedure. Generally, the threshold can be obtained only by minimizing (implicitly
or explicitly) some loss function. Thus, at the end we anyway do the thing which we tried to avoid:
impose some loss function on the ranks’ scale.

We believe the ordinal classification is different to ranking, and our belief is supported by
achievements in multicriteria decision analysis (MCDA) (Roy, 1996; Greco et al., 2002a): in the
ordinal classification (multicriteria sorting in this context) one does not compare objects with each
other (as in ranking), one rather assigns them to ordered classes on the basis of their values on
considered attributes. The assignment is made by comparing objects with the “class profiles”,
which are artificial objects associated with each class: if the object is better than the k-th class
profile, its class must be at least k. This approach can be translated to a modification of the ranking
problem by stating that each object is compared only with the “rank of the class” and considering
the “ranking” function r(x, k). Then, the class label predicted for x is the smallest k for which x
is still ranked lower: h(x) = min{k : sign(r(x, k)) < 0} (h(x) = K is no such k exists). But if for a
given x, we sum the rank loss for each class label, we obtain:

K∑
k=1

Lrank(r(x, k), y − k) = Labs(h(x), y),

the absolute error loss. Thus, we conjecture that the absolute error is the canonical loss function
for ordinal classification.

1.3 Existing Approaches to Ordinal Classification with

Monotonicity Constraints

We overview the existing approaches to ordinal classification with monotonicity constraints
in the fields of rough sets, multicriteria decision analysis (MCDA), statistics and machine learn-
ing/knowledge discovery. In description of fuzzy integrals, Ordinal Learning Model and monotone
decision trees we base on the survey of monotone classification methods in (Cao-Van, 2003).
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object a1 a2 y object a1 a2 y

x1 0.15 0.3 1 x4 0.6 0.5 3
x2 0.3 0.15 1 x5 0.7 0.7 2
x3 0.4 0.8 2 x6 0.9 0.8 3

Table 1.1: A set of objects described by 2 attributes a1, a2 and class label y ∈ {1, 2, 3}.

1.3.1 Dominance-based Rough Set Approach

Dominance-based Rough Set Approach (DRSA) proposed by Greco, Matarazzo, and Słowiński
(1999a,b, 2001a) is an extension of the classical rough set approach (Pawlak, 1982) for dealing with
multicriteria sorting. By substituting the indiscernibility relation with the dominance relation, it
handles inconsistencies coming from violation of the monotonicity constraints. DRSA originated
from the fusion of rough set theory and MCDA. It was the first approach, which proposed the com-
prehensive theory for ordinal classification problems with monotonicity constraints in the domain
of knowledge discovery. In this section, we only sketch the idea of DRSA, while a deeper insight is
postponed to Chapter 4. Extensive surveys of DRSA can be found in (Greco et al., 2001a, 2004b,c;
Słowiński et al., 2005).

Class unions and approximations. DRSA divides the monotone K-class problem into K − 1
binary subproblems. This is done by considering the upward and downward unions of classes which
are subsets of data for which class label is at least (or at most) k = 1, . . . ,K:

Cl>k = {xi : yi > k, i = 1, . . . , n}

Cl6k = {xi : yi 6 k, i = 1, . . . , n}.

Then, the k-th problem, k = 2, . . . ,K is defined as the problem of discrimination between objects
from class union Cl>k and Cl6k−1, i.e. the problem of binary classification with two classes Cl>k and
Cl6k−1. The core idea of DRSA (and other rough set approaches) is the following: instead of using
the whole class unions, which might contain inconsistent objects, use subsets of unions, containing
only consistent objects for a given binary problem. Those subsets are called lower approximations,
and corresponds to the region of certain knowledge2.

Let us define first the dominating and dominated sets for a given x as the subsets of objects
which dominate (or are being dominated by) x:

D+(x) = {xi : xi � x, i = 1, . . . , n}

D−(x) = {xi : xi � x, i = 1, . . . , n}.

We remind (see Section 1.2.2) that object xi is inconsistent if there exists another object xj which
belongs to a lower class but xj � xi, or which belongs to a higher class but xj � xi. However, in the
k-th binary problem we associate objects from Cl>k with one (“positive”) class, while objects from
Cl6k−1 with another (“negative”) class. Thus, in the k-th problem object xi ∈ Cl>k is inconsistent if
there exists xj ∈ Cl6k−1 such that xj � xi (and vice-versa). But this is equivalent to D+(xi) * Cl>k
and D−(xj) * Cl6k−1.

Having above in mind, we are ready to define lower approximations of upward and downward

2Regions of possible knowledge, upper approximations, are introduced in Chapter 4.
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Figure 1.3: Example of three-class problem described in Table 1.1. Black points are objects from
class 1, dark gray points – from class 2, light gray – from class 3.

unions of classes as:

Cl>k = {xi : D+(xi) ⊆ Cl>k , i = 1, . . . , n},

Cl6k = {xi : D−(xi) ⊆ Cl6k , i = 1, . . . , n}.

In other words, lower approximations of class unions contain consistent objects, thus can be regarded
as certain regions of X for a given binary problem.

Example. A simple example of training set is shown in Table 1.1 and in Figure 1.3. Notice that
object x4 is inconsistent with x5. We have Cl>2 = {x3,x4,x5,x6}, Cl>3 = {x6}, Cl61 = {x1,x2},
Cl62 = {x1,x2,x3}. Observe that Cl>1 and Cl63 are always trivial (contain all objects).

Rule induction (DOMLEM). Having obtained the lower approximations of class unions, we
use them to learn a classifier to distinguish between Cl>k and Cl6k−1, for each k = 2, . . . ,K. The
classifier has the form of the set of decision rules, which generalize description of the information
contained in the dataset D and serves as a basis for further classification of unseen objects. By
decision rule we mean a simple expression of the form “if condition, then decision”. In DRSA, only
ordinal types of rules are considered, of the following form:

• if xj1 > sj1 and . . . and xjq > sjq , then y > k,

• if xj1 6 sj1 and . . . and xjq 6 sjq , then y 6 k,

• if xj1 > sj1 and . . . and xjq > sjq and xj1 6 sj1 and . . . and xjq 6 sjq , then y ∈ {k′, k′ +
1, . . . , k − 1}

where j1, . . . , jp are indices of attributes which appear in the condition part, and sj1 , . . . , sjp are some
values from the domains of respective attributes. The first two types of rules are called certain while
the rules of the third type are called approximate3. Certain rules are induced from lower approxi-
mations of the appropriate class unions (e.g. rules with decision part y > k are induced from Cl>k ).

Approximate rules are induced from the sets of the form: Bk′,k = {x1, . . . ,xn}\
(
Cl6k′−1 ∪ Cl

>
k

)
,

k > k′, the boundaries between certain regions.

3There are in fact five types of rules, since first two types can also be induced from upper approximations and are
called possible then.
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Algorithm 1.1: DOMLEM

input : Family of sets L =
{
Cl>k , Cl

6
k−1, Bk′,k : 2 6 k′ 6 k 6 K

}
.

output: Set R of decision rules.

R := ∅;
for each L ∈ L do

RL := ∅; (rule set covering L)
while L 6= ∅ do

Start with the rule with empty condition part, Φ = ∅;
while Φ covers objects outside L do

Evaluate each φ /∈ Φ by |cov(Φ∪φ)∩L|
|L| , where cov(Φ ∪ φ) is the set of objects

covered by Φ ∪ φ;
Choose a condition φ /∈ Φ with the highest evaluation;
Φ := Φ ∪ φ;

end
Add rule with condition part Φ to RL;
Remove from L objects covered by Φ;

end
for each rule Φ in RL do

if Φ is minimal then
R := R∪ Φ;

end

end

end
return R;

There have been several algorithms proposed to induce decision rules within DRSA (Greco et al.,
2001c; Pindur and Susmaga, 2003; Stefanowski and Żurawski, 2003; Błaszczyński and Słowiński,
2003; Dembczyński et al., 2003; Pindur et al., 2004). The most popular one, DOMLEM (Greco
et al., 2001c), is based on the sequential covering procedure. It tends to generate the so called
minimal set of rules (i.e. the non-redundant set of rules covering all objects) with the smallest
number of rules. DOMLEM consists of a covering procedure run for each lower approximation and
boundary in each subproblem. In the procedure, a set of rules is induced until it covers all objects
from the respective approximation (or boundary). Rules are induced one by one, and in each rule
the elementary conditions are added one by one (ordered by a specific evaluation function), until the
rule covers only examples from the approximation. The scheme of DOMLEM is shown as Algorithm
1.1.

When classifying unseen object, each rule is tested whether it covers the object. Then, some
procedure is used to combine the results of all covering rules and classify the object to a class (see
e.g. Błaszczyński et al. (2007)).

1.3.2 Utility Functions in MCDA

Since the multicriteria sorting, considered within MCDA, coincides with ordinal classification
with monotonicity constraints, potentially any method dealing with sorting can be regarded as a
method for solving ordinal classification. However, many methods from MCDA do not suit to the
approach used in this thesis, since:

• they construct the preference model using different forms of prior information (weights of
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fj(xj)

xj

Figure 1.4: An example of piecewise linear function on attribute j with 3 break-points (and 2
boundary points).

criteria, preference thresholds, etc.) than the set of training examples, or

• they are interactive and demand the presence of decision maker during the learning process,
or

• they are designed for smaller problems and scale badly with the problem size (both with n

and m).

In this section we briefly describe methods based on the utility function models, such as the additive
functions, Choquet or Sugeno integrals.

UTA methods. Originally, the UTA (UTilités Additives) method was first proposed by Jacquet-
Lagrèze and Siskos (1982) for dealing with ranking problem. The UTADIS method (Jacquet-
Lagrèze, 1995; Zopounidis and Doumpos, 1997; Siskos et al., 2005) is a variant of UTA for solving
the multicriteria sorting. The values of the object on each attribute (criterion) are aggregated into
an additive utility function:

f(x) =
m∑
j=1

fj(xj),

where fj(xj) are marginal utility functions. They are assumed to be piecewise linear consisting of
the fixed number of break-points (see Figure 1.4). There are also K + 1 thresholds = −∞ = θ0 <

θ1 < . . . < θK−1 < θK = ∞ and it is assumed that if x is classified to the class k, i.e. h(x) = k,
if θk−1 < f(x) 6 θk. The construction of all of the marginal utility functions and thresholds is
performed by solving a single linear programming problem.

For the purpose of robustness in the approach to ranking problems, Greco, Mousseau, and
Słowiński (2008) proposed UTAGMS method, which fixes a break-point for every value taken by
any of the objects on each attribute. They showed that using such arepresentation, one can model
every additive monotone function compatible with training examples. Dembczyński, Kotłowski,
and Słowiński (2006b) extended this idea to classification and combine the approach with DRSA.
They also introduced a specific penalty term which made the method similar to support vector
machines (Vapnik, 1999).

Choquet and Sugeno integrals methods. Choquet integral (Choquet, 1953) and its ordinal
counterpart, Sugeno integral (Sugeno, 1974), are much more powerful aggregation operators than
additive value functions, because they can model interaction between the attributes (Grabisch,
1996). However, they have 2m− 2 parameters in general, therefore one usually restricts only to the
interaction of the j-th order (for j = 1 we have an additive model). The number of parameters
to estimate makes them rather impractical: for small datasets they are overparametrized and thus
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tend to overfit, while for larger datasets the parameters’ estimation becomes computationally very
expensive.

Choquet integral has been applied in (Verkeyn et al., 2002) to survey data. It constitutes a main
part of the sorting procedure implementation TOMASO (Tool for Ordinal Multi-Attribute Sorting
and Ordering) (Marichal et al., 2005).

1.3.3 Isotonic Regression and Monotone Approximation

The statistical estimation and hypothesis testing in the presence of monotonicity constraints
dates back to early 1950s and has been considered much before any other approach mentioned in
this survey. The important contribution of this field is the algorithm of isotonic regression4 (Brunk,
1955; Ayer et al., 1955).

Isotonic regression. Let � be a preorder relation, i.e. reflexive and transitive, on X (dominance
relation in our case) and let {x1, . . . ,xn} be a set of points in X. Let y = (y1, . . . , yn) be a
real-valued vector. A vector p∗ = (p∗1, . . . , p

∗
n) is an isotonic regression of y with weight vector

w = (w1, . . . , wn) if and only if p∗ is the solution of the following optimization problem:

minimize
n∑
i=1

wi(yi − pi)2

subject to xi � xj =⇒ pi > pj ∀ 1 6 i, j 6 n, (1.19)

so that p∗ minimizes the squared error in the space of all monotone vectors p = (p1, . . . , pn).
Isotonic regression is a solution to many order restricted statistical inference problems (Robertson
et al., 1998). When � is a simple order (e.g. order between real numbers), an efficient (with
complexity O(n log n)) algorithm for solving (1.19) exists (Ayer et al., 1955), PAV (Pool Adjacent
Violators). In a general case of any preorder, the problem can be solved in O(n4) (Maxwell and
Muchstadt, 1985), which is impractical for larger datasets. However, several heuristics exist, in
particular an effective O(n2) algorithm, which very often achieves the results close to optimal, was
introduced by Burdakov et al. (2006).

Monotone approximation. Let us consider classification case with y ∈ {1, . . . ,K}. We state a
problem similar to isotonic regression, but based on the minimization of arbitrary loss matrix:

minimize
n∑
i=1

L(yi, di)

subject to xi � xj =⇒ di > dj ∀ 1 6 i, j 6 n

di ∈ {1, . . . ,K} ∀ 1 6 i 6 n. (1.20)

In other words, we would like to minimize a loss matrix within the class of all monotone vectors
taking integer values. This is a nonparametric approach to ordinal classification, since we do not
impose any additional condition, apart from the monotonicity. The problem has the following
interpretation: relabel the objects to make the dataset monotone, such that new class labels are as
close as possible to the original class labels, where the closeness is measured in terms of the loss
function. The new labels in (1.20) are the values of variables di. The set of new labels will be
called monotone approximation and we will refer to the problem (1.20) as monotone approximation
problem.

4Sometimes monotone regression term is used; the word isotonic means monotone and increasing.
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Figure 1.5: Example of three-class problem.

Dykstra et al. (1999) solved (1.20) for two particular loss functions: absolute error loss L(y, d) =
|y−d| and squared error loss L(y, d) = (y−d)2. It was shown that the latter problem can be solved
by isotonic regression, while the former can be solved by a sequence of K − 1 isotonic regression
problems.

The problem for K = 2 and 0-1 loss appeared in the logical analysis of data, as a problem of
finding monotone Boolean function approximating the data (Boros et al., 1995). It was solved in
O(n3) by transformation to the maximum network flow problem, which is an improvement over
(Dykstra et al., 1999).

Chandrasekaran et al. (2005) considered (1.20) in the most general form, for any K and any
loss function, as a part of the isotonic separation procedure (see Section 1.3.8). It was shown that
it can be solved either by linear programming or by maximum network flow in O(n3).

We were considering the problem of monotone approximation within the context of DRSA
(Dembczyński et al., 2006a, 2007a,b).

The problem of monotone approximation has a drawback: in most cases the optimal solution
is not unique. Thus, the particular solution found by the algorithms mentioned above is accidental
(e.g. depends on the parameters of the solver used). We show in Chapter 3 how to cope with this
issue.

Example. Consider the dataset from Table 1.1, shown in Figure 1.3. Assume the absolute error
loss function. Then, there are two optimal solutions: either object x4 will be reassigned to class 2
or object x5 will be reassigned to class 3.

Consider one more example presented in Figure 1.5. This example is similar to the previous one,
with exception that now y4 = 1 and y1 = 3. There is a unique monotone approximation problem
with absolute error loss, which reassigns only a single object x1 to class 1.

1.3.4 Ordinal Learning Model

The Ordinal Learning Model (OLM) (BenDavid et al., 1989; Ben-David, 1992) was the first
method for ordinal classification with monotonicity constraints proposed in the machine learning
community. It is very simple and consists in choosing the subset D′ ⊆ D of training objects (so
called “rule base”). Then, classification of new objects is done simply by a function of the form:

fOLM(x) = max{yi : xi ∈ D′,xi � x} (1.21)
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If the set over which the maximum is chosen is empty (i.e. there is no object from D′ which is
dominated by x), then a class label is assigned by a nearest neighbor procedure using the Euclidean
distance.

The rule base D′ is chosen to be consistent and not to contain redundant objects. An object xi
is redundant in D′ if there exists another object xj such that xi � xj and yi = yj , i.e. xi does not
have any influence fOLM(x). Set D′ is constructed in the following way. First, all objects with the
same attribute vector are replaced by one vector. The class label of new vector is the average of
the class labels of replaced vectors. Then, we start with D′ empty and objects are added to D′ in
the order of decreasing class labels. The particular order of objects within a given class is random.
An object is added to D′ only if it is consistent with objects already present in D′; otherwise it
is rejected. Moreover, redundancy is checked each time: if the new object is redundant, then it is
rejected; if the new object makes other objects in D′ redundant, then those objects are rejected.
The process is repeated until all the objects are examined.

The algorithm has several drawbacks. Firstly, the procedure of building D′ relies on the random
order of processing the objects, therefore can return different D′ for each run. Moreover, the
nearest neighbor rule is not an ordinal and can produce non-monotone results. The averaging of
labels is also not ordinal operation. There are procedures for building the consistent subset which
are deterministic and much better formally grounded, such as DRSA or monotone approximations,
described in previous sections.

1.3.5 Monotone Neural Networks

Neural networks have received a great attention and popularity in the machine learning com-
munity during the late 1980s and the 1990s. Therefore, it is not surprising that early approaches
to ordinal classification with monotonicity constraints were also focused on neural network models.
Utilizing the domain knowledge about the monotonicity was done in one of two ways:

• by adding a second term measuring the “monotonicity error” (the extent to which the model
violates monotonicity constraints) to the typical error measure (Sill and Abu-Mostafa, 1997),

• by enforcing some constraints on the weights and architecture of the network, which makes the
network monotone by construction (Wang, 1994; Wang and Archer, 1994; Sill, 1998; Daniels,
1999).

Neural network models have been successfully applied to e.g. bond rating, house pricing (Daniels,
1999) or liver disorders diagnosis (Sill and Abu-Mostafa, 1997). However, their main drawback is
the lack of interpretability, which impede the explanation of the model behavior. Moreover, neural
networks work only with the cardinal scale on the attributes, so that they may lead to wrong or
meaningless results if the attribute scale is purely ordinal.

1.3.6 Monotone Trees

Overview. Decision tree algorithms, such as CART (Breiman et al., 1984) and C4.5 (Quinlan,
1993), are very popular in machine learning. They were also considered in the context of ordinal
classification with monotonicity constraints. The first algorithm for tree induction in this context
was proposed by Ben-David (1995) and called MID (Monotone Induction of Decision trees). The
main idea was to modify the conditional entropy, by adding a term called order-ambiguity-score,
which pushed the splitting strategy towards monotonicity. However, this did not guarantee the tree
to be a monotone function.
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A different approach was overtaken by Makino et al. (1999), which presented two algorithms: P-
DT (Positive Decision Trees) and QP-DT (Quasi-Positive Decision Trees)5. The former constructs
a monotone decision tree (i.e. a tree, which is a monotone function), while the latter – a so called
quasi-monotone tree. Both algorithms work only with binary-class problems. They were adapted to
handle K-class problems and extended in (Potharst et al., 1997; Potharst, 1999; Potharst and Bioch,
2000; Potharst and Feelders, 2002; Bioch and Popova, 2002), under the names MDT (Monotone
Decision Trees) and QMDT (Quasi-Monotone Decision Trees).

Decision tree models have also been considered within the DRSA (Giove et al., 2002). In this
approach, a cut minimizing the training error for a given class union is chosen for splitting. Three
types of trees were considered: single-class (discriminating a single class union only), progressively-
ordered (using a single class union, which is, however, progressively changing as the tree is growing)
and full range (using all class unions simultaneously).

Cao-Van and De Baets (2003) and Cao-Van (2003) considered RT (Ranking Tree) algorithm
for growing monotone decision trees. It differs from MDT in using an impurity measure based on
the ranking error (number of reversed ranks) and in using a specific procedure for maintaining the
monotonicity of the tree. It can handle inconsistent datasets (while MDT in its original version
cannot).

MDT. MDT (Potharst and Bioch, 2000) worked originally with consistent (monotone) datasets
only, however a modified version was then proposed to deal with inconsistent data (Bioch and
Popova, 2002). It can use any of the popular impurity measures such as entropy or Gini index and
the growth of the tree is done in a typical way. The main difference between MDT and ordinary
tree induction method is the so called “cornering technique” for maintaining the monotonicity of a
tree. It consists of adding artificial objects to each node, one in the lower left corner of the node,
and another in the upper right corner (notice that each node in the tree represents a subset of X
and has the form of hyperrectangle). The lower left object obtains the highest possible class label
which does not violate consistency of the dataset, while the upper left object – lowest possible label,
respectively. The tree is induced until every node corresponds to the objects from the same class
(i.e. until each node is pure). It was shown that a tree generated in such s way is monotone.

1.3.7 Ordinal Stochastic Dominance Learner

Ordinal Stochastic Dominance Learner (OSDL) (Cao-Van, 2003; Cao-Van and De Baets, 2004)
is an instance-based method for ordinal classification with monotonicity constraints. It is based
on the dominance relation only. It constructs the estimate of the probability distribution function,
F̂ (x) =

(
F̂ (x, 1), . . . , F̂ (x,K)

)
∈ RK , where F̂ (x, k) is the estimate of P (y 6 k|x). First, to each

object xi a distribution f̂(xi) = (f̂(xi, 1), . . . , f̂(xi,K)) is assigned:

f̂(xi, k) =
|{xj : xj = xi ∧ yj 6 k, j = 1, . . . , n}|
|{xj : xj = xi, j = 1, . . . , n}|

,

i.e. by counting objects with the same values of attributes. Notice that if each object lies in a
different point in X, each distribution f̂(xi) consists of yi ones and K − yi zeros. Next, for each
x ∈ X, we define two distribution estimators F̂m(x) and F̂M (x) as follows:

F̂m(x, k) = min{f̂(xi, k) : xi � x, i = 1, . . . , n}

F̂M (x, k) = max{f̂(xi, k) : xi � x, i = 1, . . . , n}.

5In boolean reasoning, the term “positive” is sometimes used instead of “monotone”.
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If the dataset is consistent then Fm(x, k) > FM (x, k) for each x ∈ X, k = 1, . . . ,K. In order to
handle the inconsistencies, one also defines:

Nm(x, k) = |{xi : xi � x ∧ yi > k}|

NM (x, k) = |{xi : xi � x ∧ yi 6 k}|.

The final estimate F̂ (x) of the probability distribution depends on whether the situation at x is
consistent or not, and is defined as:

F̂ (x, k) =

{
(1− s)F̂m(x, k) + sF̂M (x, k) if Fm(x, k) > FM (x, k)
(1−s′)Nm(x,k)F̂m(x,k)+s′NM (x,k)F̂M (x,k)

(1−s′)Nm(x,i)+s′NM (x,k) otherwise.
(1.22)

where s, s′ ∈ [0, 1] are the parameter of the algorithm (chosen by e.g. cross-validation). Having
obtained the estimate of the probability distribution F̂ (x), one can classify the object according to
the form of the Bayes classifier for a given loss function, as described in Section 1.2 (for instance,
for absolute error loss (1.9) we should choose the median). In (Cao-Van, 2003) the expectation
value rounded to the closest integer is suggested (so, squared error loss (1.11) is implicitly used),
although it is not a purely ordinal operation.

In (1.22), the upper expression is related to the consistent situation. The lower expression is more
robust against the inconsistencies (it resembles the variable consistency model used in DRSA, see
Chapter 4). For example, suppose there is an object xi from the highest class, yi = K, dominated
by every other object, i.e. xi � x for each x ∈ X. Then, the upper expression in (1.22) would give
F̂m(x, k) = 1 for every k and for every x just because of the single troublesome object xi. The
lower expression includes weighting by the number of objects Nm(x, k) and NM (x, k) which reduces
the influence of single, inconsistent objects (see Cao-Van (2003) for more details). Notice that the
estimate (1.22) is the extension of the “max” formula (1.21) used in OLM.

Although the estimate (1.22) looks sensible, it has a drawback of being based only on the
dominance relation. If there are many attributes, the dominance relation becomes sparse. Then,
sets {xi : xi � x} and {xi : xi � x} become small, which leads to very poor estimates of probability
distribution.

1.3.8 Isotonic Separation

Isotonic separation (Chandrasekaran et al., 2005) is a strong, novel tool for solving the problem
of ordinal classification with monotonicity constraints. It has already been successfully applied to
the firm bankruptcy prediction (Ryu and Yue, 2005), breast cancer diagnosis (Ryu et al., 2007),
and Internet content filtering (Jacob et al., 2007).

The algorithm works with any loss function and consists of two stages. In the first stage, the
dataset is “monotonized” (inconsistencies are removed) using the monotone approximation (1.20)6.
The second stage is related to the classification of unseen objects. It is similar to the nearest-
neighbors method, however it maintains monotonicity, i.e. the classifier is monotone. Let (u)+ be
a function which returns u if u > 0 and 0 otherwise, i.e. (u)+ = u1u>0. We define the “distance”:

d(x,x′) =
m∑
j=1

(xj − x′j)+

Notice that if x � x′ then d(x,x′) = 0. Moreover, if x � x′ then d is equivalent to the familiar L1

metric. Let us denote θ(u) = 1u>0 and let lyk be a loss of classifying an object as k if the observed

6Of course, Chandrasekaran et al. (2005) do not use the term “monotonize” nor “monotone approximation” in
their paper.
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value is y. The classifier has the following form:

hIS(x) = 1 +
K∑
k=2

θ

(
lk,k−1 min{d(x,xi) : y′i < k, i = 1, . . . , n}

− lk−1,k min{d(xi,x) : y′i > k, i = 1, . . . , n}
)
, (1.23)

where y′i are the new, consistent labels of objects (monotone approximation). First, notice that
if xi � x then h(x) 6 y′i, since then d(x,xi) = 0 and in each term of the sum with k > y′i the
argument of θ is always negative. Similarly, if xi � x then h(x) > y′i. The particular class label is
assigned by comparing the “distances” d to the “nearest neighbors” of x.

The function (1.23) has a severe (and very strange) drawback of depending only on the values
of the loss function above and below the diagonal, i.e. lk,k−1 and lk−1,k. Notice that, for 0-1
loss, absolute error loss and squared error loss, the expression (1.23) remains the same, which
shows a very undesirable behavior in the context of Bayesian analysis considered in Section 1.2.
Nevertheless, isotonic separation proved to be very effective in real-life applications.

The paper (Chandrasekaran et al., 2005) gives much broader analysis of the problem, including
reduction of the problem size, speeding up the classification procedure, separation with “doubt
regions” (where the classifier can abstain from the answer or indicate more than one class) and
continuous outcome (regression) case.

1.4 Goal and Scope of the Thesis

This thesis is devoted to the ordinal classification with monotonicity constraints. The general
goal of the thesis is the following:

Provide a comprehensive statistical theory for the problem of ordinal classification with
monotonicity constraints, as well as an efficient and accurate method for solving the
problem.

In particular, there are four major objectives associated with this goal. These four objectives are
achieved in separate chapters of the thesis. They are characterized briefly below.

Probabilistic model for ordinal classification with monotonicity constraints. Although
ordinal classification with monotonicity constraints has been considered in multicriteria decision
analysis, rough set approach and machine learning, there is no comprehensive theory which defines
the problem from statistical point of view. We meet these needs in Chapter 2. We show, how
monotonicity constraints can be expressed by making general assumptions about the probability
distribution. Moreover, we formulate the necessary and sufficient conditions for the structure of the
loss function which ensures the monotonicity of the optimal Bayes classifier.

Nonparametric methods. Having defined the model, we consider the probability estimation.
We propose a nonparametric method, based on isotonic regression. Although isotonic regression
has already been used to this end in binary-class case with linear preorder relation, our approach
for any K and partial preorder is novel. Next, we analyze the problem of monotone approximation
from statistical point of view. We also give a general method for reduction of the problem size.
We thoroughly analyze the binary-class case and the case of a linear loss function. We show
that the monotone approximation can be used as a general method for incorporating monotonicity
constraints into the learning process.
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Stochastic framework for Dominance-based Rough Set Approach. DRSA is the approach
having its roots in logic, which is probably the reason why no statistical explanation of the approach
has ever been proposed. In Chapter 4 we provide such an explanation basing on the statistical
theory of ordinal classification with monotonicity constraints. The explanation leads us to a natural,
stochastic extension of DRSA, which is found to be very useful for data in the presence of noticeable
inconsistency. We also show that stochastic DRSA implicitly aims at minimizing a specific interval
loss function. This makes the rough set methods perfectly tailored to the problems where abstaining
from classification is allowed in some cases.

Monotone rule ensembles. Although the statistical theory for ordinal classification with mono-
tonicity constraints provides an explanation for many concepts and approaches, it does not directly
lead to the learning algorithm, which can be used for prediction purposes. In Chapter 5 we intro-
duce two such algorithms, which both have the form of ensembles of decision rules. They possess a
good prediction performance, low computational costs and maintain simplicity and interpretability.
We provide a theoretical analysis which shows that the monotonicity assumptions allow us to bound
the difference between the performance of rule ensemble and the performance of optimal classifier
in terms of the empirically measurable value of the so called margin.

Computational experiments. The most of the thesis is theoretical. However, the learning
algorithms demand empirical evaluation to test how they perform on real data. We address this issue
in Chapter 6. We compare our algorithm based on monotone approximation, isotonic regression
and rule ensembles with popular existing approaches to ordinal classification with monotonicity
constraints. To our knowledge, there has not been such an extensive comparison of so many
methods on so many datasets for classification problem with monotonicity constraints before.



Chapter 2

Probabilistic Model for Ordinal
Classification with Monotonicity
Constraints

Ordinal classification with monotonicity constraints is often referred to as the problem of finding
an accurate classifier within the class of monotone functions. Restricting to such class of functions
is justified either by the assumption that the “target” function is monotone, or by requirement that
the constructed model should maintain monotonicity.

None of these statements, however, is applicable in the probabilistic setting, in which objects are
generated according to some distribution and we do not take into account any semantic information
about the data. Therefore, in this section we introduce a general assumption about the probability
distribution, expressed in terms of the stochastic dominance in order to capture the concept of
monotonicity constraints. Then we show how the monotonicity of the Bayes classifier follows for a
specific class of loss function (Kotłowski and Słowiński, 2008).

2.1 Stochastic Dominance

We will formulate the most general assumption about the probability distribution P (x, y) when
the monotonicity constraints are present in the ordinal classification. The monotonicity constraints
require that if x � x′ then x should be assigned a class not lower than x′. In practice, these
constraints are not always satisfied, leading to the situations referred to as inconsistencies. This
suggests that the dominance relation � does not impose “hard” constraints and the constraints
should rather be defined in a probabilistic setting.

Consider two points x,x′ ∈ X, such that x � x′. We believe that the core of the monotonicity
concept consist in the observation that the probability that x will get higher class label then x′,
should not be smaller than the probability of the opposite event, i.e.:

P (y > y′|x,x′) > P (y < y′|x,x′) (2.1)

In other words, the event that x gets a higher label than x′ is more probable than the even that
x′ gets a higher label than x. Moreover, this property should still hold if we merge some of the
contiguous classes. For instance, suppose we have four classes in a house pricing dataset: “cheap”,
“moderate”, “expensive” and “very expensive”. If we merge classes “cheap” and “moderate” into
a single class “not expensive”, obviously, (2.1) should still hold. The intuition behind is that the
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problem with merged contiguous classes maintains monotone properties (both, with respect to order
on class labels and monotone relationships) and thus can still be regarded as ordinal classification
with monotonicity constraints.

More formally, let Y = {1, . . . ,K} be the original set of class labels and let Ỹ = {1, . . . , K̃},
with K̃ 6 K, be a set of class labels which results from merging some of the contiguous classes,
i.e. ỹ = 1 ⇐⇒ y ∈ {1, . . . , k1}, ỹ = 2 ⇐⇒ y ∈ {k1 + 1, . . . , k2}, etc. We expect that for every
x � x′ and for every Ỹ , (2.1) holds. We believe this is the minimal requirement for the probability
distribution in the ordinal classification with monotonicity constraints.

It would be convenient, however, to have more comprehensive conditions than those described
above. In particular, we would like to formulate the conditions expressed only by means of the
original set of labels Y . Such conditions are introduced by the following theorem:

Theorem 2.1. Let x,x′ ∈ X be such that x � x′. Then, (2.1) holds for original set of class labels
Y and for every set of class labels Ỹ which results from merging some of the contiguous classes if
and only if for the original set Y it holds:

P (y 6 k|x) 6 P (y 6 k|x′) (2.2)

for every k = 1, . . . ,K.

The proof of the theorem is quite technical and is given in the Appendix at the end of this chapter.
Notice that (2.2) is a relation between two probability distributions, conditioned at x and x′, re-
spectively. This relation is known as (first order) stochastic dominance (Levy, 1998). Therefore, we
define the following property of the probability distribution as the principle of stochastic dominance
(Dembczyński et al., 2007b):

x � x′ =⇒ P (y 6 k|x) 6 P (y 6 k|x′) ∀x,x′ ∈ X, k = 1, . . . ,K. (2.3)

The principle can also be expressed in the following, equivalent way:

x � x′ =⇒ P (y > k|x) > P (y > k|x′) ∀x,x′ ∈ X, k = 1, . . . ,K.

We will call a probability distribution to be monotonically constrained if it satisfies (2.3). The
principle of stochastic dominance is the core of what we understand by monotonicity constraints.
Notice that in (Cao-Van, 2003; Cao-Van and De Baets, 2004) stochastic dominance was also used,
but to define the properties of the estimator, not the properties of the probability distribution.

Now we investigate the consequences of (2.3) for the Bayes classifier.

2.2 Monotonicity of the Bayes classifier

2.2.1 Loss functions and monotonicity of the Bayes classifier.

In the classification problem, we aim at finding the classifier which is as close as possible to
the Bayes classifier, the best possible classifier. In other words, the Bayes classifier is our “target
function” which we try to approximate. Therefore, no surprisingly, we require that in the ordinal
classification with monotonicity constraints, the Bayes classifier must be monotone.

The Bayes classifier may not be unique. First of all, it is defined only up to a zero measure set.
To solve this problem, we assume that for every x ∈ X, the Bayes classifier returns the class label
k with the smallest conditional risk E[L(y, k)|x]. Secondly, there can be ties between class labels
on the conditional risk. Therefore, we assume the lowest label is always chosen. This makes the
Bayes classifier unique.
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Suppose that the probability distribution is monotonically constrained. We will investigate
under what assumptions about the loss function, the Bayes classifier is a monotone function. Let
lyk = L(y, k) be the loss for predicting class k when the actual class is y, and assume lkk = 0 for
each k, and lyk > 0 for each y 6= k. We remind that the ordinal loss matrix was defined in Section
1.2.2 as:

ly,k−1 > lyk if k 6 y,

lyk 6 ly,k+1 if k > y.

Those properties of the loss matrix are not sufficient to ensure monotonicity of the Bayes classifier
when the probability distribution is monotonically constrained. We will prove this claim by a
counter-example. Let us consider two popular loss matrices, 0-1 loss lyk = 1y 6=k and absolute error
loss lyk = |y − k|. Both are ordinal (see Section 1.2.2), however the Bayes classifier is monotone
only for absolute error loss. Indeed, the Bayes classifier for absolute error loss is the median of
the distribution. It will be later shown that the median is a monotone function under stochastic
dominance assumption. On the other hand, the Bayes classifier for 0-1 loss is the mode of the
distribution (most probable class). Consider the following 3-class counter-example: assume that
x � x′ and that the probability distribution at x′ is (0.3, 0.3, 0.4) (e.g. P (y = 3|x′) = 0.4),
while the probability distribution at x is (0.1, 0.5, 0.4). Although (2.3) is satisfied (distribution is
monotonically constrained), the Bayes classifier for x′ indicates class 3, while for x it indicates class
2, which contradicts the monotonicity.

Thus, additional constraints must be imposed on the ordinal loss matrix in order to ensure the
monotonicity of the Bayes classifier. This issue is solved by the following theorem:

Theorem 2.2. Suppose [lyk]K×K is an ordinal loss matrix. Then the Bayes classifier is a monotone
function for every monotonically constrained probability distribution P (x, y) if and only if the loss
matrix satisfies the following constraints:

ly,k+1 − lyk > ly+1,k+1 − ly+1,k if k > y,

ly,k−1 − lyk > ly−1,k−1 − ly−1,k if k < y.
(2.4)

We give the proof in the Appendix due to its technical content. From Theorem 2.2 it follows that
conditions (2.4) are necessary and sufficient for monotonicity of the Bayes classifier. The mono-
tonicity property is required in the ordinal classification with monotonicity constraints, because
otherwise there would be no point in restricting to the class of monotone functions. Hence, we will
call the ordinal loss matrix satisfying (2.4) monotone loss matrix. Notice that for K = 2, every loss
matrix is monotone.

Summarizing, we can define the ordinal classification problem with monotonicity constraints as
the problem of minimizing the risk with the monotone loss matrix where the data are generated
according to the monotonically constrained distribution.

2.2.2 Convex loss functions and monotonicity.

We will investigate the conditions (2.4) for a popular subclass of the loss matrices.

Let c : Z → R be a function which assigns to each integer1 a real number. We say that the
function c(k) is convex if for each k ∈ Z it holds:

c(k) 6
c(k − 1) + c(k + 1)

2
. (2.5)

1We denote the set of integers by Z.
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This definitions is equivalent to the more familiar definition of the form: function c(k) is convex if
for every i, j ∈ Z and for every λ ∈ [0, 1] such that λi+ (1− λ)j ∈ Z, we have:

c(iλ+ (1− λ)j) 6 λc(i) + (1− λ)c(j). (2.6)

Here we use (2.5), due to its simplicity. The equivalence of definitions (2.5) and (2.6) is proved in
the Appendix as Lemma 2.2. In multi-class problems, the loss matrix is very often expressed in the
following form:

lyk = c(y − k), (2.7)

with c(0) = 0 and c(k) > 0 if k 6= 0. The matrices of this form are, for instance, 0-1 loss (with
function c(k) = 1k 6=0), mean absolute error loss (c(k) = |k|) or squared error loss (c(k) = k2).
Moreover, every binary loss matrix is of that form, since it is determined by setting only two
parameters, l12 = c(−1) and l21 = c(1). With such a representation of the loss matrices, we can
prove the following theorem:

Theorem 2.3. Suppose [lyk]K×K is an ordinal loss matrix of the form lyk = c(y − k) for some
function c : Z → R, such that c(0) = 0 and c(k) > 0 for every k 6= 0. Then, the Bayes classifier is
monotone if and only if c(k) is convex.

Proof. The conditions (2.4) can now be expressed as:

c(y − k − 1)− c(y − k) > c(y − k)− c(y − k + 1) if k > y,

c(y − k + 1)− c(y − k) > c(y − k)− c(y − k − 1) if k < y,

which are equivalent (along with condition c(0) 6 c(1)+c(k+1)
2 holding for every loss matrix) to the

condition (2.5).

Corollary 2.4. Consider loss function of the form lyk = |y − k|p, for p > 0 and K > 2. Then the
Bayes classifier is monotone if and only if p > 1.

Proof. For any k, expression (2.5) is satisfied if and only if p > 1. This follows from the well known
fact that functions of the form c(x) = |x|p are convex if and only if p > 1.

Corollary 2.4 explains why 0-1 loss (p → 0) does not lead to the monotone Bayes classifier
under the stochastic dominance assumption, while absolute error loss (p = 1) and squared-error
loss (p = 2) do ensure monotonicity. These results suggest that 0-1 is not a proper loss for ordinal
classification with monotonicity constraints (apart from binary-class case K = 2), since it is not a
monotone loss function, according to the definition (2.4). The absolute error loss is the “boundary”
function – it just satisfies the minimal requirements for the loss function to be monotone.

2.3 Linear Loss

Definition. Let us consider a specific loss function known as the linear loss (Berger, 1993):

lyk =

{
α(k − y) if k > y

(1− α)(y − k) if k 6 y,
(2.8)

where 0 < α < 1. For α = 1
2 we have absolute error loss lyk = |k−y| (up to proportional constant).

The purpose of introducing (2.8) is to model asymmetric costs of misclassification: for α > 1
2 the cost

of predicting higher class then the actual class y is more penalized than predicting the lower class;
for α < 1

2 we have the opposite case. Such a loss function can be useful e.g. in medicine: consider
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Figure 2.1: Example of extended linear loss with K = 5. The function s(k) changes the position of
each class label on the scale.

classifying patients into the classes according to their health condition: “good”, “moderate”, “bad”,
“very bad”. Then, classifying the patient’s condition to be better than it really is, is probably more
dangerous to her/his health than regarding the patient to be in a worse condition than the real one.

As a corollary from Theorem 2.3, we immediately have:

Corollary 2.5. The linear loss is a monotone loss matrix.

It is also known (Berger, 1993) that such a loss function is minimized by the (1 − α)-quantile
of the conditional distribution2 i.e. by such y1−α that P (y 6 y1−α) > 1− α and P (y > y1−α) > α.
For α = 1

2 we have the of median.

Extended linear loss. One can even extend the definition of linear loss by introducing the
following definition:

lyk =

{
α(s(k)− s(y)) if k > y

(1− α)(s(y)− s(k)) if k 6 y,
(2.9)

where s(k) : Y → R is a strictly increasing function. It can be interpreted as a “scale changing”
function, which positions the class labels on the real axis, thus changing the distances between
them. Introducing arbitrary scale may at first look like a strong generalization of (2.8). However,
it is not hard to show that the arbitrary scale will not change anything on the population level:

Theorem 2.6. The Bayes classifier for the extended linear loss (2.9) does not depend on the
function s(k). In particular, this implies that the Bayes classifier for extended linear loss is the
(1− α)-quantile of the conditional distribution.

Proof. First, notice that since s(k) is strictly increasing, it has an inverse s−1 : s(Y ) → Y . Let
y ∈ Y be a random variable according to distribution P (y|x). Let us define the random variable
y′ = s(y). Moreover, for each k ∈ Y , let k′ = h(k). Then,

arg min
k

E
[
L(s(y), h(k))|x

]
= s−1

(
arg min

k′
E
[
L(y′, k′)|x

])
, (2.10)

i.e. minimizing the extended loss (2.9) is equivalent to first minimizing the expected loss (2.8) with
random variable y′ and then taking the s−1-inverse of the obtained minimizer. The Bayes classifier
for (2.8) is y′1−α, the (1−α)-quantile of distribution P (y′|x). Since P (y′ = k|x) = P (y = s−1(k)|x)
for every k = 1, . . . ,K, then we must have y′1−α = s(y1−α). According to (2.10), the Bayes classifier
for (2.9) is s−1(y′1−α) = s−1(s(y1−α)) = y1−α.

2We remind that in general, p-quantile of probability distribution P (x) is defined as a value xp such that P (x 6

xp) > p and P (x > xp) > 1− p.
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We conclude that there is no point in using complex scale changing functions and we can stay
with the ordinary linear loss. Although parametrized by only a single value α, linear loss is sufficient
to model most of real-life ordinal classification problems. Hence, for the rest of this thesis we will
focus on the linear loss function.

Appendix: Proofs of the Theorems

Proof of Theorem 2.1

Theorem 2.1. Consider x and x′ such that x � x′. Then, (2.1) holds for the original set of
class labels Y and for every set of class labels Ỹ which results from merging some of the contiguous
classes if and only if for the original set Y it holds:

P (y 6 k|x) 6 P (y 6 k|x′) (2.11)

for every k = 1, . . . ,K.

Proof. First we prove the “if” part. Assume (2.11) holds for Y . But then (2.11) also holds for every
merged set Ỹ , since the event {ỹ 6 k} is equivalent to the event {y 6 k′} for some k′. Choose any
such set Ỹ and let us denote ∆ = P (ỹ > ỹ′|x,x′)−P (ỹ 6 ỹ′|x,x′). We shall prove that ∆ > 0. Let
us denote pk = P (ỹ = k|x) and qk = P (ỹ = k|x′) for each k = 1, . . . , K̃. Due to the independence
of y and y′, we have:

P (ỹ > ỹ′|x,x′) =
K̃∑
k=2

k−1∑
l=1

P (ỹ = k ∧ ỹ′ = l|x,x′) =
K̃∑
k=2

k−1∑
l=1

pkql,

and, similarly, P (ỹ 6 ỹ′|x,x′) =
∑K̃
k=2

∑k−1
l=1 qkpl, so that:

∆ =
K̃∑
k=2

k−1∑
l=1

(pkql − qkpl). (2.12)

We will prove ∆ > 0 by induction on K̃. For K̃ = 1 obviously ∆ = 0. Now, fix some K̃ and assume
the theorem holds for K̃ − 1. From (2.11) we have pK̃ > qK̃ , because:

pK̃ = 1−
K̃−1∑
k=1

pk > 1−
K̃−1∑
k=1

qk = qK̃ .

Notice that if we keep pK̃ +pK̃−1 constant, but decrease pK̃ and increase pK̃−1 by the same amount
ε, ∆ decreases; one can easily check by simple analysis of the sums in (2.12) that the total decrease
is ε(qK̃−1 + qK̃). We can decrease pK̃ without violating (2.11) as long as pK̃ > qK̃ . Thus, it is
enough to show that ∆ > 0 for pK̃ = qK̃ .

We transform the expression (2.12) to obtain:

∆ =
K̃−1∑
k=2

k−1∑
l=1

(pkql − qkpl) +
K̃−1∑
l=1

(pK̃ql − qK̃pl). (2.13)

The second term can be transformed to:

K̃−1∑
l=1

(pK̃ql − qK̃pl) = pK̃(1− qK̃)− qK̃(1− pK̃) = pK̃ − qK̃ > 0.
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Thus, it is enough to show that the first term is nonnegative. But the first term looks almost like
the case with K̃ − 1 classes – the only difference is that probabilities, both qk and pk do not sum
to 1. But they both sum to the same number, 1− pK̃ , since pK̃ = qK̃ . So, if we divide (rescale) the
first term by 1− pK̃ (which will neither change the sign of ∆ nor violate (2.11)), we have the case
with K̃ − 1, so we can use the induction assumption and finally we obtain ∆ > 0.

Now, we prove the “only if” part. Assume (2.1) holds for every merged set Ỹ . In particular, it
holds when Ỹ = {1, 2}, such that ỹ = 1 ⇐⇒ y 6 k and ỹ = 2 ⇐⇒ y > k; in other words, we
merge classes 1, . . . , k into a single class and merge classes k + 1, . . . ,K into another class. Let us
denote p = P (y 6 k|x) and q = P (y 6 k|x′). Then, we have

0 6 P (ỹ > ỹ′|x,x′)− P (ỹ 6 ỹ′|x,x′) = q(1− p)− p(1− q) = q − p,

which means:
P (y 6 k|x) 6 P (y 6 k|x′).

Since k was chosen arbitrarily, this ends the proof.

Proof of Theorem 2.2

Before we prove the theorem, we first need a simple lemma related to the stochastic dominance.
The lemma is a basic result in decision theory, but we give the proof for clarity and completeness.

Lemma 2.1. Let x � x′ so that P (y|x) stochastically dominates P (y|x′). Let z : Y → R be a
non-increasing random variable. Then it holds:

E[z|x] 6 E[z|x′], (2.14)

i.e. the expected value of z according to distribution P (y|x) is always smaller then the expected
value of z according to P (y|x′).

Proof. Let us denote pk = P (y = k|x), qk = P (yk|x′) and zk = z(k). Then (2.14) can be rewritten
in the following way:

K∑
k=1

pkzk 6
K∑
k=1

qkzk.

Let us denote the cumulative distribution by Pk =
∑k
l=1 pl and Qk =

∑k
l=1 ql (we assume P0 =

Q0 = 0). From the stochastic dominance it follows that Pk 6 Qk for each k. Then,

K∑
k=1

pkzk =
K∑
k=1

(Pk − Pk−1)zk =
K∑
k=1

Pkzk −
K−1∑
k=0

Pkzk+1 =

= zK +
K−1∑
k=1

Pk(zk − zk+1) 6 zK +
K−1∑
k=1

Qk(zk − zk+1) =
K∑
k=1

qkzk, (2.15)

where the inequality follows from the fact that zk − zk+1 > 0 for each k.

Now, we prove the main theorem:

Theorem 2.2. Suppose [lyk]K×K is an ordinal loss matrix. Then the Bayes classifier is a monotone
function for every monotonically constrained probability distribution P (x, y) if and only if the loss
matrix satisfies the following constraints:

ly,k+1 − lyk > ly+1,k+1 − ly+1,k if k > y

ly,k−1 − lyk > ly−1,k−1 − ly−1,k if k < y
(2.16)
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Proof. First we prove the “if” part. Suppose conditions (2.16) hold. Let us define δyk in the
following way:

δyk =

{
lyk − ly,k−1 for k > y,

lyk − ly,k+1 for k < y.

Let P (x, y) be any monotonically constrained probability distribution and let x,x′ ∈ X be any two
points such that x � x′. Let us denote pk = P (y = k|x) and qk = P (y = k|x′). Let u be a predicted
class label. The expected loss for u over the distribution P (y|x) is as follows:

E[L(y, u)|x] =
K∑
y=1

pylyu =
u−1∑
y=1

py

u∑
k=y+1

(lyk − ly,k−1) +
K∑

y=u+1

py

y−1∑
k=u

(lyk − ly,k+1),

or by using δyk:

E[L(y, u)|x] =
u−1∑
y=1

py

u∑
k=y+1

δyk +
K∑

y=u+1

py

y−1∑
k=u

δyk.

Consider ∆(u|x) = E[L(y, u + 1)|x] − E[L(y, u)|x], the difference between the expected losses for
u+ 1 and u:

∆(u|x) =
u∑
y=1

py

u+1∑
k=y+1

δyk +
K∑

y=u+2

py

y−1∑
k=u+1

δyk −
u−1∑
y=1

py

u∑
k=y+1

δyk −
K∑

y=u+1

py

y−1∑
k=u

δyk =

=
u∑
y=1

pyδy,u+1 −
K∑

y=u+1

pyδyu 6
u∑
y=1

qyδy,u+1 −
K∑

y=u+1

qyδyu = ∆(u|x′),

where the inequality comes from Lemma 2.1, since the function z(1) = δ1,u+1, . . . , z(u) =
δu,u+1, z(u+1) = −δu+1,u, . . . , z(K) = −δKu is non-increasing according to the assumptions (2.16).
This means that the difference in expected loss for any two contiguous class labels u+ 1 and u does
not increase as we move from x to x′. But this means that the difference in expected loss between
any class labels v and u does not increase.

Now, suppose v is a Bayes classifier for x′, i.e.:

v = arg min
k∈Y

E[L(y, k)|x′].

Choose some u < v. We have:

0 > E[L(y, v)|x′]− E[L(y, u)|x′] > E[L(y, v)|x]− E[L(y, u)|x],

which means that u cannot be the Bayes classifier for x. Thus, the Bayes classifier must be
monotone.

Now we prove the “only if” part. Suppose that one of the conditions (2.16) is violated; without
loss of generality, we may assume that the first one is violated, i.e. ly0k0 − ly0,k0−1 < ly0+1,k0 −
ly0+1,k0−1 for some k0 > y0. We shall find some probability distribution and objects x � x′ such
that the Bayes classifier violates monotonicity condition, i.e. h∗(x) < h∗(x′).

First, notice that we can set P (y = k|x) = 0 for each x ∈ X, for every class label k /∈
{y0, k0, k0 − 1}. This will effectively eliminate other classes (they never occur in the problem) so
that we end up with three-class problem which is much easier to analyze than a general K-class
problem. Therefore, without loss of generality, we assume the following loss matrix:

[lij ]K×K =

 0 l12 l13

l21 0 l23

l31 l32 0

 .
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Without loss of generality we also assume that the violation of (2.16) has the form l23 > l13 −
l12 (another possibility is l21 > l31 − l32, but the analysis would be analogical). First, we will
construct a probability distribution z = (z1, z2, z3) and later from this distribution we will construct
distributions at points x and x′. We will choose distribution z so that the expected loss for predicting
class 2 is equal to the loss for predicting 3 and smaller than for class 1, i.e.:

Ez[L(y, 3)] = Ez[L(y, 2)], (2.17)

Ez[L(y, 3)] < Ez[L(y, 1)], (2.18)

where we denoted the expectation over the distribution z by Ez This implies:

z1l13 + z2l23 = z1l12 + z3l32,

z1l13 + z2l23 < z2l21 + z3l31.

Using z3 = 1 − z2 − z1 and knowing that both l32 + l13 − l12 and l13 + l31 are positive, we can
transform these expressions to:

z1 = A−Bz2, z1 < C −Dz2, (2.19)

where:

A =
l32

l32 + l13 − l12
, B =

l23 + l32

l32 + l13 − l12
, C =

l31

l31 + l13
, D =

l23 + l31 − l21

l31 + l13
.

Notice that A,C > 0 and B > 1. We will prove some more inequalities. First, we show that
B −D > 0:

B −D > 0 ⇐⇒ (l23 + l32)(l31 + l13) > (l32 + l13 − l12)(l23 + l31 − l21)

⇐⇒ (l31 − l32)(l23 − l13 + l12) + l12(l23 + l32)

+l21(l32 + l13 − l12) > 0, (2.20)

which holds, because all the terms in the last equation are positive. Next, we show that BC−AD >

0:

BC −AD > 0 ⇐⇒ (l23 + l32)l31 − l32(l23 + l31 − l21) > 0

⇐⇒ l23(l31 − l32) + l32l21 > 0, (2.21)

which holds, because, again, all the terms are positive. Finally, we must show that A−C < B−D:

A− C < B −D ⇐⇒ l32(l31 + l13)− l31(l32 + l13 − l12)

−(l23 + l32)(l31 + l13) + (l23 + l31 − l21)(l32 + l13 − l12) < 0 ⇐⇒

−l23(l31 − k32)− l21(l13 − l12 + l32)− l12l23 < 0, (2.22)

which holds because, again, all the terms on the left hand side are negative.
Let us substitute the first expression in (2.19) into the second expression to obtain:

A− z2B < C − z2D ⇐⇒ z2(B −D) > A− C+ ⇐⇒ z2 >
A− C
B −D

,

because B−D > 0 from (2.20). We now must show that there exist z1, z2 such that 0 < z1, z2 < 1,
z1 + z2 < 1, z1 = A−Bz2, and z2 >

A−C
B−D . Fix z2 = ε+ max{0, A−CB−D}. From (2.22) it follows that

A−C
B−D < 1, thus we can always found positive ε such that 0 < z2 < 1. Moreover:

z1 = A−Bz2 = −Bε+ min
{
A,A−B A− C

B −D

}
= −Bε+ min

{
A,

BC −AD
B −D

}
,
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and since A > 0 and it follows from (2.21) that BC−AD
B−D > 0, we have z1 > 0. Moreover, since

A < 1, for sufficiently small ε we have z1 < 1. Finally, notice that:

z1 + z2 = A− (B − 1)z2 = −ε(B − 1) + min
{
A,A− (B − 1)

A− C
B −D

}
(we used the fact that B > 1), which means that z1 + z2 < 1 for sufficiently small ε. Thus, all
requirements are satisfied for z1, z2, z3 to be a probability distribution for which (2.17)-(2.18) hold.

Since the inequality in (2.18) is a strict inequality, it will be still satisfied for another probability
distribution q = (q1, q2, q3) such that q1 = z1 + γ and q2 = z2 − γ and q3 = z3 with sufficiently
small γ. Similarly to the way we got the first equation in (2.19) from (2.17), we can show that the
following holds:

Eq[L(y, 3)] < Eq[L(y, 2)] ⇐⇒ q1 < A−Bq2,

Eq[L(y, 3)] > Eq[L(y, 2)] ⇐⇒ q1 > A−Bq2.

It follows for positive γ that:

q1 = z1 + γ = A−Bz2 + γ < A−Bz2 +Bγ = A−B(z2 − γ) = A−Bq2,

which means that for distribution q, class label 3 have the lowest cost. Moreover, if we choose
another distribution p = (p1, p2, p3) such that p1 = z1 − γ, p2 = z2 + γ, p3 = z3, for the same
positive γ, we have:

p1 = z1 − γ = A−Bz2 − γ > A−Bz2 −Bγ = A−B(z2 + γ) = A−Bp2,

which means that for distribution p class label 2 have the lowest cost. But distribution p stochas-
tically dominates distribution q, since p1 = z1 − γ < z1 + γ = q1 and p2 = q2. Thus, we can choose
any x, x′ such that x � x′ and assign P (y = k|x′) := qk, P (y = k|x) := pk for each k, and from
the above analysis it follows that h∗(x) = 2 < 3 = h∗(x′), a contradiction.

Proof of Lemma 2.2

In this section we prove the equivalence of two definitions of convex functions.

Lemma 2.2. For any function c : Z → R which assigns to each integer a real number, the two
following conditions are equivalent:

1. For every i, j ∈ Z and for every λ ∈ [0, 1] such that λi+ (1− λ)j ∈ Z:

c(iλ+ (1− λ)j) 6 λc(i) + (1− λ)c(j). (2.23)

2. For every k ∈ Z:

c(k) 6
c(k − 1) + c(k + 1)

2
. (2.24)

Proof. If the function satisfies (2.23), than (2.24) holds by choosing i = k− 1, j = k+ 1 and λ = 1
2 .

Now, suppose that (2.24) holds. We will show that for all positive integers r, s we have:

c(k) 6
s

s+ r
c(k − r) +

r

s+ r
c(k + s). (2.25)

We will prove this by induction on r and s. For r = s = 1 (2.25) holds by assumption. Suppose
it holds for every r, s 6 N and we will prove that it then holds also for r, s 6 N + 1. Multiple
application of (2.25), first with some r, s and then with 1, r, leads to:

c(k) 6
s

s+ r

(
r

r + 1
c(k − r − 1) +

1
r + 1

c(k)
)

+
r

s+ r
c(k + s),
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or equivalently, by rearranging the terms, to:

c(k) 6
s

s+ r + 1
c(k − r − 1) +

r + 1
s+ r + 1

c(k + s),

which means that (2.25) holds for r 6 N + 1 and s 6 N . Applying once more (2.25) with s, 1,
analogously as above, shows that (2.25) holds for r, s 6 N + 1. This finishes the induction proof of
(2.25).

Choose any i, j ∈ Z and any λ ∈ [0, 1] such that k = λi+ (1− λ)j ∈ Z. But then i = k − r and
j = k − s for some positive r, s. This means that λ = s

s+r and from (2.25) it follows that (2.23)
holds, which ends the proof.
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Chapter 3

Nonparametric Methods

In this chapter, we consider the methods of probability estimation (isotonic regression) and clas-
sification (monotone approximation) which are based solely on the assumption about the mononicity
constraints of probability distribution (principle of stochastic dominance). No other assumptions
are made and hence the only information about the objects being used is obtained through the
dominance relation. Those methods are called nonparametric, because we infer about the model
using the largest possible class of functions under the monotonicity assumption: the class of all
monotone functions.

The nonparametric methods are especially useful when the dominance relation is sufficiently
dense (the dimensionality m is not too high) or when the only available information about the
objects is given by the dominance relation � (e.g. we have no informations about the attribute
vectors). Moreover, as we shall see in Chapter 5, the nonparametric methods can be very useful
in combination with some parametric classification procedures, constituting a two-phase learning
algorithm.

3.1 Nonparametric Probability Estimation by Isotonic Re-

gression

When the distribution is monotonically constrained, it is enough (under some additional, mild
assumption described later) to estimate the probabilities in a nonparametric way. We propose such
a nonparametric method, taking into account only the monotonicity constraints expressed by the
dominance relation. Our method is based on isotonic regression. Although isotonic regression has
already been used to this end in binary-class case with linear preorder relation(Robertson et al.,
1998), our approach for any K and partial preorder is new (Dembczyński et al., 2007b; Kotłowski
et al., 2008).

3.1.1 Maximum Likelihood Estimation

The most popular method of probability estimation in statistics is the maximum likelihood
estimation (MLE). Let D be the observed data (training set) and let θ be some vector of parameters
which are to be estimated. Then, we define the MLE estimate of θ, denoted by θ̂, as the value of
θ, for which the probability of D (likelihood) is maximal:

θ̂ = arg max
θ

P (D|θ) = arg max
θ

L(θ;D),
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where L(θ;D) is the likelihood function. One usually works with the negative log-likelihood
`(θ) = − logL(θ;D), since the global minimum of ` and global maximum of L coincide, i.e.
θ̂ = arg minθ `(θ).

In the ordinal classification with monotonicity constraints we do not impose any specific prob-
abilistic model apart from the stochastic dominance assumption. Therefore, for each object
xi, i = 1, . . . , n, we can regard the probability distribution P (y|xi) as a set of parameters to esti-
mate. By denoting pik := P (y = k|xi), the likelihood function have the form:

L(p|D) =
n∏
i=1

pi,yi ,

so that negative log-likelihood is:

`(p) = −
n∑
i=1

log pi,yi . (3.1)

The only constraint that we assume is the stochastic dominance principle (2.3):

xi � xj =⇒
k∑
l=1

pil 6
k∑
l=1

pjl, (3.2)

for every i, j = 1, . . . , n, and for each k = 1, . . . ,K. Therefore, the nonparametric problem of MLE
is defined as the problem of minimizing (3.1) under the constraints (3.2), and the constraints pik > 0
and

∑K
k=1 pik = 1, for i = 1, . . . , n, to ensure that the axioms of the probability distribution hold.

This is a nonlinear optimization problem, with a convex objective function and linear constraints,
so it can be solved quite efficiently by general constraint optimization algorithms (Bazaraa et al.,
2006). However, the objective function is not strictly convex when K > 2, so that the problem may
not have a unique solution. Hence, we will solve the MLE problem only for a binary-class case,
while for a general multi-class case we will propose a different estimation method, based on the
reduction to K − 1 binary-class problems.

3.1.2 Binary-class Problem and Isotonic Regression

Binary-class MLE. Let us restrict to the case of K = 2 and for the sake of clarity, we will use
the set of class labels Y = {0, 1}. Let pi = P (y = 1|xi) so that P (y = 0|xi) = 1 − pi. Then, the
problem of MLE can be rewritten as:

minimize: −
n∑
i=1

(
yi log pi + (1− yi) log(1− pi)

)
subject to: xi � xj =⇒ pi > pj i, j = 1, . . . , n

0 6 pi 6 1 i = 1, . . . , n (3.3)

Although the problem (3.3) remains nonlinear, it can easily be shown that the objective function is
strictly convex now, i.e. the optimal solution is unique. At this moment, we can use a consistency
property (1.13) to significantly reduce the size of the problem. We remind that object xi is consistent
if for every j = 1, . . . , n, it holds: xi � xj → yi > yj and xi � xj → yi 6 yj . The reduction
procedure is based on the following theorem.

Theorem 3.1. Let p̂ = (p̂1, . . . , p̂n) be the optimal solution of (3.3). Then, p̂i = yi if and only if
object xi is consistent.

Proof. We consider the case yi = 1 (the case yi = 0 is analogous). If xi is consistent, then from the
definition of consistency (1.13), there is no other object xj , such that xj � xi and yj = 0. Thus,



Nonparametric Methods 33

for every xj , such that xj � xi, yj = 1 and yj is also consistent (otherwise, due to transitivity of
dominance, xi would not be consistent). Thus, we can set p̂j = 1 for xj and p̂i = 1 for xi, and
these are the values that minimize the objective function in (3.3), while satisfying the constraints.

Now, suppose p̂i = 1 and assume the contrary, that xi is not consistent, i.e. there exists
xj , xj � xi, but yj = 0. Then, due to the monotonicity constraints in (3.3), p̂j > p̂i = 1, so
p̂j = 1, and the objective in (3.3) equals to the infinity, which is surely not the optimal solution to
the minimization problem (since at least one feasible solution p̂ ≡ 1

2 with a finite objective value
exists).

Thus, only consistent objects have probability estimates equal to 1 or 0. We can set p̂i = yi

for each consistent object xi and optimize (3.3) only for inconsistent objects, which usually gives a
large reduction of the problem size (number of variables). We have experienced on real data that
in most cases at least 80%− 90% of variables (objects) are removed.

In the next paragraph we show that (3.3) has the same optimal solution as the isotonic regression
problem.

Isotonic regression. We remind that a vector p∗ = (p∗1, . . . , p
∗
n) is an isotonic regression of y if

p∗ is the solution of the following problem:

minimize:
n∑
i=1

(yi − pi)2

subject to: xi � xj =⇒ pi > pj i, j = 1, . . . , n, (3.4)

so that p∗ minimizes the squared error in the space of all monotone vectors p = (p1, . . . , pn).
Comparing with definition (1.19) from Chapter 1, we set the weights w = (w1, . . . , wn) to be equal
to ones1. Although squared error seems to be arbitrarily chosen, it can be shown that minimizing
many other error functions we get the same vector p∗ as in the case of (3.4). In particular, we show
that this property applies also to the objective function of the MLE problem:

Theorem 3.2. (Robertson et al., 1998) Let p∗ be an isotonic regression of y. Then, p∗ is also the
optimal solution to the MLE problem (3.3), i.e. p̂ = p∗.

The proof is based on the analysis from (Robertson et al., 1998) and can be found in the
Appendix. To summarize, the problem of MLE for binary-class case (3.3) can be solved by the
isotonic regression (3.4), because the optimal solutions of both problems coincide. The isotonic
regression is easier to solve due to a simpler objective function (quadratic); e.g. Burdakov et al.
(2006) proposed a heuristic algorithm giving results close to optimum in O(n2) (this is in fact the
fastest possible time for the order-restricted inference, since the order relation is in general of size
O(n2)). Moreover, by using Theorem 3.1 the size of the problem is usually reduced several times
before the optimization process has even begun.

A simple example of isotonic regression is shown in Figure 3.1.

3.1.3 Multi-class Problem

Description of the estimation method. In the multi-class case, the MLE estimation is no
longer equivalent to the isotonic regression. Moreover, the MLE estimation is not strictly convex,
which results in non-unique solution (Dembczyński et al., 2007b). There is no well-established
method for probability estimation for the case of K > 2 ordered classes. Below, we propose such
an approach, based on multiple isotonic regression.

1Nevertheless, all the results shown in this chapter are also valid for objects with arbitrary positive weights.
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Figure 3.1: Binary-class example with two attributes. Objects with y = 0 are dark, while with
y = 1 – light. The estimate of probability of class 1, p̂i, is shown. Notice that for consistent objects
(x1,x5,x6,x9,x10) it holds yi = p̂i.

Let Y = {1, . . . ,K} and for a given xi let us define K − 1 dummy variables yik = 1yi>k,
k = 2, . . . ,K. We can think of solving the general K-class problem in terms of solving K − 1
binary problems. In the k-th binary problem, dummy variables yik play the role of class labels with
Y = {0, 1}, while variables of the problem correspond to estimating the probability P (y > k|xi).
Let us fix k = 2, . . . ,K. We define the vector of estimators q̂k = (q̂1k, . . . , q̂nk) of the probabilities
P (y > k|xi), as the isotonic regression of vector yk = (y1k, . . . , ynk), i.e. the optimal solution to
the problem:

minimize
n∑
i=1

(yik − pi)2

subject to xi � xj =⇒ pi > pj i, j = 1, . . . , n. (3.5)

Having obtained the solution of (3.5) for each k = 2, . . . ,K, we construct the estimators p̂ik of
P (y = k|xi) as:

p̂ik =


q̂ik if k = K

q̂ik − q̂i,k+1 if 2 6 k < K

1− q̂i,k+1 if k = 1
(3.6)

These estimators are unique because the isotonic regression is unique. They boil down to the
previous approach (3.4) in binary-class case. However, as the K − 1 problems (3.5) are solved
separately, we must guarantee that q̂ik < q̂i,k+1 will never happen, otherwise we would have negative
probabilities p̂ik.

Properties of the estimators. We show that for each i = 1, . . . , n, estimators {p̂i1, . . . , p̂iK}
form a probability distribution, i.e. they are non-negative and sum to one. However, first we prove
the following lemma:

Lemma 3.1. Let p̂ be the isotonic regression of the class labels vector y = (y1, . . . , yn). Suppose,
we introduce a new vector of class labels y′ = (y′1, . . . , y

′
n), such that y′i > yi for all i = 1, . . . , n.

Then, p̂′, the isotonic regression of y′, has the following property: p̂′i > p̂i, for all i = 1, . . . , n.
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Figure 3.2: 3-class example with two attributes. Objects with y = 1 are black, with y = 2 – dark
gray, and with y = 3 – light gray. The vector of probability estimates (p̂i1, p̂i2, p̂i3) is shown below
each objects. Notice that for consistent objects (x1,x4,x5,x9,x10) the probability concentrates on
a single class yi.

The proof can be found in the Appendix. Using Lemma 3.1, the desired properties of the
estimators are now easy to show.

Theorem 3.3. For each i = 1, . . . , n, estimators {p̂i1, . . . , p̂iK} form a probability distribution, i.e.∑K
k=1 p̂ik = 1, and for each k, p̂ik > 0.

Proof. It immediately follows from the definition (3.6) that:

K∑
k=1

p̂ik = 1− q̂i,2 +
K−1∑
k=2

(
q̂ik − q̂i,k+1

)
+ q̂iK = 1.

Now we prove the non-negativity of p̂ik. First, notice that the isotonic regression (3.4) is bounded
between 0 and 1. This comes from the fact that the problem (3.4) has the same optimal solution
as the problem (3.3), which explicitly includes the constraints 0 6 pi 6 1 (see Section 3.1.2). This
shows that p̂i1 > 0 and p̂iK > 0. To show that p̂ik > 0 for k = 2, . . . ,K − 1, we must show that
q̂ik− q̂i,k+1 > 0. But this is guaranteed by Lemma 3.1, because class indices yik = 1yi>k in the k-th
problem are always greater than respective class indices yi,k+1 = 1yi>k+1.

Summary. The problem of probability estimation for multi-class case is stated as the problem
of solving K − 1 isotonic regression problems (3.5). The probability estimators are obtained from
the optimal solution by (3.6). They always form a proper probability distribution, i.e. they are
non-negative and sum to unity. Solving (3.5) in each case k = 2, . . . ,K, can be done in exactly the
same way as in binary-class case (3.4). For instance, Theorem 3.1 also applies for each k = 2, . . . ,K.

A simple example of three-class problem is shown in Figure 3.2.

3.1.4 Extension Beyond the Training Set and Asymptotic Consistency

Until now, we dealt only with the estimation of the conditional probability distributions for
objects from the training set D, i.e. at the points xi, i = 1, . . . , n. However, one can simply extend
the estimated probabilities to the whole space X.
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Extension of probability estimates. Consider first the binary problem Y = {0, 1} and proba-
bility estimate p̂i for object xi. Since the estimates were obtained by solving the isotonic regression
(3.4), it must hold xi � xj → p̂i > p̂j . The principle of stochastic dominance (2.3) for K = 2 says
that the probability p(x) = P (y = 1|x) is a monotone function. Therefore, a valid extension p̂(x)
of the vector of estimators p̂ = (p̂1 . . . , p̂n) must satisfy two conditions:

1. p̂(x) = p̂i (is the extension of the estimators).

2. For every x,x′ ∈ X it holds x � x′ → p̂(x) > p̂(x) (is monotone).

Potharst and Feelders (2002) considered the extensions of monotone functions defined on the
training set to the whole X. They showed that there is a minimal and a maximal extension, defined
as:

p̂min(x) = max{p̂i : xi � x},

p̂max(x) = min{p̂i : xi � x},

and every valid extension p̂(x) satisfies p̂min(x) 6 p̂(x) 6 p̂max(x) for every x ∈ X. Moreover, every
monotone function satisfying the above condition is a valid extension.

Therefore, it is worth considering the following parameterized extension:

pλ(x) = λp̂min(x) + (1− λ)p̂min(x), (3.7)

for λ ∈ [0, 1]. The parameter λ can be tuned for a particular problem.
In multi-class case, the situation is analogous. Instead of p̂i, we have the estimators q̂ik of

P (y > k|xi), for k = 2, . . .K, obtained from (3.5). The stochastic dominance principle is equivalent
to saying that P (y > k|xi) must be a monotone function for each k. Therefore, the extensions
{q̂2(x), . . . , q̂K(x)} must be monotone. We can proceed analogously as before, defining the minimal,
the maximal and λ-parametrized extension q̂min

k (x), q̂max
k (x) and q̂λk (x).

Asymptotic consistency of the estimator. We say that the estimator θ̂ of parameter θ is
strongly consistent if:

θ̂
a.s.−→
n→∞

θ, (3.8)

i.e. the estimator converges to the real value of the parameters almost surely (i.e. with probabil-
ity 1), as n goes to infinity. We say that the estimator is weakly consistent, if (3.8) holds with
convergence in probability.

Strong consistency of isotonic regression. Let us first assume Y = {0, 1}. To consider the
asymptotic consistency of isotonic regression, let us extend the estimators of probabilities into the
whole X using (3.7) for arbitrary λ. There is a large number of papers concerning the consistency of
isotonic regression (see, for instance, Robertson and Wright (1975); Christopeit and Tosstorff (1987),
or Robertson et al. (1998) for overview). In general, the isotonic regression, extended in the form of
(3.7) for any λ, is strongly consistent for every point in the interior of X under the assumption that
P (y = 1|x) is a monotone function and under very mild additional assumption about probability
distribution, e.g. if P (x) is absolutely continuous with positive density (Christopeit and Tosstorff,
1987).

Now let us assume Y = {1, . . . ,K}. Suppose P (x) is such that the binary isotonic regression
is strongly consistent and let P (x, y) be monotonically constrained. Then, the strong consistency
of the multiple isotonic regression q̂λk (x) immediately follows from the definition (3.6) and from the
fact that P (y > k|x) is a monotone function for every k = 2, . . . ,K. In other words, the estimators
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q̂λk (x) converge (with probability 1) to the real probabilities as n → ∞, as long as the isotonic
regression is strongly consistent. Concluding, we are able to state the following theorem:

Theorem 3.4. Let P (x, y) be monotonically constraint and let P (x) be absolutely continuous with
positive density. Then for each x in the interior of X, we have:

q̂λk (x) a.s.−→
n→∞

P (y > k|x)

.

In other words, in practical (non-pathological) cases, the multiple isotonic regression estimators
will converge to the true probabilities.

3.2 Monotone Approximation

Let us focus again on the ordinal classification problem. We will consider the monotone ap-
proximation, classification method based solely on the mononicity assumption of the probability
distribution. The method consist in minimizing the empirical risk in the class of all monotone
functions. We will also show that it can be though of as a general method for incorporating the
monotonicity constraints into the learning process.

Although the problem of monotone approximation has already been considered several times
in different contexts (see Section 1.3.3 for details), we are first to give the detailed analysis of its
statistical properties, to show relationship to the isotonic regression and nonparametric maximum
likelihood estimation and to summarize the asymptotic convergence issues (Dembczyński et al.,
2007b; Kotłowski et al., 2008; Kotłowski and Słowiński, 2008). We also show how to reduce the
computational complexity of the problem and how to handle non-uniqueness of the optimal solution.

3.2.1 Problem Statement

Problem formulation. The monotone approximation is based on relabeling objects from the
training set in order to remove the inconsistencies and “monotonize” the data. Let us consider the
minimization of the empirical risk (1.5) within the class of all monotone functions:

minimize
n∑
i=1

L(yi, di)

subject to xi � xj → di > dj i, j = 1, . . . , n

di ∈ {1, . . . ,K} i = 1, . . . , n, (3.9)

where L(y, k) is any monotone loss function. In this section, we adopt the interpretation that
optimal values d̂i of the problem (3.9) are new labels of the objects. Then, the problem can be stated
in the following way: reassign (relabel) the objects to make the dataset consistent (monotone) such
that new class labels d̂i are as close as possible to the original class labels y, where the closeness
is measured in terms of the loss function. We believe the new labels d̂i are closer to the Bayes
classifier h∗(xi) than the original, non-monotone labels yi. Therefore, the monotone approximation
can be thought of as the data “improvement” towards the Bayes classifier.

Algorithms for solving monotone approximation. Monotone approximation can be solved
by either linear programming or network flow. In both cases, it must be transformed to a more
useful form.



38 3.2. Monotone Approximation

Let dik, for k = 2, . . . ,K, be a binary variable with the following interpretation “dik = 1 iff new
class label of object xi is at least k“. Such interpretation implies that dik > di,k+1; for instance,
for K = 5, di = 1 is decoded as [di1 = 0, di2 = 0, di3 = 0, di4 = 0], d2 is decoded as [1, 0, 0, 0], d3

as [1, 1, 0, 0], d4 as [1, 1, 1, 0] and d5 as [1, 1, 1, 1]. Thus, the new label of object xi can be obtained
from di = 1 +

∑K
k=2 dik. The monotonicity of new labels implies that for any xi � xj we must have

dik > djk for each k = 2, . . . ,K. Finally, the loss function can be reformulated as:

L(yi, di) =
yi∑
k=2

(lyi,k−1 − lyi,k)(1− dik) +
K∑

k=yi+1

(lyi,k − lyi,k−1)dik

=
K∑
k=2

(lyi,k − lyi,k−1)dik +
K∑

k=yi+1

(lyi,k−1 − lyi,k) (3.10)

and the second sum on the right-hand side can be dropped, because it is constant. Thus, we
transformed problem (3.9) into the following problem:

minimize
n∑
i=1

K∑
k=2

(lyi,k − lyi,k−1)dik

subject to xi � xj =⇒ dik > djk i, j = 1, . . . , n; k = 2, . . . ,K,

di,k > di,k+1 i = 1, . . . , n; k = 2, . . . ,K − 1,

dik ∈ {0, 1} i = 1, . . . , n; k = 2, . . . ,K − 1. (3.11)

This is a linear program with integer variables. However, the integer condition (last constraint)
can be relaxed to 0 6 dik 6 1 and we end up with an ordinary linear program. The relaxation
of this constraint follows from the fact that the matrix of coefficients of the constraints is totally
unimodular and the right hand sides of the constraints are integer. In such a case, every basic
feasible (hence also optimal) solution is always integer. Therefore, we do need to impose integer
constraints, because we will obtain an integer solution anyway (see Papadimitriou and Steiglitz
(1998); Chandrasekaran et al. (2005) for more details).

Thus,(3.11) can be solved by linear programming. One can also show (Boros et al., 1995;
Chandrasekaran et al., 2005) that this problem is a dual of the maximum network flow problem, so
it can be solved in O(n3). However, linear program with an efficient solver was found to be a faster
way to solve (3.11) on real datasets.

3.2.2 Reduction of the Problem Size

We provide in this section a general method for reduction of the size of the monotone approxima-
tion problem. A reduction method has been proposed for binary classification in (Chandrasekaran
et al., 2005). We proposed a reduction method for 0-1 loss in multi-class problem in (Dembczyński
et al., 2006a). Here we show how to reduce the problem (3.11) in the most general case.

Lower and upper labels. For each xi, let us define the lower and upper class labels, respectively
as:

li = min{yj : xj � xi, j = 1, . . . , n}

ui = max{yj : xj � xi, j = 1, . . . , n}. (3.12)

Lower and upper labels are the indicators of the inconsistencies in the dataset, as the following,
simple lemma states:
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Lemma 3.2. Let li and ui be the lower and upper class labels defined in (3.12). Then, we have:

1. li 6 yi 6 ui.

2. ui = li if and only if xi is consistent.

3. For each xi � xj we have li > lj and ui > uj.

Proof. We successively prove three parts of the theorem:

1. Since xi � xi, yi is in the set over which the minimum and maximum is taken in (3.12). This
immediately implies li 6 yi 6 ui.

2. If xi is consistent, then according to the definition under the equation (1.13), for every object
xj � xi it must hold yj > yi. This implies that li > yi and from the property 1 we have
yi = li. Similarly, one can show that yi = ui.

Assume li = ui. This means that yi = li, so for every object xj � xi it must hold yj > yi.
From yi = ui we conclude that for each object xj � xi it must hold yj 6 yi. Thus, xi is
consistent.

3. If xi � xj , then {yt : xt � xi, t = 1, . . . , n} ⊆ {yt : xt � xj , t = 1, . . . , n}. This implies
li > lj , since the minimum of the subset must be greater than the minimum of the whole set.
Analogously, one can show that ui > uj .

We will now prove one more lemma which will be needed in the construction of the reduction
method:

Lemma 3.3. Suppose [lyk]K×K is a monotone loss matrix, as defined in (2.4). Then, the loss
function is strictly increasing, i.e.:

lyk > ly,k+1 if k < y,

ly,k−1 < lyk if k > y. (3.13)

Proof. We will prove the first inequality in (3.13); the second one can be proved analogously. From
(2.4) we have that for k > y, ly,k+1 − lyk > ly+1,k+1 − ly+1,k. Repeating this iteratively, we must
finally get

ly,k+1 − lyk > ly+2,k+1 − ly+2,k > . . . > lk,k+1 − lkk > 0,

where the last inequality comes from lkk = 0 and lyk > 0 for y 6= k.

Reduction procedure. The problem of monotone approximation, formulated in (3.11) has n×
(K − 1) variables. Removing any of those variables is desirable. Here we prove the theorem from
which we know a priori the optimal values of some of the variables:

Theorem 3.5. Let d̂ik, i = 1, . . . , n, k = 2, . . . ,K, be any optimal solution to the problem (3.11).
Let d̂i = 1 +

∑K
k=2 d̂ik. Then, we have li 6 d̂i 6 ui.

Proof. Since (3.11) is equivalent to (3.9), we will refer to the latter. Assume we have any optimal
solution d̂i, i = 1, . . . , n. Let I be a subset of those i for which d̂i < li . Similarly, let J be a subset
of those i for which d̂i > ui. Let us introduce solution d̃i such that d̃i = li for i ∈ I, d̃i = ui for
i ∈ J and d̃i = d̂i otherwise. Since from Lemma 3.2 we know that li 6 yi 6 ui and from Lemma
3.3 we know that the loss matrix is strictly increasing, it follows that d̃i has a lower objective value
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that d̂i, if any of the sets I or J is nonempty. Indeed, for every i ∈ I and every i ∈ J , the label d̃i
is surely “closer” than d̂i to the real label yi. Therefore, it is enough to prove that the solution d̃i

is feasible. Then, I and J must be empty, because otherwise it would contradict the optimality of
d̂i.

To prove the feasibility of d̃i in the problem (3.9), we must show that:

xi � xj =⇒ d̃i > d̃j i, j = 1, . . . , n. (3.14)

Notice that for i ∈ I, d̃i > d̂i and for i ∈ J , d̃i < d̂i Choose any xi � xj . First we consider i ∈ I,
then i ∈ J and finally the case i /∈ I ∪ J :

1. Case i ∈ I. Then if j ∈ I, d̃i = li > lj = d̃j . If j /∈ J , d̃i > d̂i > d̂j > d̃j .

2. Case i ∈ J . Then d̃i = ui > uj > d̃j .

3. Case i /∈ I ∪ J . Then if j ∈ I, d̃i > li > lj = d̃j . If j /∈ I, d̃i = d̂i > d̂j > d̃j .

Theorem (3.5) implies that we can remove consistent objects from the optimization process,
since we know a priori that d̂i = yi for such objects. Moreover, for other objects, we can fix some
of dik to be 0 or 1 (and hence remove them from the optimization process) so that we ensure that
li 6 d̂i 6 ui holds. This dramatically reduces the size of the problem: similarly to the isotonic
regression, we have experienced from real data that in most cases more than 80− 90% of variables
are removed.

3.2.3 Binary Monotone Approximation

Let us consider the simplest problem of monotone approximation, when K = 2 and Y = {0, 1}.
The loss function has the form:

[lyk]K×K =

(
0 l01

l10 0

)
,

and is always a monotone loss matrix. Let us denote α = l01
l01+l10

. Then, one can easily show that
the Bayes classifier h∗(x) has one of the following forms:

h∗(x) = 1P (y=1|x)>α

h∗(x) = 1P (y=1|x)>α,

or can be any monotone function between those two.

The monotone approximation problem (3.11) can be presented in the simplified form: since we
have K = 2, we can omit the index k for the variables. Moreover, the objective function for a given
i is l01di if yi = 0 or l10(1− di) if yi = 1. It can be written more concisely as wyi |yi − di|, where:

w0 =
l01

l01 + l10
= α w1 =

l10

l01 + l10
= 1− α, (3.15)

and such weights follow from dividing the loss function by l01 + l10. Then, we can write (3.11) as:

minimize
n∑
i=1

wyi |yi − di|

subject to xi � xj =⇒ di > dj i, j = 1, . . . , n. (3.16)
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Figure 3.3: Binary-class monotone approximation with α = 1
2 ; the dataset is the same as in Figure

3.1. The new class label is shown below on the right of each object. The optimal solution is not
unique; two objects have class labels 0−1, which means that they are assigned label 0 in the lowest
optimal solution and label 1 in the greatest optimal solution.

Notice that the relaxed constraint 0 6 di 6 1 was dropped, because if there were any di > 1 (or
di 6 0) in any feasible solution, we could decrease their values down to 1 (or increase up to 0),
obtaining a new feasible solution with smaller value of the objective function of (3.16).

We transformed the problem into (3.16) to show that it closely resembles isotonic regression
(3.4). In the isotonic regression problem, we minimize L2-norm (sum of squares) between vectors
y = (y1, . . . , yn) and p = (p1, . . . , pn), while in (3.16) we minimize L1-norm (sum of absolute
values). In fact, both problems are closely connected, which is shown by the following theorem:

Theorem 3.6. Suppose p̂ = (p̂1, . . . , p̂n) is the optimal solution to the problem of isotonic regression
(3.4). Then, the solution d̂∗ = (d̂∗1, . . . , d̂∗n) given by d̂∗i = 1p̂i>α for each i = 1, . . . , n, and the
solution d̂∗ = (d̂∗1, . . . , d̂

∗
n) given by d̂∗i = 1p̂i>α for each i = 1, . . . , n, are the optimal solutions to

the problem of binary monotone approximation (3.16) with weights (3.15).

Moreover, if d̂ = (d̂1, . . . , d̂n) is the optimal integer solution to the problem of binary monotone
approximation, it must hold d̂∗i 6 d̂i 6 d̂∗i , for all i = 1, . . . , n. In particular, if d̂∗ = d̂∗, then the
solution to the binary monotone approximation problem is unique.

The proof can be found in the Appendix. Let us call d̂∗ the greatest, and d̂∗ the smallest
optimal solutions. Theorem 3.6 states that if the MLE estimator (isotonic regression) p̂i is greater
(or smaller) than α, then the optimal value for the corresponding variable d̂i in the binary monotone
approximation problem (3.16) is 1 (or 0). The interest of this result lies in the fact that the
functions 1p̂i>1 and 1p̂i>1 minimize the loss function on the training set D, while the functions
1P (y=1|xi)>1 and 1P (y=1|xi)>1 (Bayes classifiers) minimizes the expected loss (risk). Thus, the
correspondence between probability estimates and the Bayes classifier estimate on D is the same
as the correspondence between real probabilities and the real Bayes classifier.

We will often write α-binary monotone approximation, if we want to stress that the weights
have the form w0 = α and w1 = 1− α.
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Handling non-uniqueness of the solution. It follows from Theorem 3.6 that the monotone
approximation may have non-unique solution. On the other hand, the isotonic regression is unique;
moreover, if p̂i > 1

2 then d̂i = 1, and if p̂i < 1
2 then d̂i = 0. Therefore, the only non-unique variables

in the monotone approximation are for those i, for which p̂i = 1
2 .

To investigate this issue in a greater detail, let us present a useful property of the isotonic
regression. Suppose A is a subset of {1, . . . , n} and f = (f1, . . . , fn) is a real-valued vector. We
define Av(f,A) = 1

|A|
∑
i∈A fi to be the average value of f on set A. Now suppose p̂ is the isotonic

regression of y. By a level set of p̂, denoted by [p̂ = a], we mean the subset of {1, . . . , n} on which
p̂ has constant value a, i.e. [p̂ = a] = {i : p̂i = a}. The following theorem holds:

Theorem 3.7. (Robertson et al., 1998) Suppose p̂ is the isotonic regression of y. If a is any real
number such that the level set [p̂ = a] is not empty, then a = Av(y, [p̂ = a]).

Theorem 3.7 states that for a given xi, p̂i equals to the average of yj over all the objects xj
having the same value p̂j = p̂i. Since there is a finite number of divisions of the dataset {x1, . . . ,xn}
into level sets, we conclude that there is a finite number of values that p̂ can possibly take. In our
case, since yi ∈ {0, 1}, all the values p̂i must be of the form r

r+s , where r is the number of objects
from class y = 1 in the level set, while s is the number of objects from class y = 0.

Using Theorem 3.7, we can construct the procedure of finding the greatest and the smallest
optimal solutions in the binary case. First of all, notice that when α is not of the form r

r+s for some
integers r, s 6 n, then the binary monotone approximation is unique (there will be no p̂i = α). On
the other hand, if α is of the form r

r+s , let us increase α by sufficiently small ε, such that α+ε is not
of the form r

r+s and there is no other number γ = r
r+s for some r, s 6 n such that α < γ < α + ε.

Then, the solution to the (α+ ε)-binary monotone approximation is unique and is the same as the
greatest solution to the α-binary monotone approximation, d̂∗, because there is no p̂i such that
α < p̂i 6 α+ ε. One can show that ε 6 n−2 is sufficient.

Similarly, decreasing α by ε will lead us to the smallest solution d̂∗. Thus, we have proved the
following theorem.

Theorem 3.8. If α is not of the form r
r+s for some r, s 6 n, the α-binary monotone approximation

is unique. Otherwise, the greatest α-binary monotone approximation d̂∗ can be found by increasing
the value of α by ε 6 n−2 and solving the problem (3.16). Similarly, the smallest α-binary monotone
approximation d̂∗ can be found by decreasing the value of α by ε 6 n−2 and solving again the problem
(3.16).

Summarizing, we see that finding the greatest and the lowest optimal solutions corresponds to
solving the monotone approximation at most twice, with α slightly perturbed by ±ε, ε 6 n−2.

Example. A simple example of binary monotone approximation can be found in Figure 3.3.
Comparison with Figure 3.1 shows the relationships between new labels and probability estimates,
as stated in Theorem 3.6.

3.2.4 Linear Monotone Approximation

Monotone approximation with linear loss. Now we will investigate the problem of monotone
approximation (3.11) with the extended linear loss matrix (2.9). We have already shown in Theorem
3.6 that there exists a correspondence between binary isotonic regression and binary monotone
approximation. In the forthcoming theorem we will show that an analogous correspondence between
multiple isotonic regression and monotone approximation with linear loss takes place. We will also
show that both monotone approximation with extended linear loss and with the ordinary linear loss
(2.8) lead to the same solution, similarly as it is on the population level (c.f. Theorem 2.6).
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Theorem 3.9. Let q̂k be the isotonic regression of yk, k = 2, . . . ,K, as defined in (3.5). Then,
the solutions d̂∗ = (d̂∗1, . . . , d̂∗n) and d̂∗ = (d̂∗1, . . . , d̂

∗
n) defined as:

d̂∗i = 1 +
∑K
k=2 1q̂ik>α, d̂∗i = 1 +

∑K
k=2 1q̂ik>α, (3.17)

are the optimal solutions to the monotone approximation problem with extended linear-loss (2.9).
Moreover, every other optimal solution d̂ = (d̂1, . . . , d̂n) satisfies d̂∗i 6 d̂i 6 d̂∗i , for each i =
1, . . . , n.

Proof. Let us transform the objective function of the monotone approximation (3.11) for a given i,
denoted by Li:

Li =
K∑
k=2

(lyi,k − lyi,k−1)dik =

=
K∑
k=2

(
− (1− α)yik(s(k)− s(k − 1))dik + α(1− yik)(s(k)− s(k − 1))dik

)
=

K∑
k=2

(s(k)− s(k − 1))
(
− (1− α)yikdik + α(1− yik)dik

)
,

where yik = 1yi>k, as usual. By adding the constant value (which does not change the optimization
process)

∑K
k=2(s(k)− s(k − 1))yik(1− α) we obtain:

Li =
K∑
k=2

(s(k)− s(k − 1))(1− α)yik(1− dik) + α(1− yik)dik

=
K∑
k=2

(s(k)− s(k − 1))wyik|yik − dik|,

where w0 = α and w1 = 1− α. Thus, the total loss has the form:

K∑
k=2

(s(k)− s(k − 1))

(
n∑
i=1

wyik |yik − dik|

)
. (3.18)

For each k, the loss function looks exactly like the loss in the binary monotone approximation (3.16)
(except the term s(k)−s(k−1)), where yik now plays the role of the binary class label. Unfortunately,
those K − 1 binary problems are not independent due to constraint dik > di,k+1 in (3.11), which
involves the variables for different k. However, we will show that constraint dik > di,k+1 is not
needed for linear loss and can be removed.

Indeed, we will show that the greatest optimal solutions to the K − 1 binary problems solved
independently still satisfy the constraint dik > di,k+1. Consider the optimal solution to the binary
problems for some k and k + 1. It follows that yik > yi,k+1 for each i (because 1yi>k > 1yi>k+1).
Then, according to Lemma 3.1, the isotonic regression of yk = (y1k, . . . , ynk), denoted by q̂ik,
is greater than or equal to the solution to the isotonic regression of yk+1, denoted by q̂i,k+1.
But then, from Theorem 3.6 it follows that the greatest optimal solution to the binary monotone
approximation problem with yik, d̂∗ik = 1q̂ik>α is greater than or equal to the greatest optimal
solution to the binary monotone approximation problem with yi,k+1, d̂∗i,k+1 = 1q̂i,k+1>α. Thus, the
constraint dik > di,k+1 is satisfied for the greatest optimal solution. One can similarly show the
same for the smallest solution.

What we have proved above is that the solutions (3.17) composed of the greatest and the smallest
optimal solutions to K−1 binary problems are feasible solutions of the original problem (i.e. linear
monotone approximation (3.16)); but since the minimum of a more constrained problem cannot
decrease, they are also the greatest and the smallest optimal solutions to the original problem.
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There are several important conclusions following from Theorem 3.9. First of all, the problem of
monotone approximation (3.11) for extended linear loss can be solved by solving a sequence of K−1
simple weighted binary problems. Although it seems that we now have K−1 problem instead of one
problem, from the computational point of view it is a great gain, because we reduced the problem
with (K − 1)× n variables to K − 1 subproblems with n variables each, i.e. we decomposed a big
problem into a sequence of smaller ones. This decomposition will be especially useful in Chapter 5,
for dealing with rule ensemble models.

Moreover, a closer look at (3.17) reveals an interesting fact: for each i = 1, . . . , n, every d̂i such
that d̂∗i 6 d̂i 6 d̂∗i , is the (1 − α)-quantile of the probability distribution {p̂i1, . . . , p̂iK}, obtained
in (3.6) from the multiple isotonic regression. This corresponds exactly to the relationship between
real probability distribution {pi1, . . . , piK} and the Bayes classifier h∗(xi). In other words, the
relationship between the estimates on D is the same as the relationship between corresponding
quantities on the population level.

The theorem also shows that there is no point in using sophisticated extended linear loss, because
for every scale function s(k), the solutions are identical. At first look, this seems to be quite counter-
intuitive, since in medicine we could position class 1 (“ill”) far away from class 2 (“healthy”) and
class 3 (“very healthy”), e.g. s(1) = 0, s(2) = 0.8, s(3) = 1. This would be done due to the fact
that we do not care so much about the condition of the patient provided her or she is healthy.
However, as the above analysis shows, this is pointless: we would obtain exactly the same results
for e.g. s(1) = 0, s(2) = 0.01 and s(3) = 1. This shows the unusual property of the linear loss of
being independent of a particular scale.

Finally, notice that similarly to the case of binary monotone approximation, we can give a
simple procedure for finding the greatest and the smallest solutions. If α is not of the form r

r+s

for some r, s 6 n, then the linear monotone approximation is unique. Otherwise, we can increase
α by ε 6 n−2 and solve the K − 1 binary problems (3.16) to obtain the greatest linear monotone
approximation. Similarly, we obtain the smallest linear monotone approximation if we decrease α
by ε.

Example. Consider the example shown in Figure 3.4, illustrating how three-class problem is
transformed to two binary problems. For simplicity we assume that α = 1

2 , i.e. the loss function is
an ordinary (symmetric) absolute error. Notice that for any object, the new class label in the top
figure can be obtained from d̂i = 1 +

∑K
k=2 d̂ik, i.e. by summing up new class labels on middle and

lower figures and adding 1. Moreover, new class labels on the middle figure are always greater or
equal then those on the lower figure. This is exactly the conclusion of Theorem 3.9.

Remark. The monotone approximation with linear loss plays an important role in the subsequent
chapters, therefore from now on we will often omit the term “linear loss” and call it simply monotone
approximation or monotone α-approximation, if we want to stress that we are using particular value
of asymmetry constant in (2.8).

3.2.5 Extension Beyond the Training Set and Asymptotic Consistency

Extensions of the monotone approximation. The monotone approximation (with linear loss)
d̂ is defined only at training points xi, i = 1, . . . , n. Since we are dealing with a class of all monotone
functions, we can extend monotone approximation to X by using any monotone function d : X → Y ,
such that d(xi) = d̂i, for each i = 1, . . . , n. Similarly as in Section 3.1.4, we define the following
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Figure 3.4: Monotone approximation with linear loss for α = 1
2 . In the top figure the 3-class dataset

is shown with new labels assigned; in the middle and bottom figures are shown the datasets used
in 2 binary subproblems (with new labels). Label e.g. 2− 3 means that the object is assigned label
2 in the lowest optimal solution and label 3 in the greatest optimal solution.
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minimal and maximal extensions:

dmin(x) = max{d̂∗i : xi � x},

dmax(x) = min{d̂∗i : xi � x}, (3.19)

We will now prove that every valid extension is capped between dmin(x) and dmax(x):

Theorem 3.10. Let d : X → Y be monotone and let there exists an optimal solution to the mono-
tone approximation d̂ such that d(xi) = d̂i, for each i = 1, . . . , n (i.e. d(x) is a valid extension of
the monotone approximation). Then, for each x ∈ X, dmin(x) 6 d(x) 6 dmax(x).

Proof. We know that for each i, d̂∗i 6 d̂i 6 d̂∗i . Choose any x ∈ X. Then, since d(x) is monotone,
we must have that if xi � x then d(x) > d(xi) = d̂i. But it means that d(x) > max{d̂i : xi � x} >

max{d̂∗i : xi � x} = dmin(x). Analogously, we can show that d(x) 6 dmax(x).

Unfortunately, the converse of Theorem (3.10) is not true: there may exist a monotone function
d : X → Y such that for each x ∈ X, dmin(x) 6 d(x) 6 dmax(x), but d(x) is not a valid extension
of monotone approximation.

Strong consistency of monotone approximation. We will consider the problem of consistency
of monotone approximation with linear loss. Let h : X → Y be a classifier. Let us denote Rn(h)
the risk of h when it is trained on the dataset D = {(x1, y1), . . . , (xn, yn)}. We say that h is weakly
consistent (Devroye et al., 1996) if:

E[Rn(h)] n→∞−→ R∗,

where the expectation is taken over the random training sets D of particular size n. In other words,
as the size of the training set increases, the risk of classifier averaged over the random choice of
training data approaches the Bayes risk, i.e. h approaches the best possible classifier h∗. We say
that h is strongly consistent if:

Rn(h) n→∞−→ R∗

holds with probability one, i.e. for almost every sequence of data (x1, y1), (x2, y2), . . ., h approaches
the Bayes classifier h∗.

We will now prove that under mild assumption about the probability distribution, monotone
approximation with linear loss is strongly consistent. To this end suppose X = V × Rm0 , where
V = V1×. . .×Vm−m0 is a finite set. This corresponds to a very general situation encountered in real-
life problems, where some of the attributes V1, . . . , Vm−m0 are ordered and have finite domains while
the rest of the attributes are continuous. Every vector x ∈ X we can be divided into x = xV ⊕ xR,
where xV ∈ V and xR ∈ Rm0 . Now we can state the following theorem:

Theorem 3.11. Assume P (x, y) is monotonically constrained and let X = V × Rm0 , where V

is finite. Assume P (x) has density2. Let d(x) be any valid extension of the linear monotone
approximation. The d(x) is strongly consistent, i.e.

Rn(d) n→∞−→ R∗

with probability one.

2i.e. P (x) is absolutely continuous with respect to the product measure Nm−m0 × λm0 , where N is a counting
measure and λ is a Lebesgue measure.
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Proof. We first prove the theorem when Y = {0, 1}. Let A be a collection of subsets of X. Let
NA(x1, . . . ,xn) be the number of different sets in:

{{x1, . . . ,xn} ∩A : A ∈ A}

(Devroye et al., 1996). Let us define the monotone layer as the set A such that if x ∈ A then for
every x′ � x also x′ ∈ A. Then, notice that the set of all possible monotone functions f : X → Y ,
denoted F , corresponds to the set of all monotone layers A in the sense that for any layer A there
is a corresponding function f such that x ∈ A if and only if f(x) = 1.

Let x = xV ⊕ xR, where xV ∈ V and xR ∈ Rm0 . Let |V | be the cardinality of V . The number
of all possible monotone layers cannot exceed 2|V | × N , where N is the number of all possible
monotone layers on Rm0 . Therefore, we can bound:

NA(x1, . . . ,xn) 6 2|V |NA(xV 1, . . . ,xV n),

and similarly:
E[NA(x1, . . . ,xn)] 6 2|V |E[NA(xR1, . . . ,xRn)],

where the expectation is taken over all possible sets {x1, . . . ,xn} according to P (x). Notice that
from the assumption, P (xR) has density. Devroye et al. (1996) showed (Theorem 13.13 and remark
below Corollary 13.3) that for xR ∈ Rm0 if P (xR) has density, then:

E[NA(xR1, . . . ,xRn)] = 2o(n).

But this means that also E[NA(x1, . . . ,xn)] = 2o(n). Then, we proceed analogously as in the proof
of Corollary 13.3 in (Devroye et al., 1996), where the Vapnik-Chervonenkis inequality (Theorem
12.5) has been used. The main difference is that we have asymmetric costs of misclassification: the
linear loss for binary problem can be written as L(y, k) = α1k>y + (1− α)1k<y. However Vapnik-
Chervonenkis inequality can be slightly modified to handle the uneven costs, c.f. Lemma 29.1 in
(Devroye et al., 1996). Thus, similarly as in (Devroye et al., 1996)) we can conclude that:

Rn(d) n→∞−→ inf
f∈F

R(f)

with probability one, where d(x) is the classifier which minimizes empirical risk in the class of all
monotone functions F . But d(x) can be every valid extension of the binary monotone approxi-
mation, because every valid extension achieves the minimum of the empirical risk on the dataset.
Moreover, since P (x, y) is monotonically constrained, from Corollary 2.4 we have that the Bayes
classifier h∗ ∈ F and therefore the infimum is achieved by h∗. Thus, we obtain:

Rn(d) n→∞−→ R∗ = R(h∗)

with probability one.
Now consider the general case Y = {1, . . . ,K}. We will first prove the theorem for dmin(x). Let

yk = 1y>k and dk(x) = 1dmin(x)>k, for k = 2, . . . ,K. If we denote the linear loss (2.8) by L(y, k),
then it is easy to see that:

L(y, dmin(x)) =
K∑
k=2

L(yk, dk(x)). (3.20)

For each k, consider the random variable yk = 1y>k and let P (x, yk) denote the distribution
induced from P (x, y). Notice that P (x, yk) is monotonically constrained and has density. Moreover,
h∗k(x) = 1h∗(x)>k is the Bayes classifier for P (x, yk) with linear loss. From Theorem 3.9 it follows
that dk(xi) = 1q̂ik>α for each xi. From Theorem 3.6 1q̂ik , i = 1, . . . , n is a monotone approximation
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for k-th binary problem (with vector yk), so dk(xi) is the extension of k-th monotone approximation.
Therefore, we can apply the theorem for binary-class case and conclude that:

Rn(dk) n→∞−→ R(h∗k), (3.21)

with probability one, i.e. for some set Ωk such that P (Ωk) = 1. This means that for Ω =
⋂K
k=2 Ωk

(3.21) holds simultaneously for each k. But since P (Ω) = 1 and from (3.20) we obtain:

Rn(dmin) n→∞−→ R∗

with probability one. Similar conclusion can be drawn for dmax. Let d : X → Y be any valid
extension of monotone approximation. Then dmin(x) 6 d(x) 6 dmax(x) and we conclude that:

Rn(d) n→∞−→ R∗

The distribution assumption in Theorem 3.11 is very weak and will be satisfied in almost every
real problem of ordinal classification with monotonicity constraints. Therefore, monotone approx-
imation is almost universally consistent under the monotonicity assumptions. Unfortunately, the
theorem tells nothing about rates of convergence. Those rates may in fact be very slow, especially
when the dimensionality of the space m is high. Therefore, monotone approximation will not be
used directly as a classification method, except for the low-dimensional problems. Instead, it will
be used as a preprocessing method for “monotonizing” the data. Then, the data will be passed to
the proper learning method, which will train the monotone ensemble of weak classifiers. This issues
will be discussed in Chapter 5.

Appendix: Proofs of the Theorems

Proof of Theorem 3.2

Before proving Theorem 3.2, we sketch the assumptions and the content of the theorem, which
leads to the so called generalized isotonic regression. Details can be found in (Robertson et al.,
1998).

Suppose that Φ is a convex function finite on an interval I containing the values of the coordinates
of y (i.e. for each i = 1, . . . , n, yi ∈ I) and Φ has value +∞ elsewhere. Let φ be a nondecreasing
function on I such that for each u ∈ I φ(u) is a subgradient of Φ, i.e. φ(u) is a number between the
left derivative of Φ at u and the right derivative of Φ at u. For each u, v ∈ I define the function
∆Φ(u, v) by:

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v). (3.22)

Then the following theorem holds:

Theorem 3.12. (Robertson et al., 1998) Let p∗ be an isotonic regression of y i.e. p∗ solves (3.4).
Then it holds:

n∑
i=1

∆Φ(yi, pi)) >
n∑
i=1

∆Φ(yi, y∗i ) +
n∑
i=1

∆Φ(y∗i , pi)

for any monotone vector p with the values of the coordinates in I, so that p∗ minimizes
n∑
i=1

∆Φ(yi, pi)

in the space of all monotone vectors p with values of the coordinates in I. The minimizing function
is unique if Φ is strictly convex.
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Figure 3.5: Function Φ(u) = u lnu+ (1− u) ln(1− u).

Theorem 3.12 states that for any convex function Φ satisfying the assumptions, the isotonic
regression minimizes also the function ∆Φ. Thus, Theorem 3.12 can be used to show that the
isotonic regression provides a solution for a wide variety of restricted estimation problems in which
the objective function does not look at all like least squares (Robertson et al., 1998). Here, this
property will be used to solve the MLE problem (3.3).

Theorem 3.2. (Robertson et al., 1998) Let p∗ be an isotonic regression of y. Then, p∗ is also the
optimal solution to the MLE problem (3.3).

Proof. Let I = [0, 1] and define Φ to be (Robertson et al., 1998):

Φ(u) =

{
u lnu+ (1− u) ln(1− u) for u ∈ (0, 1)
0 for u ∈ {0, 1}

(see Fig. 3.5). One can show that Φ is indeed convex on I. The first derivative φ is given by:

φ(u) =


−∞ for u = 0
lnu− ln(1− u) for u ∈ (0, 1)
+∞ for u = 1.

Then, ∆Φ(u, v) for u, v ∈ (0, 1) is given by:

∆Φ(u, v) = u lnu+ (1− u) ln(1− u)− u ln v − (1− u) ln(1− v). (3.23)

It is easy to check that ∆Φ(u, v) = 0 if u = v = 1 or u = v = 0, and that ∆Φ(u, v) = +∞ for
u = 0, v = 1 or u = 1, v = 0. Now, suppose that we want to minimize the function

∑n
i=1 ∆Φ(yi, pi)

between all monotone vectors p with the coordinates in the range I = [0, 1]. Then, the first two
terms in (3.23) depend only on yi, so they can be removed from the objective function, thus leading
to the problem of minimizing:

−
n∑
i=1

(
yi ln pi + (1− yi) ln(1− pi)

)
between all monotone vectors p with coordinates in the range I, which is exactly the MLE problem
(3.3).
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Proof of Lemma 3.1

Lemma 3.1. Let p̂ be the isotonic regression of the class indices vector y = (y1, . . . , yn). Suppose,
we introduce a new vector of class indices y′ = (y′1, . . . , y

′
n), such that y′i > yi for all i = 1, . . . , n.

Then, p̂′, the isotonic regression of y′ has the following property: p̂′i > p̂i, for all i = 1, . . . , n.

Proof. Assume the contrary, let p̂′ be the isotonic regression of y′, and suppose there exists i, such
that p̂′i < p̂i. Define two other solutions, p̂+ and p̂− in the following way:

p̂+
i = max{p̂i, p̂′i}, (3.24)

p̂−i = min{p̂i, p̂′i}. (3.25)

Notice that p̂+ 6= p̂′ and p̂− 6= p̂, since for some i, p̂′i < p̂i. We show that p̂+, p̂− are feasible
solutions, i.e. they satisfy constraints of (3.4). Suppose xi � xj . Then, since p̂, p̂′ are feasible, it
follows that p̂i > p̂j and p̂′i > p̂′j . But from definition of p̂+

i we have that p̂+
i > p̂i and p̂+

i > p̂′i, so it
also holds that p̂+

i > p̂j and p̂+
i > p̂′j . Then, p̂+

i > max{p̂j , p̂′j} = p̂+
j . Similarly, from the definition

of p̂−j we have that p̂−j 6 p̂j and p̂−j 6 p̂′j , so it also holds that p̂−j 6 p̂i and p̂−j 6 p̂′i. But then
p̂−j 6 min{p̂i, p̂′i} = p̂−i . Thus, both p̂+, p̂− are feasible. Let us denote the objective function of
(3.4) by F (y,p) =

∑n
i=1(yi − pi)2. Then, we have:

F (y′, p̂+)− F (y′, p̂′) =
n∑
i=1

(
p̂+2
i − p̂

′2
i − 2y′ip̂

+
i − 2y′ip̂

′
i

)
=

=
n∑
i=1

(
(p̂+
i − p̂

′
i)(p̂

+
i + p̂′i)− 2y′i(p̂

+
i − p̂

′
i)
)
. (3.26)

Since from the definition (3.24) it holds that p̂+
i − p̂′i > 0 and from the assumption of the theorem

it holds y′i > yi, we have:

n∑
i=1

2y′i(p̂
+
i − p̂

′
i) >

n∑
i=1

2yi(p̂+
i − p̂

′
i), (3.27)

so that:

F (y′, p̂+)− F (y′, p̂′) 6
n∑
i=1

(
(p̂+
i − p̂

′
i)(p̂

+
i + p̂′i)− 2yi(p̂+

i − p̂
′
i)
)
. (3.28)

Moreover, from (3.24)-(3.25) it holds that p̂+
i + p̂−i = p̂′i + p̂i, so that:

p̂+
i − p̂

′
i = p̂i − p̂−i , (3.29)

and by adding 2p̂′i to both sides of (3.29):

p̂+
i + p̂′i = 2(p̂′i − p̂−i ) + (p̂i + p̂−i ). (3.30)
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Figure 3.6: Functions 1u>α and 1u>α used in the Theorem 3.6, shown for value α = 1
2 . They differ

only in point u = α.

Putting (3.29)-(3.30) into (3.28), we finally obtain:

F (y′, p̂+) − F (y′, p̂′)

6
n∑
i=1

(
(2(p̂′i − p̂−i ) + (p̂i + p̂−i ))(p̂i − p̂−i )− 2yi(p̂i − p̂−i )

)
=

n∑
i=1

(
2(p̂i − p̂−i )(p̂′i − p̂−i ) + (p̂i − p̂−i )(p̂i + p̂−i )− 2yi(p̂i − p̂−i )

)
=

n∑
i=1

(
2(p̂i − p̂−i )(p̂′i − p̂−i ) + p̂2

i − 2yip̂i − p̂−2
i + 2yip̂−i

)
=

n∑
i=1

2(p̂i − p̂−i )(p̂′i − p̂−i ) + F (y, p̂)− F (y, p̂−)

<

n∑
i=1

2(p̂i − p̂−i )(p̂′i − p̂−i ), (3.31)

where the last inequality comes from the assumption that p̂ is the isotonic regression of y and
p̂ 6= p̂−. In the last sum, however, for each i, either p̂i = p̂−i or p̂′i = p̂−i , so the sum vanishes. Thus,
we have:

F (y′, p̂+)− F (y′, p̂′) < 0, (3.32)

which is a contradiction, because as p̂′ is the isotonic regression of y′, it is the unique optimal
solution for class indices y′.

Proof of Theorem 3.6

Theorem 3.6. Suppose p̂ = (p̂1, . . . , p̂n) is the optimal solution to the problem of isotonic regression
(3.4). Choose some value α ∈ [0, 1]. Then the solution d̂∗ = (d̂∗1, . . . , d̂∗n) given by d̂∗i = 1p̂i>α for
each i = 1, . . . , n and the solution d̂∗ = (d̂∗1, . . . , d̂

∗
n) given by d̂∗i = 1p̂i>α for each i = 1, . . . , n (see

Figure 3.6) are the optimal solutions to the problem of binary monotone approximation (3.16) with
weights (3.15).

Moreover, if d̂ = (d̂1, . . . , d̂n) is the optimal integer solution to the problem of binary monotone
approximation, it must hold d̂∗i 6 d̂i 6 d̂∗i , for all i = 1, . . . , n. In particular, if d̂∗ = d̂∗, then the
solution to the binary monotone approximation problem is unique.

Proof. Let us define a function Φ(u) on the interval I = [0, 1] in the following way (see Figure 3.7):

Φ(u) =

{
α(u− α) for u > α,

(1− α)(α− u) for u < α.
(3.33)
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Figure 3.7: Function Φ(u)) defined in (3.33) for α = 0.6.

It is easy to check that Φ(u) is a convex function, but not a strictly convex function. Φ has derivative
φ(u) = α− 1 for u ∈ [0, α), and φ(u) = α for u ∈ (α, 1]. At point u = α, Φ(u) is not differentiable,
but each value in the range [α− 1, α] is a subgradient of Φ(u).

First, suppose we set φ(α) = α− 1. We remind from (3.22) that:

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v).

Now, assume u ∈ {0, 1}. To calculate ∆Φ(u, v), we need to consider four cases, depending what are
the values of u and v:

1. u = 0, v > α; then Φ(u) = α(1− α), Φ(v) = α(v − α), φ(v) = α, so that ∆Φ(u, v) = α.

2. u = 0, v 6 α; then Φ(u) = α(1−α), Φ(v) = (1−α)(α−v), φ(v) = α−1, so that ∆Φ(u, v) = 0.

3. u = 1, v > α; then Φ(u) = α(1− α), Φ(v) = α(v − α), φ(v) = α, so that ∆Φ(u, v) = 0.

4. u = 1, v 6 α; then Φ(u) = α(1− α), Φ(v) = (1− α)(α− v), φ(v) = α− 1 so that ∆Φ(u, v) =
1− α.

However, we can comprehensively write those results as:

∆Φ(u, v) = wu|1v>α − u|,

for u ∈ {0, 1}, where wu are given by (3.15). Thus, according to Theorem 3.12, p̂ is the optimal
solution to the problem:

minimize
n∑
i=1

wyi |1pi>α − yi|

subject to xi � xj =⇒ pi > pj i, j = 1, . . . , n. (3.34)

Notice that d̂∗ is also the optimal solution to the problem (3.34), because 1u>α is nondecreasing
on u, so if p̂ satisfies constraints of (3.34), then so does d̂∗. Moreover, 11u>α = 1u>α, so the value
of the objective function in (3.34) is the same for both p̂ and d̂∗. But d̂∗ is integer and, for integer
solutions, problems (3.34) and (3.16) are the same, so d̂∗ is the solution to the problem (3.16) with
the lowest objective value among all the integer solutions to this problem. But, from the analysis of
the unimodularity of constraints matrix of (3.16) we know that if d̂∗ is the solution to (3.16) with
the lowest objective value among the integer solutions, it is also the optimal solution, since there
exists an optimal solution to (3.16), which is integer.
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Now, setting φ(α) = α, we repeat the above analysis, which leads to the function 1u>α instead
of 1u>α and shows that also d̂∗ is the optimal solution to the problem (3.16).

We now prove the second part of the theorem. Assume v ∈ {0, 1} and fix again φ(α) = α − 1.
To calculate ∆Φ(u, v), we consider again four cases, depending what are the values of u and v:

1. u > α, v = 0; then Φ(u) = α(u − α), Φ(v) = α(1 − α), φ(v) = α − 1, so that ∆Φ(u, v) =
u− α > 0.

2. u > α, v = 1; then Φ(u) = α(u− α), Φ(v) = α(1− α), φ(v) = α, so that ∆Φ(u, v) = 0.

3. u 6 α, v = 0; then Φ(u) = (1−α)(α−u), Φ(v) = α(1−α), φ(v) = α−1, so that ∆Φ(u, v) = 0.

4. u < α, v = 1; then Φ(u) = (1 − α)(α − u), Φ(v) = α(1 − α), φ(v) = α, so that ∆Φ(u, v) =
α− u > 0.

From Theorem 3.12 it follows that:

n∑
i=1

∆Φ(yi, pi) >
n∑
i=1

∆Φ(yi, p̂i) +
n∑
i=1

∆Φ(p̂i, pi) (3.35)

for any monotone vector p with coordinates in the range [0, 1]. Notice that if the last term in (3.35)
is nonzero, then p cannot be optimal to the problem (3.34) (since then p̂ has strictly lower cost
than p).

Suppose now that d̂ is the optimal integer solution to the binary monotone approximation
problem (3.16). But then it is also the solution to the problem (3.34) with the lowest objective value
between all the integer solutions (since both problems are exactly the same for integer solutions).
Since d̂∗ is an optimal solution to the problem (3.34) and it is integer (so that there exists integer
solution which is optimal), d̂ is also an optimal solution to this problem. Then, however, the last
term in (3.35) must be zero, so for each i = 1, . . . , n it must hold ∆Φ(p̂i, d̂i) = 0 (since all those
terms are nonnegative). As d̂ is integer, it is clear from the above analysis of ∆Φ(u, v) for v being
integer that it may only happen, if the following conditions hold:

p̂i > α =⇒ d̂i = 1,

p̂i < α =⇒ d̂i = 0, (3.36)

for all i = 1, . . . , n. From the definitions of d̂∗ and d̂∗ it follows that for p̂i = α it holds that d̂∗i = 0
and d̂∗i = 1, for p̂i > α it holds d̂∗i = d̂∗i = 1 and for p̂i < α it holds d̂∗i = d̂∗i = 0. From this and
from (3.36) we conclude that:

d̂∗i 6 d̂i 6 d̂∗i ,

for all i = 1, . . . , n, for any optimal integer solution d̂ to the problem (3.16).
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Chapter 4

Stochastic Dominance-based
Rough Set Approach

In this chapter, we explain the Dominance-based Rough Set Approach (DRSA) from the statis-
tical point of view and introduce the extension of DRSA, based on the probabilistic model ordinal
classification with monotonicity constraints. We start with the overview of classical rough set the-
ory and DRSA. Then we introduce a statistical framework and method for probability estimation,
which leads to the stochastic extension of DRSA (Dembczyński et al., 2007b; Kotłowski and Słow-
iński, 2008). Finally, we show the equivalence of the extension to the monotone confidence interval
estimation. This Chapter heavily relies on the results from Chapter 3. It should be useful to the
researchers working on the rough set theory; some of the results apply also to the “classical” rough
set approach, based on the indiscernibility relation.

4.1 Dominance-based Rough Set Approach (DRSA)

The rough sets approach, proposed by Pawlak (1982), has been used to deal with the classifi-
cation problems. It is not able, however, to handle inconsistencies coming from consideration of
order relation and monotone relationships in the data, therefore it cannot be applied to the or-
dinal classification with monotonicity constraints. That is why Greco, Matarazzo, and Słowiński
(1999a,b, 2001a) have proposed a new rough set approach that is able to deal with such kind of
inconsistencies, called Dominance-based Rough Set Approach (DRSA). The origins of DRSA can
be, however, trace back to the papers of Słowiński (1993, 1994); Pawlak and Słowiński (1994).
Extensive surveys of DRSA can be found in (Greco et al., 2001a, 2004b,c; Słowiński et al., 2005).
More information about the axiomatization of the DRSA can be found in (Słowiński et al., 2002a;
Greco et al., 2004a).

Before describing DRSA, we overview the classical rough set approach.

4.1.1 Classical Rough Set Theory

Indiscernibility relation. The classical rough set approach (Pawlak, 1982, 1991; Pawlak et al.,
1995; Pawlak, 2002; Pawlak and Skowron, 2007) neither takes into account monotonicity constraints
nor classes and attributes are ordered. It is based on the assumption that objects having the
same description (values on attributes) are indiscernible (similar) with respect to the available
information. The indiscernibility relation thus generated induces a partition of the universe into
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object a1 a2 y object a1 a2 y object a1 a2 y

x1 1 1 1 x9 2 2 1 x17 3 2 2
x2 1 1 1 x10 2 2 1 x18 1 3 1
x3 2 1 1 x11 2 2 1 x19 1 3 3
x4 2 1 3 x12 2 2 1 x20 2 3 3
x5 2 1 2 x13 2 2 3 x21 2 3 3
x6 3 1 2 x14 2 2 3 x22 2 3 1
x7 3 1 2 x15 3 2 2 x23 3 3 3
x8 1 2 1 x16 3 2 2 x24 3 3 3

Table 4.1: Example: 24 objects described by 2 attributes a1, a2 and class label y ∈ {1, 2, 3}.

blocks of indiscernible objects, called granules. The indiscernibility relation I is defined as:

I = {(xi,xj) : xil = xjl ∀ i, j = 1, . . . , n, ∀; l = 1, . . . ,m},

where xd is the value of object x on attribute d. The equivalence classes of I are called granules.
The equivalence class for an object xi is denoted I(xi).

Lower and upper approximations. Any subset of the universe may be expressed in terms of
the granules either precisely (as a union of granules) or approximately only. In the latter case, the
subset may be characterized by two ordinary sets, called lower and upper approximations. The
subsets approximated in the classification problems are classes Clk, k ∈ Y , defined as the subsets
of objects from the training set having class value k:

Clk = {xi : yi = k}.

The lower and upper approximations of class Clk are defined, respectively, as:

Clk = {xi : I(xi) ⊆ Clk, i = 1, . . . , n},

Clk = {xi : I(xi) ∩ Clk 6= ∅, i = 1, . . . , n}.

It always holds that:
Clk ⊆ Clk ⊆ Clk. (4.1)

Therefore, if an object xi belongs to Clk, it is certainly also an element of Clk, while if xi belongs
to Clk, it may belong to class Clk.

Variable precision. For application to the real-life data, some less restrictive definitions were
introduced under the name of variable precision rough sets (VPRS) (Ziarko, 2001, 2005). The new
definitions of approximations (where lower approximation is usually replaced by the term positive
region) are expressed in the probabilistic terms in the following way. Let Pr(y = k|I(xi)) be
a probability that any object from granule I(xi) belongs to the class Clk. Notice that in this
definition we assume the probabilities are the same for each object within the same granule. The
probabilities are unknown, but are estimated by frequencies

Pr(y = k|I(xi)) =
|Clk ∩ I(xi)|
|I(xi)|

.

Then, the lower approximation of class Clk is defined as:

Clk = {xi : Pr(y = k|I(xi)) > u, i = 1, . . . , n}, (4.2)
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Figure 4.1: Example of three-class problem. Black points are objects from class 1, dark gray points
– from class 2, light gray – from class 3. The value sets of two attributes a1, a2 are {1, 2, 3}. On
the upper picture lower approximations are presented as the shaded area: Cl1 = G1 ∪ G4, Cl2 =
G3 ∪ G6, Cl3 = G9. On the lower picture, variable precision lower approximations are presented
with precision threshold u = 2/3; we have Cl1 = G1 ∪G4 ∪G5, Cl2 = G3 ∪G6, Cl3 = G8 ∪G9

so it is the sum of all granules, for which the probability of class Clk is at least equal to some
threshold u > 1

2 . Similarly, the upper approximation of class Clk is defined as:

Clk = {xi : Pr(y = k|I(xi)) > l, i = 1, . . . , n},

where l 6 1
2 is usually set to 1 − u for the complementarity reasons. An example of lower ap-

proximations for three-class toy problem is shown in Table 4.1.1 and in Figure 4.1.1. Recently, the
VPRS model has been investigated from the viewpoint of some desirable properties of monotonic-
ity in (Błaszczyński et al., 2008), and some new definitions of this model, ensuring the desirable
properties, were given.

Notice that concepts of rough approximations are related to the training set only so they con-
tribute to the description of the data and therefore are part of the knowledge discovery process.
However rough sets can be used for prediction (classification) purposes as well. Firstly, one can
search for the minimal description of objects (set of attributes) which does not increase the incon-
sistency of the data, called reduct ; this process can be considered as feature selection. Moreover,
one can use lower and upper approximations as a basis for induction of certain and possible rules,
respectively (Stefanowski, 1998).
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Variable precision as maximum likelihood estimation (MLE). It can be shown that fre-
quencies used for estimating probabilities in are the MLE estimators under assumption of common
class probability distribution within a given granule (notice that the assumption that each object in
a given granule has the same probability distribution, can be thought of as a probabilistic version
of principle of indiscernibility). Let us choose some granule G = I(x). Let nG be the number of
objects in G, and for each class Clk, let nkG be the number of objects from this class in G. Then the
class label y has a multinomial distribution when conditioned on granule G. Let us denote those
probabilities Pr(y = k|G) by pkG. Then the conditional probability of observing the n1

G, . . . n
K
G

objects in G, given p1
G, . . . , p

K
G (conditional likelihood) is the following:

L(p;G) =
K∏
k=1

(pkG)n
k
G

so that the negative log-likelihood is:

`(p) = − lnL(p;G) = −
K∑
k=1

nkG ln pkG (4.3)

The minimization of ` with additional constraint
∑K
k=1 p

k
G = 1 leads to the well-known fomula for

MLE estimators p̂kG in multinomial distribution:

p̂kG =
nkG
nG

(4.4)

which are exactly the frequencies used in VPRS. This observation will lead later to the stochastic
generalization of DRSA.

4.1.2 Rough Set Theory for Ordinal Classification

The classical rough set approach is not able to handle inconsistencies coming from consideration
of order relations and monotonicity constraints (Greco et al., 2000, 2001a, 2002b). Consider for
example assigning companies into one of the bankruptcy risk classes, e.g. “low risk”, “medium risk”
and “high risk”; the classes are clearly (preference) ordered. Let the set of attributes be: product
quality, market share and debt ratio; all those attributes are monotonically correlated with the risk
classes: as the product quality and market share increase, and debt ratio decreases, the companies
are assigned to lower risk classes. Consider two firms A and B. If firm A has a low value while firm
B has a high value of the debt ratio, and evaluations of these firms on other attributes are equal,
then, from bankruptcy risk point of view, firm A is at least as good as firm B. Suppose, however,
that firm A has been assigned to a class of higher risk than firm B. This is obviously inconsistent
with the monotone structure of the problems. Nevertheless, in the classical rough set approach, the
two firms will be considered as just discernible and no inconsistency will be stated (Greco et al.,
2001a; Słowiński et al., 2002b; Greco et al., 2007a).

For this reason, Greco, Matarazzo, and Słowiński (1999a,b, 2001a) have proposed a new rough
set approach that is able to deal with this kind of inconsistencies. This innovation is based on
substitution of the indiscernibility relation by a dominance relation in the rough approximations of
classes, therefore the new theory has been named Dominance-based Rough Set Approach (DRSA).

In the rough set theory, the term decision attribute is often used for the class attribute, the term
decision value is used for a class label and the term condition attribute is used for the attributes
other than the decision attribute. We remind about this fact, because the meaning of the names
appearing in this chapter (e.g. condition and decision granules, generalized decision, etc.) becomes
then clear.
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object a1 a2 y object a1 a2 y

x1 0.1 0.12 1 x6 0.64 0.88 2
x2 0.2 0.54 3 x7 0.73 0.28 3
x3 0.28 0.73 1 x8 0.82 0.34 2
x4 0.41 0.45 2 x9 0.88 0.64 3
x5 0.5 0.22 1 x10 0.96 0.93 3

Table 4.2: A set of 10 objects described by 2 attributes a1, a2 and class label y ∈ {1, 2, 3}.

Dominance relation and dominance principle. The dominance relation � is defined as a
binary relation on X in the following way (cf. Section 1.2): for any x,x′ ∈ X we say that x
dominates x′, x � x′, if on every attribute, x has evaluation not worse than x, xj > x′j , for all
j = 1, . . . ,m. The dominance relation � is a partial pre-order on X, i.e. it is reflexive and transitive.

The dominance principle can be expressed as follows. For every xi,xj , where i, j = 1, . . . , n, it
holds:

xi � xj =⇒ yi > yj . (4.5)

Notice that the dominance principle is related to the training set D only. The dominance principle
follows from the monotone relationship between class labels and attribute values. However, in many
real-life applications, the dominance principle is not satisfied, i.e. there exists at least one pair of
objects violating (4.5). We say that an object xi is inconsistent if there exists another object xj ,
such that xi,xj violates (4.5). Otherwise, we say that object xi is consistent. We will sometimes
also use the following expression: object xi is consistent with xj , if a pair xi,xj satisfies (4.5).

Granules as dominance cones. The rough approximations concern granules resulting from
information carried out by the class indices. The approximation is made using granules resulting
from information carried out by (condition) attributes. These granules are called decision and
condition granules, respectively. The decision granules can be expressed by unions of classes:

Cl>k = {xi : yi > k, i = 1, . . . , n}

Cl6k = {xi : yi 6 k, i = 1, . . . , n}.

The condition granules are dominating and dominated sets defined, respectively, as:

D+(x) = {xi : xi � x, i = 1, . . . , n}

D−(x) = {xi : x � xi, i = 1, . . . , n}.

Remark that decision granules and condition granules are orthogonal cones in decision and condi-
tions space, respectively.

Lower and upper approximations. Lower approximations of Cl>k and Cl6k are defined as
follows:

Cl>k = {xi : D+(xi) ⊆ Cl>k , i = 1, . . . , n}, (4.6)

Cl6k = {xi : D−(xi) ⊆ Cl6k , i = 1, . . . , n}. (4.7)

They include the objects which certainly belong to class Cl>k (or Cl6k ), i.e. without any ambiguity
caused by inconsistency. Indeed, the certainty comes from the fact that object xi belongs to the
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lower approximation of class union Cl>k (respectively Cl6k ), if no other object in the training set
contradicts it, i.e. xi is consistent with every other object outside of Cl>k (respectively Cl6k ).
Otherwise, if there exists an object outside Cl>k , which dominates xi, then due to the dominance
principle (following from the monotonicity constraints) we cannot say that xi belongs to Cl>k with
certainty.

Upper approximations of Cl>k and Cl6k are defined as:

Cl
>
k = {xi : D−(xi) ∩ Cl>k 6= ∅, i = 1, . . . , n},

Cl
6
k = {xi : D+(xi) ∩ Cl6k 6= ∅, i = 1, . . . , n}.

They include the objects which possibly belong to class Cl>t (or Cl6t ), i.e. with a possible ambiguity
caused by inconsistency. Notice that for any k ∈ Y , we have Cl>k ∪ Cl

6
k−1 = {x1, . . . ,xn}. This

is not the case with the lower approximations. Therefore, we define the boundary (doubtful) region
for class unions Cl>k and Cl6k−1 as:

Bk = {x1, . . . ,xn}\(Cl>k ∪ Cl
6
k−1), (4.8)

which includes the area which does not belong to lower approximations of class unions Cl>k and
Cl6k−1. Notice that DRSA decomposes the analysis of inconsistencies into K − 1 binary problems:
for each k = 2, . . . ,K we have lower approximations Cl>k , Cl6k−1 and boundary Bk which together
form the whole set {x1, . . . ,xn}. Such a decomposition will be also used in the stochastic extension
of DRSA. A simple example of training set is presented in Table 4.2 and lower approximations of
class unions are shown in Figure 4.2.

The quality of approximation is defined as a ratio of the number of objects from the dataset
that are consistent with respect to the dominance principle, to the number of all objects from the
dataset:

γ = 1−

∣∣∣⋃Kk=2Bk

∣∣∣
n

. (4.9)

This is a measure of inconsistency present in the dataset.

4.1.3 Generalized Decision in DRSA

For the purpose of this paper, we will focus our attention on another concept from DRSA (as
we shall shortly see, equivalent to the notion of approximations), the generalized decision. Suppose,
object xi ∈ Cl>k . Since the lower approximation of class union Cl>k is a region in which objects
certainly belong to Cl>k , we can state that class index of xi should be at least k. Choosing the
greatest k, for which xi ∈ Cl>k holds (denoted by li), we know that the class index of xi must be at
least li and we cannot give more precise statement, since we are not certain that the class index of
xi is at least li + 1, because xi /∈ Cl>li+1. On the other hand, if xi ∈ Cl6k , we known that the class
index of xi must be at most k. Similarly, choosing the lowest k for which xi ∈ Cl6k (denoted by
ui), we end up with the interval of classes [li, ui], for which we known that object xi must belong
to. This interval is often denoted by δi, and is called generalized decision:

δi = [li, ui], (4.10)

where:

li = max
{
k : xi ∈ Cl>k , k = 1, . . . ,K

}
,

ui = min
{
k : xi ∈ Cl6k , k = 1, . . . ,K

}
. (4.11)



Stochastic Dominance-based Rough Set Approach 61

a1

a
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

a1

a
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Figure 4.2: Example of three-class problem described in Table 4.2. Black points are objects from
class 1, dark gray points – from class 2, light gray – from class 3. On the upper picture lower
approximations Cl61 = {x1,x5} and Cl>2 = {x4,x6,x7,x8,x9,x10} are shown, on the lower picture
– Cl62 = {x1,x4,x5} and Cl>3 = {x9,x10}. Approximations Cl>1 and Cl63 are not shown, since
they are trivially {x1, . . . ,xn}.

The generalized decision determines an interval of decision classes to which an object may belong
due to the inconsistencies with the dominance principle. Investigating the definitions of lower
approximations (4.6)-(4.7) one can show that generalized decision can be easily computed without
reference to the lower approximation:

li = min{yj : xj � xi, j = 1, . . . , n},

ui = max{yj : xi � xj , j = 1, . . . , n}. (4.12)

Thus, li is the lowest class, to which objects dominating xi belong; ui is the highest class, to which
objects dominated by xi belong. Obviously, li 6 yi 6 ui and if li = ui, then object xi is consistent
with respect to the dominance principle with every other object xj , for each i, j = 1, . . . , n. The
wider the generalized decision, the less precise knowledge about the object we have. One can show
(it follows directly from definition) that if xi � xj , then li > lj and ui > uj , i.e. functions li and
ui are monotone; in other words, if we replace the original class labels yi by li (or ui), then we will
obtain consistent dataset. Notice that generalized decision is equivalent to lower and upper class
labels (3.12) defined in Section 3.2.2.

Let us also remark that the description with generalized decisions is fully equivalent to the
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Figure 4.3: Generalized decisions δi = [li, ui] (shown in brackets).

description with rough approximations. Namely, dominance-based lower approximations may be
expressed using the generalized decision:

Cl>k = {xi : li > k, i = 1, . . . , n},

Cl6k = {xi : ui 6 k, i = 1, . . . , n}.

Generalized decisions are calculated in Figure 4.3 for the simple dataset from Table 4.2.

4.1.4 Variable Consistency in DRSA

The definitions of lower approximations and generalized decisions for DRSA are quite restrictive:
an object may be excluded from the lower approximation due to a single inconsistent object. Indeed,
from the definition, object xi belong to lower approximation Cl>k if D+(xi) ⊆ Cl>k . It is enough that
there is one object xj ∈ D+(xi) (so that xj � xi) with yj < k to exclude xi from Cl>k . Moreover,
suppose there exist one object dominating all the other objects from dataset, but its class index is
the lowest one. Then, all the objects from the dataset, apart from those belonging to the lowest
class, will we excluded from any lower approximations (they all will fall into the boundary region).

That is why relaxed definitions of lower approximations have been introduced under the name
variable consistency DRSA (VC-DRSA) (Greco et al., 2001b), which allow object xi to be incor-
porated into lower approximations, if a high fraction of objects dominating xi (or being dominated
by xi) is consistent with xi. Thus, lower approximations (4.6)-(4.7) are redefined as:

Cl>k =

xi :

∣∣∣D+(xi) ∩ Cl>k
∣∣∣

|D+(xi)|
> l, i = 1, . . . , n

 , (4.13)

Cl6k =

xi :

∣∣∣D−(xi) ∩ Cl6k
∣∣∣

|D−(xi)|
> l, i = 1, . . . , n

 , (4.14)

The threshold l is called consistency level and is a parameter controlling the acceptable range of
ambiguity. The upper approximations are defined by complementarity:

Cl
>
k = {x1, . . . ,xn}\Cl6k−1

Cl
6
k−1 = {x1, . . . ,xn}\Cl>k .



Stochastic Dominance-based Rough Set Approach 63

There is, however, a problem with definitions (4.13)-(4.14), since they may lead to the non-monotone
assignments to the lower approximations. Consider the dataset from Table 4.2 shown in Figure 4.2.
If we set l = 4/5 then x6 ∈ Cl62 since |D

−(x6)∩Cl62 |
|D−(x6)| = 5

6 . On the other hand, x3 /∈ Cl62 , because
|D−(x3)∩Cl62 |
|D−(x3)| = 2

3 ; but it is counter-intuitive, since x3 � x6 and, moreover, y3 < y6. This problem
has been addressed in (Błaszczyński et al., 2007, 2008), where some modified definitions have been
proposed which do not lead to non-monotone assignments.

4.2 Stochastic extension of DRSA (SDRSA)

4.2.1 DRSA as Most Informative Non-invasive Approach

Let us start with proving an interesting fact about DRSA, using the concept of generalized
decision (see Section 4.1.3). The proven fact will show that if our approach should not make any
additional assumptions that cannot be backed and if it should not invade into the training set by
changing or removing the objects (such an approach is called non-invasive (Düntsch and Gediga,
2000; Cao-Van, 2003)), the DRSA is the best we can do. In other words, if we want to extend
DRSA, we will need to modify the dataset to some extent.

Consider the family of class intervals {αi = [ai, bi] : i = 1, . . . , n}. Let us define the following
relation between such families: the family of class intervals {αi = [ai, bi] : i = 1, . . . , n} is more
informative than the family {βi = [ci, di] : i = 1, . . . , n} if for each i, αi ⊆ βi. We show now that
the generalized decision (thus, also DRSA rough approximations) is in fact the unique optimal
non-invasive approach that holds the maximum amount of information which can be obtained from
the data (Dembczyński et al., 2007a):

Theorem 4.1. The family of generalized decisions {δi = [li, ui] : i = 1, . . . , n} is the most infor-
mative family of class intervals, among families of class intervals of the form {αi = [ai, bi] : i =
1, . . . , n} with the following properties:

1. The sets {(xi, ai) : i = 1, . . . , n} and {(xi, bi) : i = 1, . . . , n}, composed of objects with, respec-
tively, class labels ai and bi assigned instead of yi, are consistent with the dominance principle,
i.e. if xi � xj, then ai > aj and bi > bj (monotonicity).

2. For each i = 1, . . . , n, it holds ai 6 yi 6 bi (non-invasiveness).

Proof. It was already noticed in Section 4.1.3 that condition 2 holds for the generalized decisions δi.
Condition 1 also holds since if xi � xj then {xr : xr � xi} ⊆ {xr : xr � xj}, so li = min{yr : xr �
xi} > min{yr : xr � xj} = lj . Analogously, one can show that ui > uj .

We now prove the minimality (or maximal informativeness). For any object xi and class in-
terval αi = [ai, bi] satisfying the conditions 1-2, it must hold that ai 6 li. This is because
li = min{yr : xr � xi}, so there exists object xj such that xj � xi and li = yj . But due to
conditions 1 and 2 it must hold that ai 6 aj 6 yj = li. Analogously, one can show that it must
hold that bi > ui. Thus, we conclude that for every family of class intervals {αi : i = 1, . . . , n}
satisfying the conditions 1-2, it must hold that δi ⊆ αi for each i = 1, . . . , n. Hence, it follows that
{δi : i = 1, . . . , n} is the most informative family.

Thus, if we want to obtain more informative monotone class intervals, we need to be invasive.
This constitutes the motivation of stochastic DRSA.
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4.2.2 Stochastic Dominance-based Rough Sets

In this section, we extend the definitions of dominance-based lower approximations and gener-
alized decision to the stochastic case.

Probabilistic model. In Section 4.1.1, when we showed that VPRS comes from the MLE, we
have made the assumption that in a single granule, each object has the same conditional class
probability distribution. This is due to the property of indiscrenibility of objects within a granule.

In case of DRSA, indiscernibility is replaced by a dominance relation, so that a different relation
between the probabilities must hold. However, we have already found in Section 2.1 a rudimentary
property of the probability distribution for ordinal classification with monotonicity constraints, the
stochastic dominance principle:

x � x′ =⇒ P (y > k|x) > P (y > k|x′) ∀x,x′ ∈ X, k = 1, . . . ,K. (4.15)

In other words, if object xi dominates object xj , probability distribution conditioned at point xi
stochastically dominates probability distribution conditioned at xj . This principle has the advantage
of being a natural and intuitive extension of dominance principle (4.5) to the stochastic case.

Stochastic lower approximations. Having stated the probabilistic model, we introduce the
stochastic DRSA by relaxing the definitions of lower approximations of classes:

Cl>k = {xi : P (y > k|xi) > α, i = 1, . . . , n}, (4.16)

Cl6k = {xi : P (y 6 k|xi) > α, i = 1, . . . , n} =

= {xi : P (y > k + 1|xi) 6 1− α, i = 1, . . . , n}, (4.17)

where α ∈ ( 1
2 , 1] is a fixed threshold. Thus, lower approximation of class union, say Cl>k , is a

region, in which objects are assigned to Cl>k with a high probability (at least α). The boundary
region Bk = X\(Cl>k ∪ Cl

6
k−1) is the region in which objects belong to any of unions Cl>k and

Cl6k−1 with probability in the range (1 − α, α). Two special cases are important. When α = 1,
lower approximation corresponds to the certain region for a given class union and, as we shall
shortly see, the stochastic definition boils down to the classical definition of the dominance-based
lower approximation. When α becomes close to 1

2 , only objects for which P (y 6 k− 1|xi) = P (y >

k|xi) = 1
2 are in the boundary Bk, which corresponds to the Bayes boundary between classes (Duda

et al., 2000). Notice that we excluded values α 6 1
2 , because otherwise the lower approximations

of complementary class unions would overlap.
Notice that it may happen for some object xi that although it does not belong to the class union

Cl>k , it belongs to Cl>k (because its class probability satisfies Pr(y > k|xi) > α). The interpretation
of this fact is the following: although the class label of xi observed in the dataset is smaller than k,
i.e. yi < k, such event is less likely than the event yi > k; hence we should change its class union to
the more probable one. Therefore, stochastic approximations lead to reassigning the objects. This
is not a surprise, because from Theorem 4.1 it follows that in non-invasive way we cannot do better
than DRSA.

Stochastic decision. Having defined the lower approximation, we can obtain generalized decision
through the relations (4.11), similarly to the non-stochastic case (notice, however, that the formula
(4.12) no longer holds in stochastic case):

li = max{k : P (y > k|xi) > α, k = 1, . . . ,K}

ui = min{k : P (y > k + 1|xi) 6 1− α, k = 1, . . . ,K}. (4.18)



Stochastic Dominance-based Rough Set Approach 65

To distinguish between non-stochastic and stochastic definitions, the class intervals defined in (4.18)
will be called stochastic decision. By carefully looking at (4.18) and reminding the definition of
quantiles (see e.g. Section 3.2.4), one can notice that li is the greatest (1−α)-quantile and ui is the
smallest α-quantile of the conditional class distribution P (y|xi). Therefore, the stochastic decision
[li, ui] is a confidence class interval such that y ∈ [li, ui] with probability at least 2α− 1. Moreover,
we can prove that two important properties of generalized decision also hold in the stochastic case:

Theorem 4.2. Let δi be a stochastic decision, defined by (4.18). Then, for every i, j = 1, . . . , n, it
holds:

1. li 6 ui,

2. xi � xj → li > lj and ui > uj.

Proof. From the definition of li, it follows that for each k such that P (y > k) < α, it holds
li < k. Therefore, it must hold li < min{k : P (y > k) < α}. But since α ∈ ( 1

2 , 1], we have
α > 1 − α and therefore {k : P (y > k) 6 1 − α} ⊆ {k : P (y > k) < α}. This implies that
li < min{k : P (y > k) 6 1 − α}, or equivalently li 6 min{k : P (y > k + 1) 6 1 − α} = ui. This
proves the first property.

The second property follows directly from the consideration of linear loss function in Section
3.2.4. The Bayes classifier for such loss function is (1−α)-quantile, where α is the parameter which
reflects the strength of asymmetry. Due to the fact that linear loss is a monotone loss matrix, it
follows from Theorem 2.2 that Bayes classifier (i.e. (1 − α)-quantile function) is monotone under
the stochastic dominance assumption for any value α ∈ [0, 1]. This proves the second property.

Notice that we do not longer have li 6 yi 6 ui, because it only holds with probability 2α − 1.
The above relation holds with certainty only for α = 1. We will shortly see that this case correspond
to the non-stochastic DRSA. This is actually in the spirit of Theorem 4.1, where we showed that
if both li 6 yi 6 ui and monotonicity hold, the best solution is DRSA. Moreover, notice that as
α increases, the stochastic decisions broaden (so they become less informative), but on the other
hand the probability of catching the observed class value in the class interval increases.

The stochastic decision can be interpreted in the following way: although the original label of the
object xi is yi, the object is associated with class interval [li, ui], which contains the most probable
class labels. In a special case, when li = ui 6= yi, we may say that object xi is reassigned from class
yi to li = ui. This resembles the monotone approximation problem and, as we will shortly see, the
resemblance is not accidental.

4.2.3 Probability Estimation

The stochastic lower approximations and stochastic decision are both defined with respect to
the probabilities. However, the probability distribution is unknown. Therefore, we need to estimate
the probabilities from data. Then, to obtain the lower approximations, we will plug the estimators
into (4.17)-(4.16) instead of real probabilities. In Section 4.3.2, we will show how we can omit the
step of probability estimation and directly obtain stochastic lower approximations.

To estimate the probabilities, we will use the method described in detail in Section 3.1, which
we remind briefly here. This method is equivalent to the MLE for the binary class case. For the
general K − 1-class case, it is based on solving K − 1 problems of isotonic regression, to obtain in
the k-th problem the estimators of probabilities P (y > k|xi).

For a given xi, let us define K − 1 dummy variables yik = 1yi>k for k = 2, . . . ,K. In the k-th
binary problem, dummy variables yik play the role of class labels with Y = {0, 1}, while variables of
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the problem correspond to estimating the probabilities P (y > k|xi). Let P̂ (y > k|xi), the estimator
of corresponding probability, be defined as the optimal solution to the following isotonic regression
problem:

minimize
n∑
i=1

(yik − pi)2

subject to xi � xj =⇒ pi > pj i, j = 1, . . . , n. (4.19)

This is the least squares estimation with the monotonicity constraints, which ensures that the
probability estimators satisfy the stochastic dominance principle. In Section 3.1, we showed that
although the K − 1 problems are solved separately, it holds P̂ (y > k|xi) > P̂ (y > k+ 1|xi), i.e. the
estimators form a proper probability distribution.

Example. Consider the problem shown in Figure 4.4. On the top chart, the probability estima-
tors

(
P̂ (y > 2|xi), P̂ (y > 3|xi)

)
are shown (notice that P̂ (y > 1|xi ≡ 1, so it is never shown).

Plugging those estimators into the definitions (4.16)-(4.16) and setting α = 0.6, we obtain the lower
approximations and stochastic decisions shown in the middle and lower pictures.

It is instructive to compare this with Figures 4.2 and 4.3 to see, what has changed comparing
with non-stochastic case. First, notice that the lower approximation Cl62 expanded in stochastic
case, by including the objects x2, x3 and x6, which were on the boundary in the non-stochastic
case. The reason behind this phenomenon is the following: although x2 belongs to class Cl3, it is
dominated by objects x3 and x6, which belongs to lower classes. Consider estimating the probability
P (y > 3|xi) in the second binary problem, when class Cl3 forms “positive” class y = 1 and classes
Cl1 and Cl2 form negative class y = 0. Then, the object x2 is in minority (one against two objects
from “negative” class); therefore, object x2 will get relatively low probability ( 1

3 ) of belonging to
class Cl3 and hence for threshold α = 0.6 (rather unrestrictive) it can be incorporated into lower
approximation Cl62 . Notice that for α > 2

3 , it would not be incorporated into Cl62 and would stay
on the boundary.

Statistical explanation of DRSA. Consider the k-th binary problem of probability estimation.
According to Theorem 3.1, if object xi is consistent in the k-th binary problem, i.e. there exists
no other object such that xi � xj and yik < yjk, or such that xi � xj and yik > yjk, then
the probability estimate P̂ (y > k|xi) will be equal to 1. Moreover, only such objects possess the
property P̂ (y > k|xi) = 1. This implies that if we set α = 1, the requirement P̂ (y > k|xi) > α = 1
in the definition of stochastic lower approximations (4.16)-(4.17) will be satisfied only by objects
consistent in the k-th binary problem.

On the other hand, only such objects are incorporated to the non-stochastic lower approxima-
tions (4.7)-(4.6), either Cl6k−1 or Cl>k . Indeed, one can simply show that condition D+(xi) ⊆ Cl>k
is equivalent to xj � xi → yjk = 1, while condition D−(xi) ⊆ Cl6k to xj � xi → yjk = 0. Thus, we
conclude the stochastic approximations boil down to the non-stochastic ones in the limit α = 1.

From the above analysis, we have two statistical interpretations of the non-stochastic DRSA.
From the point of view of lower approximations, DRSA estimates subsets of the training set D, for
which either P (y > k|xi) = 1 or P (y 6 k − 1|xi) = 1; those are the objects which certainly belong
to one of the complementary class unions and they form respective lower approximations.

From the point of view of generalized decision, DRSA estimates the confidence intervals which
cover the whole probability distribution, i.e. such intervals [li, ui] that P (y ∈ [li, ui]|xi) = 1. In
other words, those intervals are broad enough but not broader) to ensure that the observed class
labels falls inside the intervals.
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Figure 4.4: Estimation of the probabilities and stochastic approximations for dataset from Table
4.2. In the top figure, estimators

(
P̂ (y > 2|xi), P̂ (y > 3|xi)

)
are shown for each object. In the

middle figure there are marked stochastic lower approximations Cl>2 and Cl61 , and in the lower
figure – Cl>3 and Cl62 . In both figures, stochastic decision is shown in brackets. We set α = 0.6.
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Influence of α. The parameter α can be chosen arbitrary and it is a sort of consistency level,
similarly as in VC-DRSA. We have already discussed the limit α = 1. As α decreases, we are able
to tighten the stochastic decision but, on the other hand, some of original class labels yi will fall
outside those intervals. This is especially useful when the dataset is highly inconsistent.

For instance, consider the case when α = 1 (non-stochastic case) and there exists one object x0

with y0 = 1, which dominates 100 objects xi, i = 1, . . . , 100, with class labels yi = 2. Then, since
every object will be inconsistent, we have li = 1 and ui = 2 for i = 0, . . . , 100; moreover, none of
the objects will enter any lower approximation. However, there is probably something wrong with
x0, rather than with other 100 objects (if we removed x0, every other object would be consistent).
Choosing level α < 0.99 will lead to assigning li = 2 and ui = 2 for every i = 0, . . . , 100. In other
words, object x0 will be effectively reassigned to class Cl2 and will enter to the lower approximation
Cl>2 .

As α → 1
2 , all the stochastic decisions shrink to single points li = ui, with exception of those

objects, for which P̂ (y > k|xi) = 1
2 for some k. Thus, most of the objects will be reassigned

and obtain class labels li = ui. This is very similar to the monotone approximation problem
encountered in Chapter 3. In the next section, we will focus on the relationship between the
monotone approximation and stochastic decision.

4.3 Statistical Learning View: Abstaining Classifiers

In this section, we will look at the problem of stochastic DRSA from the point of view of
statistical learning and Bayesian decision theory, described in the Section 1.2.1. This will not only
provide us with a comprehensive view o statistical DRSA, but will also computationally improve
estimation of the lower approximations: we will show that they can be obtained without estimating
the probabilities at all (Dembczyński et al., 2008a).

We will extend the theory considered in Chapter 1 to the case where the classifier is allowed
to abstain from any answer. Such functions are known as abstaining classifiers (Chow, 1970;
Pietraszek, 2005) and are analogous to a domain expert, who is able to say “I don’t know”, when
his knowledge is not sufficient to draw any conclusion. Such an approach is much safer than making
an uncertain decision and hence can be preferred in some domains (e.g. in medical diagnosis).

We will show that rough set (both classical and dominance-based) are perfectly tailored for
considering the abstaining classifiers.

4.3.1 Statistical Learning View of Classical Rough Sets

Before we present the statistical learning view of stochastic DRSA, we will first consider the
VPRS model. A Bayesian-decision approach has already been proposed for VPRS in (Yao and
Wong, 1992; Yao, 2007); the theory presented here for VPRS differs slightly from that described in
(Yao and Wong, 1992).

Let us consider the classification problem from the statistical learning point of view, as described
in Section 1.2.1. The aim is to find a classifier h(x) which minimizes the expected loss (1.1) over the
data distribution. Since the probability distribution is unknown, we minimize instead the empirical
risk (1.5) within some restricted class of functions. However, now we allow the classifier to refrain
from the answer, which is denoted by h(x) =?. The loss function suitable for the problem is the
following:

Lβ(y, h(x)) =


0 if h(x) = y

1 if h(x) 6= y

β if h(x) =?
(4.20)
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As we see, there is a penalty β for refraining from the answer. To be consistent with the classical
rough set theory, we assume that every function must be constant within each granule, i.e. for each
G = I(xi) for some object xi, we have:

xi,xj ∈ G =⇒ h(xi) = h(xj) i, j = 1, . . . , n, (4.21)

which is in fact the principle of indiscernibility. Notice that this is the only restriction imposed on
the class of functions. We now state:

Theorem 4.3. The function ĥ, minimizing the empirical risk with loss function (4.20) between
all functions satisfying (4.21) is equivalent to the VPRS in the sense that ĥ(G) = k if and only
if granule G belongs to the lower approximation of class k with the precision threshold u = 1 − β,
otherwise ĥ(G) =?.

Proof. As (4.21) is the only restriction imposed on the class of functions, we can analyze the value
of any given function h independently for each granule. Let us choose then a granule G = I(xi) for
an object xi. Let us also denote the number of objects in G as nG, and for each class index k ∈ Y ,
let nkG be the number of objects from class k in G. The total loss of a function h in the granule G
is the following:

L(h(G)) =

{
nG − nkG if h(G) = k

βnG if h(G) =?
.

This follows from the fact that if h(G) = k, then for each xi ∈ G such that yi 6= k, function h suffers
loss 1. On the other hand, if h(G) =?, for each xi ∈ G, function h suffers loss β. The best strategy
is then to choose the majority class in G or abstain from answer, depending on what loss is lower.
The preferred strategy is to choose the majority class, if for some k it holds nG − nkG 6 βnG, or if:

nkG
nG

> 1− β. (4.22)

If no k satisfies this relation, the preferred strategy is to choose ĥ(G) =?. Comparing this result
with Section 4.1.1, one can show that the decision ĥ(G) = k is chosen if and only if the granule G
belongs to the lower approximation of class k with the precision threshold u = 1− β. If there is no
lower approximation of any class to which G belongs, the function ĥ abstains from answer.

Concluding, the variable precision rough sets can be derived by considering the class of functions
constant in each granule and choosing the function ĥ, which minimizes the empirical risk for loss
function (4.20) with parameter β = 1 − u. For each granule G, if G ⊆ Clk for some k ∈ Y , then
ĥ(xi) = k for each xi ∈ G. Otherwise ĥ(xi) =? (abstaining from the answer). As we see, classical
rough set theory suits well for considering the problems, when the classification procedure is allowed
to abstain from predictions for some xi.

4.3.2 Stochastic DRSA as Monotone Confidence Interval Estimation

The formulation of stochastic DRSA presented in this section, considered from the point of
view of statistical learning, is completely new and first appeared in our paper (Dembczyński et al.,
2007a). However, a Bayesian-decision view of VC-DRSA has been also proposed in (Greco et al.,
2007b).

Interval functions. The case with stochastic DRSA is more sophisticated, because we assume
the classifiers are monotone. We propose the following concept of abstaining classifiers in the ordinal
classification with monotonicity constraints. Let us consider the classifier h(x), which assigns to
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1 2 3 4 5 6 7 8

y h l((x)) hu((x))

h((x))

Figure 4.5: The problem with K = 8. The actual class label y = 2, while the predicted interval is
h(x) = [hl(x), hu(x)] = [5, 7]. The total penalty is thus 2β (for imprecision) + 3 (for misclassifica-
tion).

each point x the interval of classes, denoted [hl(x), hu(x)]. The width of the interval reflects the
imprecision of the classifier’s response, i.e. to what degree it refrains from the precise answer. The
lower and upper ends of each interval are supposed to be monotone functions:

xi � xj =⇒ hl(xi) > hl(xj) i, j = 1, . . . , n,

xi � xj =⇒ hu(xi) > hu(xj) i, j = 1, . . . , n. (4.23)

The interval loss function Lint(y, h(x)) is composed of two terms. First term is a penalty for the
size of the interval (degree of imprecision) and equals to β(hu(x) − hl(x)). Second term measures
the accuracy of the classification and is zero, if y ∈ [hl(x), hu(x)], otherwise h(x) suffers additional
loss equal to the distance of y from the closer interval end:

Lint(y, h(x)) = β(hu(x)− hl(x)) + 1y/∈[hl(x),hu(x)] min{|y − hl(x)|, |y − hu(x)|} (4.24)

This model incorporates the abstaining classifiers into the monotone framework in a very intuitive
and consistent way. The interval of classes reflects the imprecision of the classifier. Parameter β
establishes the trade-off between the precision of the response and its reliability. This is the first
model of abstaining classifiers proposed for the ordinal classification with monotonicity constraints.

Interval loss minimization. Let us consider the problem of minimizing (4.24) on the dataset
D, subject to constraint that hu and hl are monotone:

minimize
n∑
i=1

Lint(yi, h(xi))

subject to xi � xj =⇒ hl(xi) > hl(xj) i, j = 1, . . . , n

xi � xj =⇒ hu(xi) > hu(xj) i, j = 1, . . . , n

hu(xi) > hl(xi) i = 1, . . . , n

hu(xi), hl(xi) ∈ {1, . . . ,K} i = 1, . . . , n (4.25)

Let Lα(yi, k) be the linear loss, as defined in Section 3.2.4:

Lα(y, k) =

{
α(k − y) if k > y

(1− α)(y − k) if k 6 y,
.

One can show that:
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Lemma 4.1. It holds Lint(y, h(x)) = L1−β(y, hl(x)) + Lβ(y, hu(x)).

Proof. We prove the lemma by considering three cases y > hu(x), hl(x) 6 y 6 hu(x) and y < hl(x).
For y > hu(x), we have Lint(y, h(x)) = y − hu(x) + β(hu(x) − hl(x)), while L1−β(y, hl(x)) =

β(y − hl(x)) and Lβ(y, hu(x)) = (1− β)(y − hu(x)).
Similarly, for hl(x) 6 y 6 hu(x) we have Lint(y, h(x)) = β(hu(x)−hl(x)), while L1−β(y, hl(x)) =

β(y − hl(x)) and Lβ(y, hu(x)) = β(hu(x)− y).
Finally, for y < hl(x) we have Lint(y, h(x)) = hl(x)−y+β(hu(x)−hl(x)) , while L1−β(y, hl(x)) =

(1− β)(hl(x)− y) and Lβ(y, hu(x)) = β(hu(x)− y).

Notice that the solution to the problem (4.25) can be non-unique. The question arises, whether
we can solve both linear loss problems separately. We have for each i the constraint hu(xi) > hl(x).
However, one can prove that if we remove the constraint from the optimization process (which
is equivalent to solving problems with hu and hl separately), the constraint is still satisfied at
optimality:

Theorem 4.4. Consider the interval loss minimization (4.25), relaxed by removing constraint
hu(xi) > hl(x) and assume β > 1

2 . Then, the optimal solution to this problem, which consists of
the linear monotone approximation ĥu with α = β and the linear monotone approximation ĥl with
α = 1− β, is also the optimal solution to the original problem of interval loss minimization (4.25).

Proof. We showed in Section 3.2.4 that one obtains linear monotone approximation by solving K−1
independent binary monotone approximation problems with weights w0 = α and w1 = 1 − α. Let
ĥuk(xi), for i = 1, . . . , n be the optimal solution in the k-th binary problem with α = β. Similarly,
let ĥlk(xi), for i = 1, . . . , n be the optimal solution in the k-th binary problem with α = 1 − β.
Since β > 1

2 , we have β > 1− β.

From Theorem 3.6, we know that ĥuk(xi) > 1p̂i>β and that ĥlk(xi) 6 1p̂i>1−β , where p̂ =
(p̂1, . . . , p̂n) is the isotonic regression of yk = (y1k, . . . , ynk). This implies that for each i = 1, . . . , n,
ĥuk > ĥlk. Since k was arbitrary, we have ĥu(xi) > ĥl(xi). Thus, the relaxed condition hu(xi) >

hl(x) is satisfied anyway and the pair (ĥu, ĥl) is the optimal solutions to the original problem
(4.25).

Stochastic DRSA is equivalent to interval loss minimization. Let us focus on the stochastic
DRSA expressed in terms of the stochastic decision. Then, the following equivalence holds:

Theorem 4.5. The function ĥ(xi) = [ĥl(xi), ĥu(xi)], the solution to the interval loss minimization
in the class of monotone intervals functions (4.25), such that ĥl is the greatest (1 − β)-linear
monotone approximation and ĥu is the smallest β-linear monotone approximation, is equivalent to
the stochastic decision with threshold α = 1− β: for i = 1, . . . , n, ĥl(xi) = li and ĥu(xi) = ui.

Proof. Since the interval loss minimization separates into two linear monotone approximation prob-
lem, we will also consider functions ĥl(xi) and ĥu(xi) separately.

Let us start with ĥl(xi). This is the (1 − β)-linear monotone approximation, which can be
obtained by solving K− 1 binary monotone approximations. From the definition (substituting α =
1−β) we have that li = max{k : P̂ (y > k|xi) > 1−β}, where P̂ (y > k|xi) is the probability estimator
based on the isotonic regression of the vector yk = (y1k, . . . , ynk), as described in Section 4.2.3. From
Theorem 3.6 we know that ĥlk(xi) = 1P̂ (y>k|xi)>1−β ; hence we have li = max{k : ĥlk(xi) = 1} =

ĥl(xi).
Similarly, for ĥu(xi), we have ui = min{k : P̂ (y > k + 1|xi) 6 β}. However, we know that

ĥuk(xi) = 1P̂ (y>k|xi)>β ; hence ui = min{k : ĥu,k+1(xi) = ĥl(xi)}.
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Let us notice that the optimal solution which appears in Theorem 4.5 (i.e. the “greatest-
smallest” solution) is the solution of the minimal width of the intervals. Moreover, notice that in
the context of what was written in Section 3.2.4, such solution is actually obtained by choosing value
α decreased by a sufficiently small positive ε, for which the unique linear monotone approximation
exists.

Concluding, the stochastic DRSA can be derived by considering the class of interval functions,
for which the lower and upper ends of intervals are monotone vectors, and choosing the function ĥ,
which minimizes the empirical risk with loss function (4.24) with parameter β = 1 − α. For each
xi, i = 1, . . . , n, ĥ(xi) is then a stochastic decision [li, ui].

4.3.3 Summary

We have presented the stochastic extension of DRSA, based the appropriate probabilistic model,
satisfying stochastic dominance principle. The lower approximations were defined as the subsets
of the dataset D, for which the class unions Cl>k or Cl6k are observed with probability at least
α. Moreover, the equivalent formulation of stochastic approximation is given by introducing the
stochastic decision, which assigns to each object class interval between (1 − α)-quantile and α-
quantile of the class conditional distribution.

Since the probability distribution is unknown, the stochastic approximations (or, equivalently,
stochastic decisions) must be estimated from data. One can follow two approaches, based either on
lower approximations or stochastic decision, and both lead to exactly the same results:

The approach based on lower approximations. For each class union Cl>k and for each object
xi, i = 1, . . . , n, the probability P (y > i|xi) is estimated by solving K − 1 isotonic regressions.
Having obtained the probability estimates, one can calculate the lower approximations. Notice
that isotonic regression has the pessimistic complexity O(n4); however there exists strong method
of reduction of the problem size, described in Section 3.2.2; moreover, there are fast and reliable
heuristic algorithms for isotonic regression, working in O(n2).

The approach based on stochastic decisions. For each object xi, i = 1, . . . , n, stochastic
decision [li, ui] is obtained by minimizing the interval loss on the dataset D within the space of
all monotone vectors. This corresponds to solving 2(K − 1) binary monotone approximations; this
reduces the complexity to O(n3), which is the improvement in comparison with O(n4) for isotonic
regression. This improvement follows from the fact that we directly estimate the stochastic decisions
(hence also lower approximations), without estimating the probabilities.



Chapter 5

Learning Monotone Rule
Ensembles

In the previous chapters, we derived a theoretical basis for dealing with ordinal classification
problems in the presence of monotonicity constraints. We proposed the monotone approximation,
a nonparametric method of classification based on considering the class of all monotone functions.
We also explained and extended DRSA from the stochastic point of view and proved it to be a
generalization of monotone approximation to the interval loss functions.

In this chapter, we show how nonparametric methods are used in practice to solve the ordinal
classification problems with monotonicity constraints. This is accomplished by the following two-
phase procedure. In the first phase, we apply monotone approximation to the training data in order
to get rid of the inconsistencies. In other words, we “monotonize” the training data. The second
phase consists in building the model on the monotonized data. The model has the form of the
monotone rule ensemble, i.e. the set of decision rules, in which rules are combined in an additive
way to form a monotone function. The process of rule induction is based on the boosting strategy
of learning. The model makes no errors on the training set, i.e. we say the model separates the
monotonized data.

Notice that such a two-phase procedure is in the spirit of the rough set approach to data
analysis: first the rough approximations are induced from the training set, and then a model is
constructed from the approximations, which is consistent with the dataset (i.e. separates the data).
In fact, monotonization of the data corresponds exactly to using stochastic dominance-based rough
approximations with consistency level 1

2 (see Chapter 4).
First, we give the overview of boosting, introduce the idea of margin and margin-based loss

functions, and present linear programming formulation of boosting (LPBoost). Then, we formulate
a general scheme of learning the monotone rule ensembles and describe the two-phase procedure.
We examine the asymptotic consistency and generalization bounds of the procedure, which suggests
the use of a linear programming boosting framework to generate an ensemble with the maximal
value of the margin. This leads to the algorithm called linear programming monotone rule ensembles
(LPRules).

At the end of this chapter, we describe another algorithm generating a monotone rule ensemble,
based on the sigmoid approximation to the linear loss function, called sigmoid loss monotone rule
ensemble (MORE).

To make our notation consistent with the notation used in the majority of boosting papers, we
assume in this chapter that Y = {−1, 1} in case of binary classification problems. Let us also define
function sgn (x) to be equal to 1 if x > 0 and −1 for x < 0 (sign function).
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Algorithm 5.1: Boosting procedure.
input : set of training examples D,

T – number of base learners to be generated.
output: ensemble of base learners {b1, . . . , bT }.
f0(x) := 0 for t = 1 to T do

(at, bt) := arg mina∈R,b∈B
∑

(yi,xi)∈D L(yi, ft−1(xi) + ab(xi));
fm(x) = fm−1(x) + atbt(xi);

end

5.1 Boosting

5.1.1 Overview

Boosting appeared in the field of computation learning theory (Kearns and Vazirani, 1994),
as the answer to the question, whether a “weak” learning algorithm which, performs just slightly
better than random guessing, can be “boosted” into an arbitrarily accurate learning algorithm
(Freund and Schapire, 1997). The first provable polynomial-time boosting algorithm was proposed
by Schapire (1990). A fast development and great popularity of boosting started, however, from
introducing the AdaBoost algorithm by Freund and Schapire (1997), which proved to be very
efficient and surprisingly resistant to overfitting on real datasets (Quinlan, 1996; Breiman, 1998).
Here, we follow the formulation of boosting introduced by Breiman (1999), Friedman et al. (1998)
and Mason et al. (1999), who showed that boosting greedily minimizes a specific loss function on
dataset. Note, however, that a dual point of view exists, explaining boosting as minimization of
a particular Bregman distance (Kivinen and Warmuth, 1999; Collins et al., 2000; Warmuth et al.,
2006).

Let us consider the binary-class case Y = {−1, 1}. Let f(x) be some real-valued function, such
that object x is classified according to the sign of f(x), h(x) = sgn (f(x)), i.e. x is classified to the
“positive” class (y = 1) if f(x) > 0, and x is classified to the “negative” class (y = −1) otherwise.
In boosting, we assume that f(x) has the form:

f(x) =
T∑
t=1

atbt(x),

i.e. it is the linear combination (ensemble) of T functions bt ∈ B, called the base classifiers; it
is usually assumed that bt(x) ∈ {−1, 1}; the set of base classifiers B can be, e.g., the space of all
classification trees, decision rules, perceptrons, etc.

Let L(y, f(x)) be a loss function, which penalizes the prediction of the real-valued function
f(x) ∈ R; notice that this is a different loss function then the loss L(y, h(x)) defined before, which
penalized the classifier h(x) ∈ {1, . . . ,K}. The function f(x) is learned in the iterative way, by
greedily minimizing the loss L(y, f(x)) on the training set. We start with f(x) = 0. Let ft−1(x)
be the ensemble at the end of iteration t; a new base classifier bt(x) and its weight at are added to
the ensemble without adjusting classifiers which have already been added, by minimizing the loss
L(y, ft−1(x) + ab(x)) on the dataset, with respect to a ∈ R and b ∈ B. The method is formally
presented as Algorithm 5.1.

There is no single way to extend the idea of boosting for an arbitrary number of classes. The
most popular approach is to transform K-class problem into the sequence of binary problems. In
“one-against-all” strategy, K binary class problems are constructed and in the k-th problem, the
k-th class forms positive class y = 1, while K−1 other classes form negative class y = −1. In “one-
against-one” strategy, one constructs K(K−1)/2 binary problems and for each problem the objects
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from one class are discriminated from the objects from another class. In both methods, one uses
the binary class boosting several times and then combines the results. The less popular strategy,
but well-motivated theoretically, is to solve a single problem with the vector margin function and
vector loss function (Friedman et al., 1998; Zou et al., 2005).

In this thesis, we use a different procedure for handling multi-class case, tailored to the problem
of ordinal classification.

5.1.2 Margin-based Loss Functions

The aim of the classification problem is to minimize the expected loss function, which will be
called target loss. Although the loss function used in the boosting procedure (which will be called
training loss) can be the same as the target loss, it leads to a poor performance of the classifiers
trained in this way. This is caused by the fact that the target loss is usually discontinuous and
insensitive to the changes of f(x). For instance, consider 0-1 loss: any change of f(x) with no change
in sign does not affect the value of 0-1 loss. This makes greedy procedures working poorly, because
there is no local improvement possible. Moreover, it is often the case that apart from choosing the
class label minimizing the target loss, one needs to obtain the class probabilities, being the measure
the 23- of prediction reliability. This also suggests using different loss function for training the
classifier, which is capable of probability estimation.

Let us focus again on the binary class case with Y = {−1, 1}. Let us call yf(x) a margin for
x; notice that x is correctly classified if the margin is positive; moreover, the higher the margin,
the more certain the prediction. Many binary loss functions can be expressed as single argument
functions, depending only on the margin, i.e. L(y, f(x)) = L(yf(x)). For instance, 0-1 loss can
be written as L(u) = 1u>0, where u = yf(x). Thus, 0-1 loss is insensitive to the value of the
margin. Below we present the margin-sensitive loss functions, which can be used within the boosting
procedure.

Log-likelihood and hinge loss. The negative log-likelihood loss function can be derived by
considering the MLE approach (Friedman et al., 1998; Friedman, 2001) and thus it estimates the
probabilities of class labels. It has the following form:

Llog(u) = ln
(
1 + e−2u

)
, (5.1)

where u = yf(x). The Bayes function for the log-likelihood loss, i.e. function f∗(x) minimizing the
expected loss, has the form:

f∗(x) =
1
2

ln
P (y = 1|x)
P (y = −1|x)

. (5.2)

This shows that log-likelihood loss estimates the (logit of) probabilities at x.
Log-likelihood loss is a convex function, yet it is nonlinear. Therefore, it is sometimes approxi-

mated by a piecewise linear function:

Lh(u) = (1− u)+ (5.3)

(where u+ = u1u>0 means the positive part), called hinge loss. Such a function can be incorporated
into the mathematical programming problem in terms of the linear constraints. It was used in the
linear programming formulation of boosting (Demiriz et al., 2001).

Exponential loss. Exponential loss is another convex function estimating the probabilities. It
appeared (implicitly) in the first boosting algorithm, AdaBoost (Freund and Schapire, 1997). It
has the following, simple form:

Lexp(u) = e−u (5.4)
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Figure 5.1: Margin-sensitive loss functions. 0-1 loss is shown for comparison.

where, as usual, u = yf(x). Minimizing the expected value of (5.4) with respect to P (y|x) leads to
the Bayes function:

f∗(x) =
1
2

ln
P (y = 1|x)
P (y = −1|x)

(5.5)

which is the same as in case of the log-likelihood loss (5.2). Exponential loss is easy to cope with due
to its multiplicative nature. It leads to a very simple reweighting scheme when used with boosting
(in fact, this is how the boosting was originally formulated).

Sigmoid loss. Sigmoid loss function is the continuous approximation of the 0-1 loss:

Lsigm(u) =
1

1 + eu
. (5.6)

Although not convex, it is differentiable. It does not estimate the probabilities, because the Bayes
function is rather aberrant:

f∗(x) =


+∞ Pr(y = 1|x) > 1

2 ,

−∞ Pr(y = −1|x) < 1
2 ,

0 otherwise.

There are some theoretical justifications for using this loss function (Mason et al., 1999, 2000). The
practical premise is that this loss function is the most similar to the 0-1 loss. Moreover, contrary
to the exponential and the log-likelihood loss, this loss function is bounded (its range is from 0 to
1), therefore it is less sensitive to outliers (it does not grow to infinity for misclassified objects).

The margin-sensitive loss functions, along with 0-1 loss, are shown in Figure 5.1.
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5.1.3 Margin Theory

It has been observed in experiments that boosting methods achieve very good prediction accu-
racy and usually do not overfit, even when the number of base classifiers is very large (Drucker and
Cortes, 1996; Quinlan, 1996; Breiman, 1998). Moreover, even when boosting drives the training
error down to zero, the test error still tends to decrease. This counterintuitive phenomenon has
been explained in terms of the ability of boosting to produce combinations of classifiers with large
margins.

Consider y ∈ {−1, 1}, let f(x) =
∑T
t=1 atbt(x), as before, and assume that weights are non-

negative and normalized,
∑T
t=1 at = 1, i.e. f(x) is a convex combination of classifiers. We refer

to the margin distribution as to the set of values {yif(xi), i = 1, . . . , n}. The margin theorems
(Schapire et al., 1998; Schapire and Singer, 1999; Breiman, 1999; Koltchinskii and Panchenko,
2002, 2006) bound the expected risk of f(x) in terms of its margin distribution. We cite the result
obtained by Koltchinskii and Panchenko (2006), which states that for every distribution P (y,x),
with probability 1− δ, the following inequality holds:

P (yf(x) 6 0) 6 inf
γ∈(0,1]

PD(yf(x) 6 γ) +M

√ d

nγ2
+

√
log 1

δ

n
)

 , (5.7)

where d is the Vapnik-Chervonenkis dimension (Vapnik, 1998) of the base classifier, M is a universal
constant and PD(·) is the empirical probability distribution, i.e.:

PD(yf(x) 6 γ) =
1
n

n∑
i=1

1yif(xi)6γ .

Thus, with high probability the expected 0-1 loss (generalization error) is bounded by the fraction
of objects from the training set with margin yf(x) greater than γ plus some complexity term which
increases with decreasing value of γ.

The margin bound shows that ensembles with high margin on the training set generalize well,
independently of their sizes. This led to the analysis of ensemble methods from the point of view of
their margin distributions (Schapire et al., 1998; Breiman, 1999; Demiriz et al., 2001; Rätsch and
Warmuth, 2005; Rudin et al., 2007a,b; Warmuth et al., 2008a).

5.1.4 LPBoost

Demiriz et al. (2001) introduced a new boosting algorithm formulated as a linear program,
LPBoost (Linear Programming Boosting), which was later extended by Leskovec and Shawe-Taylor
(2003) and then by Warmuth et al. (2008b). LPBoost has the property of directly maximizing the
minimal margin on the dataset.

Let us consider the set of all possible base classifiers B = {bj : j = 1, . . . , J} (we can assume that
B is finite because we have a finite training set and there are at most 2n classifiers distinguishable on
the training set). Let us denote the classification function by f(x) =

∑J
j=1 ajbj(x), with aj > 0 and∑J

j=1 aj = 1. The problem of maximizing the minimal margin on the dataset can be formulated as
a linear program (Breiman, 1999):

max : ρ
subject to: yi

∑J
j=1 ajbj(xi) > ρ i = 1, . . . , n,∑J

j=1 aj = 1,
aj > 0 .

(5.8)

Indeed, a closer look at the constraints of (5.8 reveals that ρ corresponds to the minimal margin on
the training set. Let us refer to ρ as to the hard margin. Unfortunately, maximizing the minimal
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margin corresponds to optimizing the “worst-case examples” and thus it may put too much attention
to the noise or outliers, sacrificing the overall accuracy. Hence, the optimization goal is relaxed,
leading to the soft margin case:

max : ρ− C
∑n
i=1 ξi,

subject to: yi
∑J
j=1 ajbj(xi) > ρ− ξi i = 1, . . . , n,∑J

j=1 aj = 1,
xi, aj > 0.

(5.9)

It can be shown that the parameter C corresponds to the number of objects violating the margin;
strictly speaking, 1

C upper-bounds the number of margin errors,
∑n
i=1 1yif(xi)6ρ (Rätsch et al.,

2000). To solve (5.9), it is useful to consider the dual problem (Demiriz et al., 2001):

min : β
subject to:

∑n
i=1 qiyibj(xi) 6 β j = 1, . . . , J,∑J
j=1 qi = 1,

0 6 qi 6 C i = 1, . . . , n.

(5.10)

There are n dual variables qi and J constraints, where each constraint corresponds to one base
classifier. However, instead of taking into account all possible base classifiers at once, we use the
column generation technique and add base classifiers iteratively to the problem. We start with the
empty set of classifiers, denoted by J0. In each iteration, we choose the classifier which maximally
violates the corresponding constraint in (5.10), i.e. the one with the highest value

∑n
i=1 qiyibj(xi).

We add it to J0 and solve the problem (5.10) restricted only to the classifiers from J0 (so called
restricted dual). We proceed in this way until no classifier violates the constraints. Then this means
we are at optimum of (5.10). The scheme of the LPBoost algorithm is presented as Algorithm 5.2
(Demiriz et al., 2001).

Notice that the minimum is always reached in a finite number of steps (as opposed to e.g.
AdaBoost). The classifiers are chosen according to the value

∑n
i=1 qiyibj(xi), which is the weighted

classification error scaled from −1 to 1. In other words, in each iteration we choose the classifier
which performs the best according to the current weights. From the dual point of view, we are at
minimum if we find the least favorable distribution (Breiman, 1999) qi, i = 1, . . . , n. Notice that the
regularization constant C prevents us from putting too much weight on any of the objects. Finally,
notice that it follows from the duality slackness conditions (Papadimitriou and Steiglitz, 1998) that
for each i = 1, . . . , n we have:

qi

yi ∑
j∈J0

ajbj(xi) + ξi − ρ

 = 0.

In other words, only the “hardest” objects, with margins lower then the soft margin ρ (i.e. those
making margin errors) receive non-zero weights. The LPBoost formulation is simple and elegant.
Moreover, it tends to produce a very sparse solution, with only few non-zero coefficients. This
improves the interpretability of the model, which will appear to be especially useful for monotone
rule ensembles.

5.2 Monotone Rule Ensembles

We now introduce an ensemble of specific base classifiers, known as decision rules. Since we
deal with the ordinal classification with monotonicity constraints, we will restrict to the ensembles
which are monotone functions.
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Algorithm 5.2: Linear programming boosting (LPBoost).
input : set of training examples D,

C – regularization penalty.
output: ensemble of base learners {b1, . . . , bT }.
optimum := false;
J0 := ∅;
qi := 1

n , i = 1, . . . , n;
repeat

jmax := arg maxj=1,...,J

∑n
i=1 qiyibj(xi);

if
∑n
i=1 qiyibjmax(xi) 6 β then
optimum := true;

end
else
J0 := J0 ∪ {jmax};
Solve the problem:

min :
∑n
i=1 β

subject to:
∑n
i=1 qiyibj(xi) 6 β j ∈ J0,∑J
j=1 qi = 1,

0 6 qi 6 C i = 1, . . . , n.

to obtain new weight vector qi, i = 1, . . . , n and β;
end

until optimum = true;
Obtain aj , j ∈ J0 from the dual variables.

5.2.1 Decision Rules

We will consider a learning algorithm involving decision rules. Such decision rules are simple
and interpretable logical statements of the form: “if conditions then decision”. They can be treated
as simple classifiers that give a constant response to examples satisfying the condition part, and
abstain from the response for other examples.

The problem of induction of decision rules has been widely considered in machine learning
(Michalski, 1983; Clark and Niblett, 1989; Cohen, 1995; Fürnkranz, 1996), logical analysis of
data (Boros et al., 2000) and rough set approaches to knowledge discovery (Pawlak, 1991; Słow-
iński, 1992; Grzymala-Busse, 1992; Stefanowski, 1998; Greco et al., 2001c, 2005). The most popular
algorithms were based on a sequential covering procedure (also known as separate-and-conquer ap-
proach). In this technique, a rule is learned which covers a part of the training examples, then
examples are removed from the training set and the process is repeated until no examples remain.

The interest in decision rule models is still growing in machine learning – let us mention such algo-
rithms as RuleFit (Friedman and Popescu, 2005), SLIPPER (Cohen and Singer, 1999), Lightweight
Rule Induction, (LRI) (Weiss and Indurkhya, 2000), ENDER (Błaszczyński et al., 2006b,a; Dem-
bczyński et al., 2008c,e), MLRules (Dembczyński et al., 2008d). All these algorithms follow a specific
iterative approach to decision rule generation by treating each decision rule as a subsidiary base
classifier in the ensemble. This approach can be seen as a generalization of the sequential covering,
because it approximates the solution of the prediction task by sequentially adding new rules to the
ensemble without adjusting those that have already been added (RuleFit is an exception since it
generates the trees first and then transforms them into rules). Each rule is fitted by concentrating
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on objects which were hardest to classify correctly by rules already present in the ensemble. All
these algorithms can be explained within the framework of boosting.

However, all the algorithms mentioned above were designed to deal with regular classification
problems, where neither the order relation nor monotonicity constraints present in the data are taken
into account. Here, we propose a methodology for monotone rule induction, i.e. generating rules
that are adapted to the ordinal classification problem and do not violate monotonicity constraints.

5.2.2 Monotone Rule Ensembles for Binary Classification

We assume the binary-class case Y = {−1, 1}, so that “positive” class is labeled with +1, while
“negative” class is labeled with −1.

Definition. Let Xj be the value set of the j-th attribute, i.e. the set of all possible values for the
j-th attribute. Condition part of the rule consist of elementary conditions of the form xj > sj or
xj 6 sj for some sj ∈ Xj . Let Φ denote the set of elementary conditions constituting the condition
part of the rule. We can define rule as a function Φ(x) which is equal to 1 or −1 if an objects x
satisfies all the conditions of the rule (i.e. object is covered by the rule), otherwise Φ(x) = 0. As we
will see, rules with Φ(x) = 1 votes for a higher class, while rules with Φ(x) = −1 votes for a lower
class. We assume that either Φ(x) > 0 for all x ∈ X, or Φ(x) 6 0 for all x ∈ X. In other words,
for all covered objects, function Φ(x) consequently returns the same value, either −1 or +1. Here
we consider a real-valued classification function which is a linear combinations of T decision rules:

f(x) =
T∑
t=1

atΦt(x), (5.11)

where at, t = 1, . . . , T are positive coefficients which will be called weights of the rules. Object x is
classified to the class indicated by the sign of f(x), i.e. h(x) = sgn (f(x)). The combination (5.11)
has a very simple interpretation as a voting procedure: rules with Φ(x) > 0 vote for the positive
class, while rules with Φ(x) 6 0 – for the negative class. Object x is classified to the class with a
higher vote (which is equivalent to classification according to the sign of f(x)).

Monotonicity of rule ensemble. We assume the monotonicity constraints are present in the
data and thus we require that function f(x) must be monotone. The following theorem establishes
the sufficient conditions for the monotonicity of rule ensemble:

Theorem 5.1. Let f(x) be a rule ensemble, i.e. a function of the form (5.11). Then, in order to
maintain monotonicity of f(x), it is sufficient that for each rule t = 1, . . . , T , Φt(x) > 0 and all
elementary conditions in Φt are of the form xj > sj, or Φt(x) 6 0 and all elementary conditions
are of the form xj 6 sj.

Proof. Assume that all the elementary conditions are of the form xj > sj if Φt(x) > 0 and are of
the form xj 6 sj if Φt(x) 6 0. In each case, a single rule rt(x) = atΦt(x) is a monotone function.
Indeed, suppose x � x′ and consider Φt(x) > 0. Then, since xj > x′j , if x′j > sj , then also xj > sj ,
so that Φt(x) > Φt(x′) and thus rt(x) > rt(x′). Similarly, consider Φt(x) 6 0. Then, since xj > x′j ,
if xj 6 sj then also x′j 6 sj so that Φt(x) > Φt(x′) and thus rt(x) > rt(x′). Hence, f(x) is the sum
of monotone functions, so is a monotone function.

Rules, which satisfy the conditions of Theorem 5.1 are called monotone. Moreover, monotone
rules with Φt(x) > 0 will be called upward, while those with Φt(x) 6 0 will be called downward. The
function f(x) of the form (5.11), consisting of monotone rules is called monotone rule ensemble.
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5.2.3 Monotone Rule Ensembles with Linear Loss

Let us go back to the general K-class case and consider the rule ensemble algorithm for mini-
mizing the linear loss function (2.8):

L(y, k) =

{
α(k − y) if k > y

(1− α)(y − k) if k 6 y,
(5.12)

We will show how to solve the general problem by decomposition into K − 1 binary problems.

Decomposition procedure. Suppose we have an access to the learning algorithm for binary
classification problems, which can produce classifier h(x) ∈ {−1, 1} with small weighted 0-1 loss:

L(h(x), y) = wy1yh(x)<0, (5.13)

for y ∈ {−1, 1}, where w−1 = α and w1 = 1− α. It is not hard to verify that the weighted 0-1 loss
is exactly the linear loss (5.12) for binary-class case.

Let y be the class label and let us define yk = sgn (y − k) for k = 2, . . . ,K, similarly as in
Chapter 3 (with the exception that now y ∈ {−1, 1}). Therefore, yk = 1 corresponds to the class
union “at least k”, while yk = −1 corresponds to the class union “at most k−1”. Suppose we train
K − 1 binary classifiers described above, k = 2, . . . ,K, where the k-th classifier hk(x) is trained on
the dataset with original class labels y substituted by labels yk. We combine binary classifiers into
a single K-class classifier in the following way:

h(x) = 1 +
K∑
k=2

1hk(x)=1. (5.14)

Notice that we do not assume classifiers are consistent, i.e. we do not assume hk(x) > hk′(x) when
k < k′. We will show that the final classifier makes error not greater then the sum of errors of base
classifiers:

Theorem 5.2. Let L(y, hk(x)) be the linear loss, given by (5.13), suffered by the k-th binary
classifier and let L(y, h(x)) be the linear loss suffered by a composite classifier defined by (5.14).
Then we have:

L(y, h(x)) 6
K∑
k=2

L(yk, hk(x))

Proof. For simplicity, we denote hk(x) by hk and h(x) by h. We have:

K∑
k=2

L(yk, hk) =
K∑
k=2

((1− α)1yk=11hk=−1 + α1yk=−11hk=1)

=
y∑
k=2

(1− α)1hk=−1 +
K∑

k=y+1

α1hk=1

> (1− α)(y − h)1h<y + α(h− y)1h>y = L(y, h)

Thus, we see that all we need is an accurate learning algorithm for binary problems with weighted
0-1 loss.
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Monotonicity of the composite classifier. In the ordinal classification with monotonicity
constraints we require that the classifier h(x) must be monotone. One can simply show that if
binary classifiers hk(x) are all monotone, then so is h(x). Indeed, assume x � x′. Then,

h(x) =
K∑
k=2

hk(x) >
K∑
k=2

hk(x′) = h(x′).

Hence, if for each k, hk(x) is a rule ensemble composed of monotone rules, then h(x) is a monotone
function.

5.2.4 Two-phase Procedure of Learning

We now give more details about how the binary classifiers hk(x) are learned. Let us fix some
k = {2, . . . ,K}. We first transform the dataset D = {(xi, yi), i = 1, . . . , n} into the dataset Dk =
{(xi, yik), i = 1, . . . , n}, such that yik = sgn (yi − k). Next, we perform monotone approximation
of Dk and obtain the monotonized dataset D′k = {(xi, y′ik), i = 1, . . . , n}, where y′ik are new labels,
corresponding to the monotone approximation d̂ik. Notice that it follows from the definition that
y′ik are monotone, i.e. xi � xj → y′ik > y′jk.

As soon as the data are monotonized, we train monotone rule ensemble fk(x) on D′k such that
it makes no errors on the dataset. In other words, y′ikfk(xi) > 0 for all i = 1, . . . , n, and we say that
such rule ensemble separates D′k. This constitutes a two-phase procedure of learning the monotone
rule ensemble: first, the dataset is monotonized, and then, the monotone rule ensemble separating
the dataset is constructed.

To prove the validity of our procedure, we must show that a monotone rule ensemble separating
the data always exists. It appears that the existence of a separating rule ensemble is strictly related
to the monotonicity (consistency) of the dataset.

Theorem 5.3. There exists a monotone rule ensemble f(x) separating a dataset D =
{(x1, y1), . . . , (xn, yn)}, yi ∈ {−1, 1}, if and only if D is monotone, i.e. for each i, j = 1, . . . , n, we
have xi � xj → yi > yj.

Proof. From the monotonicity of f(x) it follows that xi � xj → f(xi) > f(xj) → sgn (f(xi)) >

sgn (f(xj)). Moreover, f(x) separates D so that we have sgn (yif(xi)) = sgn (yjf(xj)) = 1. Since
yi ∈ {−1, 1}, it follows that yi > yj , so D is monotone.

Assume D is monotone. Then, for each xi such that yi = 1 we construct a rule Φ(x) = 1x�xi

with ai = 1; this is a valid decision rule. Similarly, for each xi with yi = −1 we construct a rule
Φ(x) = −1x�xi with ai = 1. Since D is monotone, rules with Φi(x) > 0 cover only the objects
with yj = 1, while rules with Φi(x) 6 0 cover only the objects with yj = −1. Hence, rule ensemble
makes no errors on D.

Since D′k is monotone, we are guaranteed that a separating monotone rule ensemble exists.
Moreover, to create separating rule ensemble we must first monotonize the data.

5.2.5 Consistency and Generalization Bounds for the Two-phase Proce-
dure

Strong consistency. This section brings theoretical justification for the two-phase procedure
of learning monotone ensembles. We start with showing that for a very large class of monotoni-
cally constrained probability distributions, including attributes with both discrete and continuous
domains, the two-phase procedure is strongly consistent.
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Theorem 5.4. Let Y = {1, . . . ,K} and consider minimizing the linear loss. Assume P (x, y) is
monotonically constrained and let X = V ×Rm0 , where V is finite and m0 6 m. Assume P (x) has
density. Then the classifier h(x) returned by the two-phase procedure is strongly consistent, i.e.

Rn(h) n→∞−→ R∗ = R(h∗)

with probability one, where Rn(h) is the risk of h when trained on the dataset of size n and h∗ is a
Bayes classifier.

Proof. Fix k = 2, . . . ,K. The monotone rule ensemble hk(x) separates set D′k and is monotone,
which implies that hk(x) is a valid monotone extension of the monotone approximation y′ik, i =
1, . . . , n. Thus, from Theorem 3.11 we have

Rn(hk) n→∞−→ R(h∗k)

with probability one. This event holds for all k = 2, . . . ,K simultaneously also with probability one
(because K is finite). From Theorem 5.2 we have:

R∗ 6 Rn(h) 6
K∑
k=2

Rn(hk) n→∞−→
K∑
k=2

R(h∗k) = R∗,

which ends the proof.

Theorem 5.4 shows that the two-phase method achieves asymptotically the smallest possible
risk, but it does not tell anything about the rate of convergence or about any non-asymptotic error
bounds. The rest of this section is devoted to bounding the deviations of the two-phase procedure
from the Bayes risk in terms of the margin achieved on the monotonized dataset.

Margin theorem for uneven misclassification costs. We start our analysis with extending
the margin bound (5.7) into the case of weighted 0-1 loss. Consider the binary class case Y = {−1, 1}
and real-valued function f(x). Fix some margin value γ and define the violation of the margin for
object xi as event {yif(xi) 6 γwyi}, where w−1 = α and w1 = 1 − α, as usual. Notice that
this definition incorporates the uneven costs of misclassification into the margin: it effectively
increases the margin for more penalized class and hence prompts the classifier to predict this class
more often. Similar procedure has been used by Karakoulas and Shawe-Taylor (1999) to derive
AdaUBoost, boosting algorithms for uneven costs of misclassification. Let us also denote:

Rγemp(f) =
1
n

n∑
i=1

wi1yif(xi)6γwyi
(5.15)

for the fraction of weighted margin errors and:

R(f) = E[wy1yf(x)<0]

for the expected weighted 0-1 loss (risk). The following theorem holds:

Theorem 5.5. Let f(x) =
∑
j ajbj(x) be the convex combination of classifiers bj(x) ∈ {−1, 1},

i.e. aj are non-negative and
∑
j aj = 1. Then, with probability 1− δ, for every distribution P (y,x),

the following inequality holds:

R(f) 6 inf
γ∈(0,1]

Rγemp(f) +M

√ d

nγ2
+

√
log 1

δ

n

 , (5.16)

where d is the Vapnik-Chervonenkis dimension of the base classifier and M is some universal con-
stant.
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The proof closely follows the proof for the ordinary (symmetric) 0-1 loss and is given in the
appendix. The main difference between the asymmetric and symmetric case is in the choice of the
contraction functions. Notice that the asymmetric margin leads to the contractions γφ1(x) and
γφ−1(x) which lead, in turn, to the bound 1/γ. If we used symmetric margin, we would obtain
contractions αγφ1(x) and (1 − α)γφ−1(x) which would lead to the bound 1/(min{α, 1 − α}γ). If
α were close to 0 or 1, such a bound would become very loose. This motivates our choice of the
asymmetric margin in the algorithm.

Generalization bounds for the two-phase method. We are now ready to give our main
theorem for the two-phase method. The theorem shows that the accuracy of the ensemble with
large margin remains close to the accuracy of the Bayes classifier. There are four problems which
are to be addressed:

1. Single rule returns one of three values {−1, 0, 1}, contrary to the ordinary classifier which
returns one of two values {−1, 1}. To cope with such three-valued classifiers, we will show
that there always exists an ensemble of ordinary base classifiers having their outputs in the
set {−1, 1}, which is equivalent to the rule ensemble and has at least the same value of the
margin.

2. We must extend the theorem to the multi-class problem with linear loss. We will do it by
bounding the linear loss of the composite classifier in terms of sum of the losses of binary
classifiers.

3. The ensemble is learned on the monotonized data, which are not i.i.d. anymore. We will
by-pass this problem by noticing that the ensemble learned on monotonized data without
misclassification errors makes on the original data no more errors than the number of relabeled
objects.

4. In margin theorems, one compares the fraction of margin errors to the real accuracy of the
ensemble. Here we compare the accuracy of the ensemble with the Bayes risk by noticing that
with high probability the fraction of relabeled objects does not exceed much the Bayes risk.

Let L(y, k) be the linear loss (5.12) and define R(h) = E[L(y, h(x)] to be the expected linear
loss of the composite classifier (returned by the two-phase method). The following theorem holds:

Theorem 5.6. Assume P (x, y) is monotonically constrained. Let h(x) be the classifier returned by
the two-phase method. Let fk(x), k = 2, . . . ,K, be the k-th rule ensemble trained on the monotonized
dataset D′k, such that there exists γk > 0 for which y′ikfk(xi) > γkwy′ik for all i = 1, . . . , n (i.e.
fk(x) achieves hard margin γk on the dataset D′k). Then, with probability at least 1− δ:

R(h) 6 R∗ +M

2(K − 1)

√
log 2(K−1)

δ

n
+
√
m

n

K∑
k=2

1
γk

 .

for some universal constant M .

Theorem 5.6 states that an ensemble with a high value of the hard margin on the monotonized
data performs not much worse than the Bayes classifier.

5.3 Linear Programming Rule Ensembles (LPRules)

In the previous section, we presented a two-phase procedure of learning rule ensembles. First,
the K-class problem is converted into K−1 binary problems, such that in the k-th problem, objects
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with class labels at least k are discriminated from objects with class labels at most k−1, leading to
the training set Dk. Next, we monotonize Dk to obtain consistent dataset D′k and rules are trained
on D′k such that all objects from the training set are correctly classified and the ensemble achieves
hard margin γk on the dataset. We bounded the difference between the accuracy of the classifier
made in such a way and the accuracy of the Bayes classifier in terms of the margin γk. This suggests
that ensembles achieving large margin on the dataset have better generalization power.

In this section, we show how to obtain an ensemble with a high margin value. Our algorithm is
based on the LPBoost framework, which is known to directly maximize the margin. As pointed out
in (Demiriz et al., 2001), LPBoost ends at optimal solution with the highest possible value of the
margin. On the other hand, solutions produced by LPBoost are very sparse. It is a very desirable
property in our case, because a compact rule ensemble is much easier to interpret.

5.3.1 Rule Induction

Fix k and consider the k-th binary classification problem. As the dataset D′k is monotonized,
it follows from Theorem 5.3 that it is separable by the set of monotone rules. Hence, we can use
the “hard margin” linear program (5.8). After translating the program into the rule framework
and adapting it to the problem of searching for the asymmetric margin (with uneven costs of
misclassification), we have:

max : ρ
subject to: yi

∑J
j=1 ajΦj(xi) > wyiρ i = 1, . . . , n,∑J

j=1 aj = 1,
aj > 0,

(5.17)

where w−1 = α, w1 = 1 − α and the sums are over all possible rules. As there are at most n
possible values that objects from D′k can take on each attribute, the number of rules J can reach
2nm in the worst case. Therefore, we are not able to solve the problem directly but we can use a
column generation method in the dual program, similarly as described in Section 5.1.4, but with
one exception. Demiriz et al. (2001) noticed that pushing the weights away from zero increases
the stability of the algorithms. Following this observation, we add a set of constraints wyiqi > κ

n

parametrized by a nonnegative value κ. Notice that κ 6 1 in order to keep the dual feasible. Hence,
the “hard margin” dual takes the form:

min : β
subject to:

∑n
i=1 qiyiΦj(xi) 6 β j = 1, . . . , J,∑J
j=1 wyiqi = 1,

wyiqi > κ
n i = 1, . . . , n.

(5.18)

The procedure of rule induction is described as Algorithm 5.3. Notice that we need a linear pro-
gramming solver to obtain a new weight vector in each iteration. We also need a procedure for
finding the rule conditions Φj with a high value

∑n
i=1 qiyiΦj(xi). This value will be called edge

(Breiman, 1998) and will be denoted by Eq(j). The edge corresponds to the rescaled weighted
zero-one error on the training set. Thus, in each iteration we try to find a rule with the highest
possible accuracy according to the distribution with weights qi. This is very similar to the way
in which base classifiers are generated in other boosting algorithms. Notice that the minimum is
always reached in a finite number of steps when for all rules we have Eq(j) 6 β.
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Algorithm 5.3: Linear Programming Rule Ensembles (LPBoost).
input : separable set of training examples D.
output: rule ensemble {Φ1, . . . ,ΦT } with weights {a1, . . . , aT }.
optimum := false;
J0 := ∅;
qi := 1

n , i = 1, . . . , n;
repeat

jmax := arg maxj=1,...,J

∑n
i=1 qiyiΦj(xi);

if
∑n
i=1 qiyiΦjmax(xi) 6 β then
optimum := true;

end
else
J0 := J0 ∪ {jmax};
Solve the problem:

min :
∑n
i=1 β

subject to:
∑n
i=1 qiyiΦj(xi) 6 β j ∈ J0,∑J
j=1 wyiqi = 1,

wyiqi > κ
n i = 1, . . . , n.

to obtain new weight vector qi, i = 1, . . . , n and β;
end

until optimum = true;
Obtain aj , j ∈ J0 from the dual variables, choose from J0 a subset T of rules with nonzero
weights and return as the final rule ensemble.

5.3.2 Single Rule Generation

Let us now focus on the main aspect of Algorithm 5.3 which is efficiently executing the operation:

arg max
j=1,...,J

n∑
i=1

qiyiΦj = arg max
j=1,...,J

Eq(j).

Since the number of rules is very large, one cannot do arg max by checking the edges of all rules,
thus, it is reasonable to use a heuristic procedure instead. The procedure aims at finding the rule
with a high value of the edge. In each iteration of the algorithm, one runs the procedure twice,
first generating an upward rule and next a downward rule. Then, rule with a higher edge is chosen,
while the other rule is discarded. The procedure for generating upward and downward rules is very
similar. The only difference is the set of allowed conditions (xj > sj for upward, and xj 6 sj

for downward rules) and the class which we name to be positive. When upward rule is generated,
objects with y = 1 are positive, while for downward rule, positive objects belong to the class y = −1.

Description of the procedure. The procedure is presented as Algorithm 5.4. We start with
the most general rule, covering the whole X. Then, conditions are added subsequently until the
rule covers only positive examples. The quality of each candidate condition φ is defined as the ratio
of the sum of weights of negative examples to the sum of weights of positive examples removed by
adding the condition. In other words, let P ⊆ {1, . . . , n} be a set of positive examples, let Φ be a
set of conditions before adding φ, while Φ′ is a set of conditions after adding φ. Then, the quality
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Algorithm 5.4: Rule Generation.
input : weight vector {q1, . . . , qn},

set of positive examples P ⊆ {1, . . . , n}.
output: Rule conditions Φ.
t := 0;
Φt := ∅;
repeat

choose condition φ with the highest quality Q(φ) defined by (5.19);
Φt+1 := Φt ∪ φ;
t := t+ 1;

until ∀i/∈PΦt(xi) = 0.
Choose from {Φ0, . . . ,Φt} a rule with the highest edge, Φmax;
Remove from Φmax those conditions, which removal does not decrease the edge;
return Φmax;

of candidate condition φ is defined as:

Q(φ) =
∑
i/∈P qi1Φ(xi) 6=Φ′(xi)∑
i∈P qi1Φ(xi) 6=Φ′(xi)

. (5.19)

If the denominator is zero, the quality is infinite. We assume that when we compare two conditions
with infinite qualities, the one with higher numerator is chosen (“more infinite” one). This assump-
tion essentially simplifies the notation, as we do not need to handle the case with zero denominator
separately. The quality (5.19) has a very intuitive meaning: we always choose a condition which
decreases the number of covered positive examples as little as possible and decreases the number
of covered negative examples as much as possible. Notice that the edge of the rule increases only
if Q(φ) > 1. Nevertheless, we keep adding conditions even when Q(φ) < 1, until the rule covers
positive examples only. The reason for this is that we keep in the memory a rule with the highest
edge encountered so far, so we can always roll back the procedure and return to this rule. On
the other hand, adding conditions until the rule covers no negative examples helps to avoid local
minima of the edge.

Notice that we use a ratio measure (5.19) rather than the difference between positive and
negative examples (which precisely corresponds to the edge of the rule). This is due to the fact
that a ratio measure prefers more prudent steps, i.e. conditions chosen using Q(φ) remove smaller
numbers of examples. To make this clear, suppose we choose between two conditions: φ1 removes
2 positive and 3 negative examples, while φ2 removes 8 positive and 6 negative examples from the
rule. Although φ2 increases the edge by 2, while φ1 by 1, the ratio measure Q(φ) prefers φ1, because
it corresponds to a more gentle step, with possibility of improvement in later steps.

Having chosen the condition with the highest edge, denoted by Φmax, we enter a “pruning”
phase which consists in removing spare conditions, i.e. conditions which do not decrease the edge.
This makes the rule simpler (having less conditions) which, in turn, increases its generalization
ability.

Finally, notice that the rule generation procedure described above can be substituted by any
other reasonable procedure which is capable of finding a rule which minimizes a weighted error on
the training set. The main Algorithm 5.3 remains unchanged.

Complexity issues. The computational complexity of the two-phase procedure is rather poor
in the worst case, because solving the linear program may take a long time (yet still polynomial
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in n and T ). Moreover, the monotone approximation has time complexity O(n3). Nevertheless,
both procedures work very fast on the real datasets, much below the worst-case time. An addi-
tional speed-up is achieved by using all the methods for reducing the complexity of the monotone
approximation, described in Chapter 3.

The rule generation procedure is linear in n, therefore it scales very well with the size of the
dataset. The scaling behavior is theoretically quadratic in m in the worst case, when the number
of conditions is comparable to the number of attributes. In real cases, however, the number of
conditions is much smaller than the number of attributes, which makes the procedure scalable also
with m.

5.4 Sigmoid Loss Monotone Rule Ensembles (MORE)

We present in this section another approach to rule induction. The algorithm has been in-
troduced in (Dembczyński et al., 2008b) and was the first boosting-based algorithm for ordinal
classification with monotonicity constraints. Therefore, it was simply named monotone rule ensem-
bles and abbreviated MORE. Here, we will refer to the algorithm as sigmoid loss monotone rule
ensembles, however we keep the original abbreviation (MORE).

The algorithm was not motivated by the margin theorem presented in Section 5.2.5. It is
rather motivated by statistical considerations described by Friedman et al. (1998) and developed
by Friedman and Popescu (2004). Moreover, it uses a specific, non-convex approximation of the
zero-one loss function – the sigmoid loss. The algorithm also works by transforming the general
K-class problem into K − 1 binary subproblems, similarly as it was presented in Section 5.2. The
main difference is the method of combining binary classifiers into the multi-class classifier, which
will be described below.

5.4.1 Combining Binary Classifiers

We start with presenting a different method of combining K − 1 binary classifiers into a single
K-class classifier, originally used in MORE (Dembczyński et al., 2008b). Let us assume that
each binary classifier has the form hk(x) = sgn (fk(x)), where fk(x) is a real-valued function (e.g.
ensemble of classifiers) such that the magnitude |fk(x)| corresponds to the confidence of prediction
– the higher the magnitude, the more we are certain about predicting the class sgn (fk(x)). Then,
we could take advantage of additional information by using the value of fk(x) instead of merely
the sign. Since fk(x) is an increasing function of the confidence of classification to the class union
{k, . . . ,K}, then it should hold:

fk+1(x) 6 fk(x), (5.20)

because we are always more certain about classifying object to the set {k, . . . ,K} than to its subset
{k + 1, . . . ,K}. If (5.20) holds, then the classification procedure h(x) is doubtless: we seek for k,
for which the sequence fk(x), k = 2, . . . ,K, changes the sign and classify x to the class k. This is
equivalent to comprehensively writing h(x) = 1 +

∑K
k=2 1fk(x)>0.

However, binary problems are solved independently, so we cannot guarantee that such con-
straints hold in each case. We deal with the violation of the constraints (5.20) using the isotonic
regression in the following way. Fix x and notice that from (5.20) it follows that fk(x) must be
a monotonically decreasing function of k. If fk(x) is not monotonically decreasing, we search for
another function gk(x) which is monotonically decreasing and is as close as possible to fk(x) in the
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sense of squared error:

min
K∑
k=2

(fk(x)− gk(x))2.

This is exactly the problem of isotonic regression, as described in Section 1.3.3. It can be thought
of as “monotonizing” the function fk(x) violating the constraints (5.20).

What is surprising, we do not even need to solve the isotonic regression. Let us consider the
following algorithm of combining K − 1 classifiers fk(x), k = 2, . . . ,K, to obtain a class label
h(x) ∈ {1, . . . ,K}. The algorithm calculates votes for each class and the class with the highest vote
is chosen as the prediction h(x). Let us denote the vote for class k as votek. The vote is calculated
in the following way:

votek(x) =
k∑
l=2

fl(x) (5.21)

The following theorem holds:

Theorem 5.7. Consider the classifier:

b(x) = 1 +
K∑
k=2

1gk(x)>0,

where for each k = 2, . . . ,K, gk(x) is the isotonic regression of fk(x). Let votek =
∑k
l=2 fl(x)

and let us define the classifier h(x) = arg maxk votek (in case of ties, we choose the highest label).
Then, h(x) = b(x).

Proof. Let us fix x; we will omit the dependency on x and write fk, gk, h, b, etc. Notice that h is
such that for any k > h it holds voteh > votek, while for any k 6 h it holds voteh > votek. To show
that b = h, it is enough to show that if k > b then voteb > votek and if k 6 b then voteb > votek.

Let us define G+ = {k : gk > 0} and similarly G− = {k : gk < 0}. Notice that G+ = {2, . . . , b}
and G− = {b + 1, . . . ,K}. Moreover, let us also denote f(A) =

∑
k∈A fk. We will use Theorem

1.4.3 from (Dykstra et al., 1999), which states that for every k = 2, . . . ,K it holds:

f({2, . . . , k} ∩G−) < 0 f({k + 1, . . . ,K} ∩G+) > 0.

Suppose k 6 b. Then:

voteb − votek =
b∑

l=k+1

fl = f({2, . . . , b} ∩ {k + 1, . . . ,K}) = f({k + 1, . . . ,K} ∩G+) > 0,

so that voteb > votek. Similarly, if k > b then:

votek − voteb =
k∑

l=b+1

fl = f({2, . . . , k} ∩ {b+ 1, . . . ,K}) = f({2, . . . , k} ∩G−) < 0,

so that voteb > votek, which ends the proof.

We would like to have the monotonicity property of the classifier created according to Theo-
rem 5.7, i.e. if x � x′ then h(x) > h(x′). The following theorem gives sufficient conditions for
monotonicity:

Theorem 5.8. For each k = 2, . . . ,K, let fk(x) be a monotone function, i.e.: x � x′ → fk(x) >

fk(x′). Then, the classifier h(x), obtained by choosing the class label with the highest vote (5.21),
is a monotone function.
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Proof. Choose any r, s ∈ {2, . . . ,K} such that r > s. Then:

voter(x)− votes(x) =
r∑

k=s+1

fk(x) >
r∑

k=s+1

fk(x′) = voter(x′)− votes(x′)

It follows from the definition that if k 6 h(x′) then voteh(x′)(x′) − votek(x′) > 0. But this also
means that voteh(x′)(x)− votek(x) > 0 which, in turn, means that h(x) > h(x′).

We presented an alternative method of combining binary classifiers which takes into account
the prediction confidence of each classifier. The main problem of this method is that one cannot
bound the loss of the composed classifiers by means of the votes of binary classifiers, as it was
done in Theorem 5.2. This convinced us to abandon this method in case of using with LPRules.
Nevertheless, although the loss of a composite classifier cannot be simply bounded, nothing prevents
this method to work well in practice on real-life problems. Therefore, this method was finally used
with MORE.

5.4.2 Rule induction with Sigmoid Loss

In each of the binary subproblems, rule induction is performed by minimizing the weighted
0-1 loss (linear loss) function on the dataset. For Y = {−1, 1}, 0-1 loss can be expressed as
L0−1(yf(x)) = wy1yf(x)<0. This function, however, is neither smooth nor differentiable. Therefore,
following the arguments raised in Section 5.1.2, we approximate 0-1 loss with the sigmoid function
(5.6):

Lsigm(yf(x)) = wy
1

1 + eyf(x)
. (5.22)

Thus, we minimize the following empirical risk:

Remp(f) =
n∑
i=1

Lsigm(yif(xi)) (5.23)

However, finding a set of rules minimizing (5.23) is computationally hard. That is why we follow
the boosting strategy, i.e. the rules are added one by one, greedily minimizing (5.23). We start
with the “default” rule defined as:

a0 = arg min
a
Remp(a) = arg min

a

n∑
i=1

Lsigm(ayi). (5.24)

The default rule is a real value but can be thought of as a rule covering the whole space X. In each
subsequent iteration, a new rule is added by taking into account previously generated rules. Let
ft−1(x) be a classification function after t− 1 iterations, consisting of the first t− 1 rules and the
default rule. In the t-th iteration, a decision rule can be obtained by solving:

(at,Φt(x)) = arg min
Φ,a

Rt(Φ, a) (5.25)

where we defined:

Rt(Φ, a) =
n∑
i=1

Lsigm(yi(ft−1(xi) + aΦ(xi))). (5.26)

Monotonization of the data. Similarly as in LPRules, we are able to do the monotone approx-
imation of the k-th dataset Dk and feed the k-th learning algorithm with the monotonized data
D′k. Now, however, the monotonization process is not necessary as we do not aim at separating the
dataset with rules. Nevertheless, the process of rule induction is a greedy optimization procedure
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Algorithm 5.5: Monotone Rule Ensemble (MORE).
input : set of training examples D,

T – number of rules to be generated.
output: monotone rule ensemble {r1, . . . , rT }.
f0(x) := arg min±aR0(1,±a);
for t = 1 to T do

Φt = arg minΦRt(Φ, a);
rt(x) = aΦt(x);
ft(x) = ft−1(x) + rt(x);

end

and monotonization may be helpful for the process to converge faster. This results in a smaller
number of rules and better interpretability of the model. What is more, we did not observe any
significant deficiency in accuracy, when monotonization is applied.

Since the monotone approximation usually takes much less time than the process of rule in-
duction, using it as a preprocessing step does not cost much computational effort, therefore it was
incorporated into the rule induction procedure.

5.4.3 Single Rule Generation

The exact solution of (5.25) is still computationally hard, because we need to determine the
optimal Φt(x) and at simultaneously. Therefore, we restrict our algorithm to the case, in which all
rules have weights of the same magnitude, equal to a, i.e. we only allow at = a. The magnitude a
is a fixed parameter of the algorithm. With such a restriction, (5.25) becomes:

Φt(x) = arg min
Φ
Rt(Φ, a), (5.27)

and it requires calculating only two loss values at points ft−1(xi) and ft−1(xi)± a (+a for upward
rules and −a for downward rules) for every object xi. The default rule is solved in a similar way
by restricting the minimization of (5.24) to the values a0 ∈ {−a, a}. In each subsequent iteration,
problem (5.27) can be solved via a heuristic procedure for rule generation, defined as follows.

The procedure generates first the upward rule and next the downward rule. Then, both rules
are compared and the one with lower empirical risk is chosen, while another one is discarded. The
procedures for generating the upward and downward rules are almost identical, therefore they will
be presented simultaneously:

• At the beginning, Φt is empty (no elementary conditions are specified), i.e. Φt(x) ≡ 1.

• In each step, an elementary condition xj > sj (for upward rule) or xj 6 sj (for downward
rule) is added to Φ that minimizes Rt(Φ, a). Such expression is searched by consecutive
testing of elementary conditions, attribute by attribute. Let x(1)

j , x
(2)
j , . . . , x

(N)
j be a sequence

of ordered values of the j-th attribute, such that x
(i−1)
j > x

(i)
j , for i = 2, . . . , n. Each

elementary condition of the form xj > sj (for upward rule) or xj 6 sj (for downward rule)

for each sj =
x
(i−1)
j +x

(i)
j

2 is tested.

• The previous step is repeated until Rt(Φ, a) cannot be decreased.

The above procedure is very fast and proved to be efficient in computational experiments. The
attributes can be sorted once before generating any rule. The procedure for finding Φt resembles
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the way the decision trees are generated. Here, we look only for one path from the root to the leaf.
Moreover, let us notice that minimal value of Rt(Φ, a) is a natural stop criterion in building a single
rule. The whole procedure is presented as Algorithm 5.5.

5.4.4 Analysis of the Step Length

We now analyze the behavior of the rule induction algorithm depending on the value of the
parameter a, i.e. the magnitude of the weight for each rule. Notice that this parameter corresponds
to the scale of the loss function, since:

f(x) = ±a+
T∑
t=1

aΦt(x) = a

(
±1 +

T∑
t=1

Φt(x)

)
= af̃(x),

where f̃(x) = ±1 +
∑T
t=1 Φt(x). Then:

Lsigm(yf(x)) =
1

1 + exp(ayf̃(x))
.

Thus, small values of a cause the loss function to broaden and the changes in the slope of the
function are smaller (the loss becomes similar to the linear function). On the other hand, large
values of a cause the sigmoid loss to become similar to the 0-1 loss. In general, large values of a
correspond to a larger complexity (Mason et al., 1999), because we are able to decrease the error
significantly in a smaller number of steps.

For a better insight into the problem, we state the following general theorem:

Theorem 5.9. Minimization of (5.27) for any twice differentiable loss function L(yf(x)) and any
a is equivalent to the minimization of:

Rt(Φ, a) =
∑
i∈R−

wti +
1
2

∑
Φ(xi)=0

(
wti − avti

)
. (5.28)

where we define:

R− = {i : Φ(xi)yi < 0} (5.29)

wti = − ∂

∂u
L(u)

∣∣∣∣
u=yift−1(xi)

(5.30)

vti =
1
2
∂2

∂u2
L(u)

∣∣∣∣
u=yift−1(xi)±γiayi

. (5.31)

for some γi ∈ [0, 1], where the “plus” sign in (5.31) is for rules Φ(xi) > 0, while the “minus” sign
is for rules Φ(xi) 6 0.

Proof. From Taylor expansion it follows that for a twice differentiable loss function we have:

L(u+ z) = L(u) + z
∂

∂u
L(u) +

z2

2
∂2

∂u2
L(u+ γz)

for some γ ∈ [0, 1]. By denoting Li = L(yi(ft−1(xi))), using (5.30)-(5.31) and substituting u =
yift−1(xi) and z = Φ(xi)ayi, we have for every xi such that Φ(xi) 6= 0:

L(yi(ft−1(xi) + aΦ(xi))) = Li − ayiΦ(xi)wti + a2Φ2(xi)vti .

Thus, the empirical risk becomes:

Rt(Φ, a) =
∑

Φ(x)i 6=0

(
Li − ayiΦ(xi)wti + a2vti

)
+

∑
Φ(x)i=0

Li.
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The term
∑n
i=1 Li is constant, so it can be dropped from the optimization process. Thus, we

equivalently minimize:

Rt(Φ, a) =
∑

Φ(x)i 6=0

−ayiΦ(xi)wti + a2vti =
∑
i∈R−

awti −
∑
i∈R+

awti +
∑

Φ(x)i 6=0

a2vti ,

where R+ = {i : Φ(xi)yi > 0} and R− is defined in (5.29). We now use the fact that
∑
i∈R+

=∑n
i=1−

∑
i∈R− −

∑
Φ(xi)=0 and that

∑
Φ(xi)6=0 =

∑n
i=1−

∑
Φ(xi)=0 to obtain:

Rt(Φ, a) =
n∑
i=1

(a2vti − awti) + 2a
∑
i∈R−

wti + a
∑

Φ(xi)=0

(wti − avti),

and by dropping the first constant term and dividing by constant value 2a, we prove the theorem.

Thus, a establishes a trade-off between misclassified and unclassified examples. Values vti are
always positive, because the loss function is decreasing. Sigmoid loss is convex for yf(x) > 0 and
concave for yf(x) < 0, therefore, as a increases, uncovered examples satisfying yift−1(xi) > 0
(“correctly classified”) are penalized less, while the penalty for uncovered “misclassified” examples
(yift−1(xi) < 0) increases. This leads to the following conclusion: although the rule covers only
a part of the examples, with respect to uncovered examples it still tries to make a small error;
remark that the weights of the uncovered examples depend on the curvature of the function (second
derivative) rather than on the slope (first derivative).

Appendix: Proofs of the Theorems

Proof of Theorem 5.5

Theorem 5.6. Let f(x) =
∑
j ajbj(x) be the convex combination of classifiers bj(x) ∈ {−1, 1},

i.e. aj are non-negative and
∑
j aj = 1. Then, with probability 1− δ, for every distribution P (y,x)

the following inequality holds:

R(f) 6 inf
γ∈(0,1]

Rγemp(f) +M

√ d

nγ2
+

√
log 1

δ

n

 , (5.32)

where d is the Vapnik-Chervonenkis dimension of the base classifier and M is some universal con-
stant.

Proof. Our proof is very similar to the proof of Koltchinskii and Panchenko (2002). We follow more
accessible version of the proof given by Lugosi (2002)1 and describe here only the differences from
the unweighted loss case.

Let us define two functions φ1(x) and φ−1(x) as follows:

φ1(x) =


1− α if x 6 0
0 if x > γ(1− α)
1− α− x/γ if x ∈ (0, γ(1− α))

φ−1(x) =


α if x 6 0
0 if x > γα

α− x/γ if x ∈ (0, γα))
.

1Lugosi (2002) proves the theorem for a fixed value of γ, but it can be extended to all values of γ in the same way
as in (Koltchinskii and Panchenko, 2002).
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Observe that wy1yf(x)<0 6 φy(yf(x)) 6 wy1yf(x)6γwy . Thus, we have:

sup
f∈F

(R(f)−Rγemp(f)) 6 sup
f∈F

(
Eφy(yf(x))− 1

n

n∑
i=1

φyi(yif(xi))

)
,

where F is the class of all ensembles. Using the bounded difference inequality (McDiarmid, 1989;
Devroye et al., 1996) with ci = n−1 max{α, 1− α} 6 n−1 we bound the distance of the right-hand
side from its expectation exactly as in (Lugosi, 2002). Define z = yf(x) and zi = yif(xi). By
symmetrization argument we have:

E sup
f∈F

(
Eφy(z)− 1

n

n∑
i=1

φyi(zi)

)
6 E sup

f∈F

(
1
n

n∑
i=1

σi(φy
′
i(z′i)− φyi(zi))

)

where σi, i = 1, . . . , n, are i.i.d. symmetric sign variables, and (x′i, y
′
i) forms a sample of size n,

being independent of (xi, yi) and having the same distribution. Let us define φ(x) = φ1(x)+φ−1(x)
2 .

Then, using:

φy
′
i(z′i)− φyi(zi) = (φy

′
i(z′i)− φ(z′i))− (φy

′
i(0)− φ(0)) + (φ(z′i)− φ(zi))

+ (φyi(0)− φy
′
i(0))− (φyi(zi)− φ(zi))− (φyi(0)− φ(0))

we bound:

E sup
f∈F

1
n

n∑
i=1

σi(φy
′
i(z′i)−φyi(zi))62E sup

f∈F

1
n

n∑
i=1

σi(φyi(zi)−φ(zi)−φyi(0)+φ(0))

+ E sup
f∈F

1
n

n∑
i=1

σi(φ(z′i)− φ(zi)) + E sup
f∈F

1
n

n∑
i=1

σi(φyi(0)− φy
′
i(0)). (5.33)

The last term on the right-hand side is equal to zero. The middle term can be bounded as in (Lugosi,
2002) by noticing that ψ(x) = γ(φ(x)−φ(0)) is a contraction. By noticing the symmetry φyi(zi)−
φ(zi) = −(φ−yi(zi)− φ(zi)) and exploiting the fact that σi are i.i.d. symmetric sign variables, the
expression under sup in the first term on the right-hand side equals to φ1(zi)−φ(zi)−φ1(0) +φ(0),
which is also the contraction after multiplying by γ. Thus, in summary we bound:

E sup
f∈F

(
1
n

n∑
i=1

σi(φy
′
i(z′i)− φyi(zi))

)
6

4
γ

E sup
f∈F

1
n

n∑
i=1

σif(xi).

Notice that the bound is twice the bound of the symmetric case which, in turn, doubles universal
constant M in comparison to the symmetric case. The rest of the proof proceeds exactly in the
same way as in (Lugosi, 2002).

Proof of Theorem 5.6

Theorem 5.7. Assume P (x, y) is monotonically constrained. Let h(x) be a classifier output by
the two-phase method. Let fk(x), k = 2, . . . ,K, be k-th rule ensemble trained on the monotonized
dataset D′k such that there exists γk > 0 for which y′ikfk(xi) > γkwy′ik for all i = 1, . . . , n (i.e. fk(x)
achieves hard margin γk on the dataset D′k). Then, with probability at least 1− γ:

R(h) 6 R∗ +M

2(K − 1)

√
log 2(K−1)

δ

n
+
√
m

n

K∑
k=2

1
γk

 .

for some universal constant M .
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Proof. We start with a transformation of rules (which can abstain from the response) to classifiers
with output in {−1, 1} and with well-defined VC dimension. Let f(x) =

∑T
t=1 atΦt(x). With each

rule Φt(x), t = 1, . . . , T , we associate a cone gt(x) = 2Φt(x) − 1 for upward rules (Φ(x) > 0) and
gt(x) = 2Φt(x) + 1 for downward rules (Φ(x) 6 0). Notice that gt(x) ∈ {−1, 1} and either the set
{gt(x) = 1} or the set {gt(x) = −1} is an axis-parallel cone, i.e. set of the form {x : x � x0} or of
the form {x : x � x0} for some x0. The class of axis-parallel cones has VC dimension m (Devroye
et al., 1996). We add to the ensemble one more cone g0(x) = sgn

(∑
t∈T+ at −

∑
t∈T− at

)
which

covers the whole X and the subsets T+ and T− correspond to the upward and downward rules,
respectively. Then, one can easily show that:

T∑
t=0

ctgt(x) =
T∑
t=1

atΦt(x),

when ct = at
2 for t > 1 and c0 = 1

2 |
∑
t∈T+ at−

∑
t∈T− at|. Hence, we see that each rule ensemble has

an equivalent cone ensemble. Now, suppose rule ensemble is L1-normalized, i.e.
∑T
t=1 at = 1. The

corresponding cone ensemble must be divided by the sum of weights ` =
∑T
t=0 ct to be normalized;

let us denote such ensemble by f ′(x) = f(x)/`. Notice that:

` =
1
2

∣∣∣∣∣ ∑
t∈T+

at −
∑
t∈T−

at

∣∣∣∣∣+
T∑
t=1

αt
2

6
T∑
t=1

at = 1,

so that if yf ′(x) 6 γ, then also yf(x) 6 γ. In other words, the fraction of margin errors for
the normalized cone ensemble upperbounds the fraction of margin errors for the normalized rule
ensemble. Thus, we can prove the theorem for an ensemble of cones, which are ordinary classifiers
with well-defined VC dimension, and the theorem will also hold for a rule ensemble.

Let Rγemp(fk) be defined as before in (5.15), as the weighted fraction of margin violations for
the k-th monotone ensemble with normalized weights. Consider the k-th ensemble fk(x) trained
on the monotonized data D′k. The ensemble makes no margin errors on D′k, i.e. for all i, it holds
y′ikfk(xi) > γkwy′ik . But since the sets Dk and D′k differ only on the relabeled objects, the ensemble
makes on Dk a margin error Rγkemp not greater than:

Rγkemp(f) 6 Γ =
1
n

n∑
i=1

wyik1yik 6=y′ik .

But the upper bound Γ equals to the objective function of the binary monotone approximation
problem (3.16), hence it is minimized by values y′ik in the class of all monotone functions. From the
assumption about the monotonically constrained distribution it follows, however, that the Bayes
classifier h∗k(x) is monotone, which means that:

Rγkemp(f) 6 Γ 6
1
n

n∑
i=1

wyik1yik 6=h∗k(xi) =
1
n

n∑
i=1

L(yik, h∗k(xi)),

where L stands for the linear loss. Notice that E[L(yk, h∗k(x))] = R∗k, the Bayes risk in the k-th
binary problem, so using Hoeffding’s bound (Devroye et al., 1996) we can state that for every
δ′ ∈ (0, 1):

P

 1
n

n∑
i=1

L(yik, h∗k(xi))−R∗k >

√
log 1

δ′

2n

 6 δ′.

From Theorem 5.5 we have with probability at most δ′′:

R(fk) > inf
γ∈(0,1]

Rγemp(fk) +M

√ m

nγ2
+

√
log 1

δ′′

n

 .
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By setting δ′ = δ′′ = δ
2(K−1) , we have with probability at most δ′ + δ′′ = δ

K−1 :

R(fk) > R∗k +M

√ m

nγ2
k

+ 2

√
log 2(K−1)

δ

n

 . (5.34)

To bound the risk in a general K-class case, notice that with probability at most δ there exists
k ∈ {2, . . . ,K} such that (5.34) holds. But this means that with probability at most δ:

K∑
k=2

R(fk) >
K∑
k=2

R∗k +M

K∑
k=2

√ m

nγ2
k

+ 2

√
log 2(K−1)

δ

n

 .

We take advantage of the fact that:

R∗ = E[L(y, h∗(x)] =
K∑
k=2

E[L(yk, h∗k(x))] =
K∑
k=2

R∗k,

and from Theorem 5.2 we have:

R(h) = E[L(y, h(x)] 6
K∑
k=2

E[L(yk, hk(x))] =
K∑
k=2

R(fk).

Thus, we conclude that with probability at most δ:

R(h) > R∗ +M

2(K − 1)

√
log 2(K−1)

δ

n
+
√
m

n

K∑
k=2

1
γk

 .



Chapter 6

Computational Experiment

In this chapter, we verify the efficiency of our methods in the computational experiment. We also
compare our methods with already existing approaches to ordinal classification with monotonicity
constraints and analyze the results with use of the nonparametric statistical tests. The experiment
is conducted on several real datasets, for which it is known that there exist monotone relationships
between attribute values and class labels.

As the accuracy is not the only criterion of assessing the quality of the learning method, we also
consider the interpretability of the models. The interpretabilty was actually the major point for
which we deal with decision rules, therefore an analysis of this issue is conducted in this chapter.

6.1 Design of the Experiment

6.1.1 Datasets

We found 12 datasets, for which it is known that monotonicity constraints are present. We did
not search for monotonicity directions by calculating any particular statistics, rather we obtained
the directions using the domain knowledge about the problem.

Four datasets, which are the results of surveys, were taken from Ben-David (1992, 1995) and
were accompanied by the following descriptions:

• ESL (employee selection) dataset contains profiles of applicants for certain industrial jobs.

• SWD (social workers decisions) dataset contains real-world assessments of qualified social work-
ers regarding the risk facing children if they stayed with their families at home.

• LEV (lecturers evaluation) dataset contains examples of anonymous lecturer evaluations, taken
at the end of MBA courses.

• ERA (Employee Rejection/Acceptance) dataset was originally gathered during an academic
decision-making experiment aiming at determining which are the most important qualities of
candidates for a certain type of jobs.

Three datasets are related to the problem of house pricing:

• Housing dataset comes from the UCI repository (Asuncion and Newman, 2007) and concerns
housing values in suburbs of Boston.

• Windsor dataset first appeared in (Koop, 2000) and concerns housing values in Windsor,
Canada.
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Table 6.1: Description of data sets used in experiments.
Data set #attributes #objects #classes

ESL 4 488 8

SWD 10 1000 4

LEV 4 1000 5

ERA 4 1000 8

Housing 8 506 4

Windsor 11 546 4

DenBosch 9 119 2

Wisconsin 9 699 2

Ljubljana 8 286 2

Car 6 1728 4

CPU 6 209 4

Balance 4 625 3

• DenBosch dataset was taken from (Daniels, 1999) and concerns housing values in small Dutch
city Den Bosch; see (Daniels and Feelders, 2000) for overview.

From the three house pricing datasets only DenBosch dataset contained a discrete output variable
(price discretized into two levels). We decided to discretize the price variable in Housing and
Windsor into four levels containing equal number of objects (i.e. quartiles of the price distribution),
similarly as in (Feelders and Pardoel, 2003).

There are five other datasets taken from the UCI repository:

• Wisconsin breast cancer dataset.

• Ljubljana breast cancer dataset, in which some of the non-monotone attributes and attributes
containing most of missing values, have been removed.

• Car evaluation data.

• CPU performance data, for which the class attribute was discretized into four levels, containing
equal number of objects.

• Balance scale dataset.

For all datasets, objects with missing values were removed, since not every method is able to deal
with missing values (rule ensembles have a very natural way to handle the missing values, which is
included in our implementation, however, its description is beyond the scope of this thesis). The
quantitative characteristics of the datasets are shown in Table 6.1.

6.1.2 Algorithms

In the experiment, we used ten algorithms in total, among which three were invented by us and
introduced in this thesis. Four other methods are well known in the field of ordinal classification
with monotonicity constraints and can be though of as the state of the art in this domain. The
last three methods are ordinary classifiers which are not suited to the ordinal classification and
do not take monotonicity constraints into account. We include these methods to assess whether
incorporating domain knowledge about order and monotonicity gives any improvement in accuracy.
Up to our knowledge, there was no such an extensive comparison of so many algorithms ever before
in this field.
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State-of-the-art methods. We considered four already existing methods to ordinal classification
with monotonicity constraints:

• Ordinal Learning Model (OLM) with implementation obtained from Weka (Witten and Frank,
2005).

• Ordinal Stochastic Dominance Learner (OSDL), implementation was obtained from Weka, bal-
anced version was used (as it was recommended by Cao-Van (2003) to give better results).
The internal cross-validation for tuning the interpolation parameter was turned on, because
algorithm was quite fast anyway.

• Isotonic Separation (IsoSep) was implemented by us, using Weka and linear programming
solver lp solve (Berkelaar, 2005), according to (Chandrasekaran et al., 2005), with absolute
error cost matrix. As suggested, all the attributes were normalized before calculating the
distance in the classification procedure.

• Rule induction with VCDomLEM algorithm obtained from J. Błaszczyński and M. Szeląg, as a
part of the Java Rough Sets (JRS) library. The classification procedure used in the algorithm
was the one described in (Błaszczyński et al., 2007). A variable consistency version was used,
with consistency level 0.9.

The methods were described in detail in Section 1.3.

Our methods. Apart from already existing approaches, we tested the following three methods,
introduced in this thesis:

• Multiple isotonic regression (IsoReg), using the heuristic algorithm of Burdakov et al. (2006).
In order to estimate the probabilities outside the training set, we must use some extension of
isotonic regresion (see Section 3.1.4). We used the extension defined by (3.7) with λ = 0.5.
The classification was performed by taking the median of the distribution.

• Linear Programming Rule Ensemble (LPRules), using our implementation in Weka and linear
programming solver lp solve. LPRules does not have any parameters to set apart from a
technical parameter κ (the smallest value of object’s weight), which maintains the stability of
the optimization steps. We observed that the performance of the algorithm remains the same
when we change κ provided we keep it small but nonzero. Thus, we set κ = 02.

• Sigmoid-loss Monotone Rule Ensembles (MORE), using our implementation in Weka. Since
we did not optimize other algorithms, we decided to choose standard parameters, setting
the number of rules M to 50 (per each binary subproblem) and the scale (step length) a to
0.5. Notice that in the real applications, those values would be obtained by cross-validation,
probably leading to better results.

Ordinary methods. We decided to use three ordinary classifiers in order to check whether
incorporating domain knowledge about order and monotonicity gives any improvement in accuracy:

• j48 is the Weka’s implementation of famous tree induction algorithm C4.5 (Quinlan, 1993).
Unfortunately, j48 is designed to minimize 0-1 error and does not handle the order between
class labels; using it directly on multi-class problems led to very poor results in terms of the
mean absolute error. Therefore, we decided to improve its performance and use it in the
ordinal setting by combining it with a simple approach to ordinal classification proposed by
Frank and Hall (2001).
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This approach divides K-class ordinal problem into K−1 binary problems in a similar way as
it was done in this thesis. Then, for each binary problem, a base classifier (j48 in this case)
is learned and the conditional probability of upward class union P (y > k|x) is estimated.
Plugging those estimates (instead of real probabilities) into the expression defining the Bayes
classifier allows us to minimize any ordinal loss function. For instance, if we use the absolute
error loss function, then the Bayes classifier is the median of conditional distribution, so the
output of our classifier will be the median of the estimated distribution.

• SVM (Support Vector Machine) classifier proposed by Boser et al. (1992); Vapnik (1998). We
used its implementation in Weka. A standard linear kernel was used and the complexity
parameter was set to default value. Similarly as in the case of j48, we used a simple approach
to ordinal classification, because SVM in its basic version is not suited to capture the order
between the labels and minimizes 0-1 error rather than the mean absolute error.

• NB (Näıve Bayes), which estimates the probabilities P (x|y) and uses Bayes’ rule to obtain
P (y|x). We plug those probabilities into the expression defining the Bayes classifier to out-
put the predicted label. For instance, when dealing with absolute error loss function, our
prediction is the median of the estimated distribution.

6.2 Experimental Results

Error estimation. The measure of error was chosen to be the mean absolute error (MAE). It
reflects the ordinal nature of the problem by penalizing the classifier according to the difference
between predicted and observed class labels. The error of each classifier was estimated by a 10-
fold cross validation, repeated 10 times to improve the replicability of the experiment (so that
the results of the experiment do not depend on particular train/test folds splits). Apart from the
average error, its standard deviation was estimated from the measurements on each fold and each
trial (100 measurements in total). To avoid underestimation, the standard deviation of error was
estimated conservatively, by taking into account the dependence between the subsequent testing
samples in the repeated cross-validation, as described in (Nadeau and Bengio, 2003). The results
of both average error and standard deviation are given in Table 6.2.

Testing statistical significance. It was stressed (Bengio and Grandvalet, 2004; Nadeau and
Bengio, 2003) that there is no good (unbiased) way of estimating the standard error of accuracy
and using such estimates in significance test may give misleading, unreliable results. Therefore, we
perform nonparametric significant test. To compare multiple classifiers on the multiple datasets, we
follow (Demšar, 2006), and apply the Friedman test, which uses ranks of each algorithm to check
whether all the algorithms perform equally well (null hypothesis). The ranks are calculated for each
dataset and the lowest rank (1) means that an algorithm performed the best on this dataset, while
the highest rank (10) means that an algorithm performed the worst. Then, the ranks are averaged
for each classifier and Friedman statistics is computed:

χ2
F =

12d
c(c+ 1)

 c∑
j=1

r̄2
j −

c(c+ 1)2

4

 ,

where d is the number of datasets, c is the number of compared classifiers and r̄j is the average rank
of j-th classifier; χ2

F is distributed approximately according to χ2 with c − 1 degrees of freedom.
Notice that Friedman statistics depends on results of the experiment only through the average ranks
of the classifiers – the particular values of the mean absolute error do not matter.



Computational Experiment 101

Table 6.2: Results of the experiment. For each dataset (row) and each classifier (column) two values
are given: average mean absolute error (above) and standard deviation of error (below, starting
with ±).

Dataset OLM OSDL IsoSep DOMLEM LPRules MORE IsoReg J48 SVM NB

DenBosch 0.282 0.157 0.183 0.125 0.168 0.133 0.165 0.172 0.202 0.126
±0.039 ±0.039 ±0.037 ±0.034 ±0.034 ±0.03 ±0.038 ±0.032 ±0.036 ±0.031

Wisconsin 0.17 0.039 0.03 0.038 0.041 0.031 0.04 0.046 0.03 0.037
±0.014 ±0.008 ±0.007 ±0.008 ±0.009 ±0.007 ±0.008 ±0.009 ±0.007 ±0.007

ESL 0.371 0.353 0.328 0.432 0.323 0.344 0.328 0.369 0.355 0.333
±0.024 ±0.025 ±0.023 ±0.024 ±0.024 ±0.023 ±0.023 ±0.022 ±0.023 ±0.024

SWD 0.452 0.44 0.442 0.449 0.435 0.441 0.44 0.442 0.435 0.457
±0.017 ±0.017 ±0.018 ±0.017 ±0.017 ±0.016 ±0.017 ±0.016 ±0.016 ±0.016

LEV 0.427 0.405 0.398 0.513 0.396 0.413 0.393 0.415 0.444 0.441
±0.018 ±0.016 ±0.017 ±0.015 ±0.016 ±0.016 ±0.017 ±0.018 ±0.016 ±0.017

ERA 1.256 1.271 1.271 1.393 1.263 1.269 1.261 1.217 1.271 1.227
±0.031 ±0.033 ±0.034 ±0.04 ±0.033 ±0.03 ±0.033 ±0.032 ±0.029 ±0.031

Housing 0.527 0.775 0.286 0.337 0.274 0.288 1.187 0.332 0.314 0.506
±0.032 ±0.021 ±0.02 ±0.025 ±0.021 ±0.023 ±0.032 ±0.023 ±0.025 ±0.033

CPU 0.29 0.215 0.099 0.086 0.073 0.065 0.232 0.1 0.371 0.18
±0.035 ±0.028 ±0.02 ±0.019 ±0.018 ±0.017 ±0.033 ±0.019 ±0.03 ±0.033

Balance 0.224 0.111 0.19 0.221 0.063 0.126 0.207 0.271 0.137 0.085
±0.02 ±0.014 ±0.017 ±0.015 ±0.009 ±0.015 ±0.016 ±0.021 ±0.017 ±0.013

Ljubljana 0.325 0.274 0.241 0.289 0.25 0.251 0.24 0.259 0.299 0.252
±0.033 ±0.027 ±0.024 ±0.029 ±0.026 ±0.022 ±0.021 ±0.021 ±0.023 ±0.025

Windsor 0.576 0.512 0.52 0.519 0.516 0.538 0.534 0.565 0.491 0.509
±0.028 ±0.025 ±0.028 ±0.028 ±0.026 ±0.025 ±0.026 ±0.025 ±0.026 ±0.029

Car 0.084 0.031 0.045 0.023 0.03 0.061 0.038 0.09 0.078 0.177
±0.01 ±0.005 ±0.006 ±0.005 ±0.004 ±0.006 ±0.005 ±0.008 ±0.007 ±0.008

Friedman statistics gives 26.73 which exceeds the critical value 15.51 (for confidence level 05), so
we can reject the null hypothesis and state that classifiers are not equally good. Next, we proceed to
a post-hoc analysis and calculate the critical difference (CD) according to the Nemeneyi procedure:

CD = qα

√
c(c+ 1)

6d
,

where critical value qα is based on Studentized range statistics divided by
√

2 (see e.g. Demšar
(2006) for the table of critical values). We obtain CD = 3.91 which means that algorithms with
difference in average ranks more than 3.91 are significantly different.

In Figure 6.2, average ranks were marked on a line, and groups of classifiers that are not
significantly different were connected. This shows that algorithms such as LPRules and MORE are
significantly different only to OLM. No other significant differences were obtained. This is mostly
due to the fact that we used only 12 datasets and applied the weak and conservative nonparametric
test. The difference in ranks must be very high in order to state that one algorithm outperforms
another. Using some parametric test (such as ANOVA) would probably lead to stronger results,
but we prefer to be as prudent as possible in drawing conclusions about the statistical significance.
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Table 6.3: Ranks of each classifier for each dataset. Rank 1 corresponds to the best average error
for a given dataset, while rank 10 corresponds to the worst. In the last row, the average ranks
across the datasets are given for each classifiers.

Dataset OLM OSDL IsoSep VCDomLEM LPRules MORE IsoReg J48 SVM NB

DenBosch 10 4 8 1 6 3 5 7 9 2
Wisconsin 10 6 1 5 8 3 7 9 2 4
ESL 9 6 3 10 1 5 2 8 7 4
SWD 9 3 7 8 1 5 4 6 2 10
LEV 7 4 3 10 2 5 1 6 9 8
ERA 3 8 7 10 5 6 4 1 9 2
Housing 8 9 2 6 1 3 10 5 4 7
CPU 9 7 4 3 2 1 8 5 10 6
Balance 9 3 6 8 1 4 7 10 5 2
Ljubljana 10 7 2 8 3 4 1 6 9 5
Windsor 10 3 6 5 4 8 7 9 1 2
Car 8 3 5 1 2 6 4 9 7 10

avg. rank 8.5 5.25 4.5 6.25 3.0 4.42 5.0 6.75 6.17 5.17

10 9 8 7 6 5 4 3 2 1

CD = 3.91

OLM

DOMLEM OSDL

J48

IsoSep

IsoReg LPRules

MORESVM

NB

Figure 6.1: Critical difference diagram

Conclusions. Although statistical significance could not be confirmed, some important remarks
can still be given:

• On the “top” of the algorithms’ list there are two methods introduced in this thesis (LPRules
and MORE), followed by IsoSep. Isotonic Separation is known to behave very well in practice
(Chandrasekaran et al., 2005; Jacob et al., 2007; Ryu and Yue, 2005) and our methods perform
not worse. This means that LPRules and MORE can probably be used successfully in practice
and make predictions with high accuracy.

• OSDL and IsoReg perform very similar to each other and worse than the top-of-the-list meth-
ods. Notice that both OSDL and IsoReg are purely based on the dominance relation �, i.e.
they classify by comparing the test object with training objects using �. The classification
procedure is practically the same in both cases, the main difference is how those algorithms
deal with inconsistencies: IsoReg uses statistically justified multiple isotonic regression, while
OSDL uses simpler, but also faster procedure. Since the amount of inconsistencies is usually
not very high, their total accuracy is thus very similar.

The performance of IsoReg and OSDL is poor for some datasets, which shows that using only
the dominance relation is not enough – one must use some “parametric” approach, e.g. by
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restricting to the class of decision rules.

• OLM perform very poorly in almost every case. Note, however, that OLM was the first algorithm,
proposed already in 1992, to deal with monotone problems.

• VCDomLEM has a very high variance in classification error: on some datasets the error is low,
while on the other datasets the algorithm works best among all the algorithms. We do not
know how to explain this behavior, but we noticed that VCDomLEM usually works worse on the
data with high level of inconsistency.

• The ordinary classifiers which do not take monotonicity constraints into account, perform
worse than our methods. This was anticipated in the previous chapters, as there is a theoretical
justification for using monotone classifiers for such problems. However, the more important
fact is that the ordinary classifiers can be inconsistent with the domain knowledge about the
monotonicity. This leads to the problems with interpretation of the model; moreover, decision
maker may want the model to be consistent with the knowledge she or he possesses about the
problem. Those issues are usually much more substantial than a small gain in accuracy.

Although neglecting the monotonicity does not deteriorate much the accuracy of the classifier,
neglecting the order between the class labels do. When we first used J48 and SVM directly,
without ordinal setting, the results were very bad. The only exception was Näıve Bayes, which
works well without taking the order into account, but its good performance follows from the
fact that it is a generative method (in contrary to J48 and SVM, which are discriminative), i.e.
it estimates the joint distribution P (x, y).

6.3 Interpretability

Let us consider the intelligibility of the considered methods, i.e. how easy or difficult is the
interpretation of resulting models. Since it is not possible to strictly measure and compare the
intepretability, we will briefly comment on each algorithm, indicating its pros and cons with respect
to this aspect. Moreover, we will estimate the size of the model (description length), defined as the
amount of memory needed to save the model. This rather corresponds to the compactness of the
model, but there is no other measurable property which is closer to interpretability.

Instance-based methods. Our main competitor, IsoSep, is an instance-based method of classi-
fication and “nearest neighbor” (with respect to the asymmetric “distance”) is found each time an
object is to be classified. Although there exists a reduction method (Chandrasekaran et al., 2005)
which allows us to store only the Pareto and the anti-Pareto frontier of each class (the set of objects
not dominated by other objects from the class and the set of objects which do not dominate other
objects from the class), those sets can be very large, especially when the dimensionality m is high.
In general, they grow linearly with n. This makes Isotonic Separation quite slow in the classification
phase. Moreover, when classifying new objects, the nearest neighbor chosen with respect to the
specific, asymmetric distance function does not explain clearly why a given prediction was made.
OLM stores the model by saving a subset of the training set D called “rule base”. OSDL and

Isotonic Regression (IsoReg) keep all of the objects, but a similar reduction as for IsoSep can be
used to store only a subset of D. Additionally, IsoReg stores probabilities instead of class labels. All
those models have a very similar size and interpretability properties to IsoSep. The main difference
is that, contrary to IsoSep, they do not use nearest-neighbor procedure to classify new objects,
they use only the dominance relation to this end, which is a much clearer and comprehensible way
of classification.
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Table 6.4: Average numbers of rules (per class union) for LPRules, MORE and VCDomLEM.

Data set # objects # rules

LPRules MORE VCDomLEM

ESL 448 3 25 5.0

SWD 1000 6.7 24.9 16.8

LEV 1000 3.2 25 10.7

ERA 1000 2.6 25 10.2

Housing 506 26.6 25 32.2

Windsor 546 19.1 25 22.3

DenBosch 119 4.7 25 6.1

Wisconsin 699 9.7 25 9.3

Ljubljana 286 8.6 25 11.2

Car 1728 5.2 24.8 10.2

CPU 209 4.1 25 5.0

Balance 625 32.2 25 44.2

Rule-based methods. MORE and LPRules build a model which consists of a set of rules with
assigned weights (respones). VCDomLEM is similar but it does not assign weights to the rules. It is
well known that decision rules are one of the most interpretable forms of knowledge representation.
Rule weight expresses the importance and strength of the rule vote, hence its meaning is very clear.
Thus, the intepretability of the whole model mostly depend on the number of rules in the ensemble.
Table 6.4 contains average numbers of rules per class union for the datasets used in the experiment.
MORE produces M rules in each binary subproblem, which is M/2 rules per class union (there

are upward and downward class unions in each subproblem). In our case, it was 25 rules per class
union which is usually much smaller than the number of objects. It may sometimes (but rarely)
happen that less rules are produced when no rule decreasing the current loss function can be found.
LPRules generates rules until the optimum (the largest margin) is reached. Sometimes it can

take even up to 100 iteration, but at the optimum most of the generated rules have zero weights,
because the solution of the linear program is usually very sparse. This means that the ensembles
produced by LPRules are usually very small, much smaller then those produced by MORE, especially
for the problems in which attributes have purely ordinal scale and finite domains. We believe the
sparsity of the ensemble is the most important advantage of LPRules.
VCDomLEM generates rule sets larger than LPRules, but significantly smaller than MORE.

Summary. The algorithms developed by us proved to be efficient and competitive with the best
existing approaches to ordinal classification with monotonicity constraints (they obtained the best
results actually, but the difference was not found to be statistically significant due to a small number
of datasets). What distinguishes our approaches from the main competitor, isotonic separation, is
the simplicity and interpretability of the decision rule model. Moreover, isotonic separation is a
“lazy learning” algorithms, therefore it needs to keep a large part of the dataset to classify unseen
objects. This, in turn, slows down the classification procedure. In case of monotone rule ensembles,
all we need is a small set of rules combined by a weighted sum in an ensemble, which captures the
information contained in the dataset.
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In this thesis, we dealt with the problem of ordinal classification with monotonicity constraints.
As stated in Section 1.4, our goal was to provide a comprehensive and consistent statistical theory
for this problem, along with an efficient and accurate method for solving it. In our opinion, the
goal has been achieved. To support this claim, we provide below a summary of our contributions
to the field of ordinal classification with monotonicity constraints.

List of Main Results

Our results can be considered from both theoretical and practical point of view. The theoretical
results of the thesis can be found mainly in Chapters 2, 3 and 4, and they are related to the develop-
ment of a statistical learning methodology for ordinal classification with monotonicity constraints.
The practical results were presented in Chapters 5 and 6, and they are related to introducing novel
monotone classification methods, which are verified in course of a computational experiment.

Below, we list our contributions in the chronological order:

Statistical framework for ordinal classification with monotonicity constraints. We pro-
posed a definition of the problem from probabilistic point of view. This was done by introducing
monotonically constraint (with respect to the stochastic dominance) probability distribution. Then,
we also showed that some more constraints must be imposed on the loss function in order to assure
that the Bayes classifier is monotone.

Multiple isotonic regression. We considered the problem of probability estimation. We pro-
posed a nonparametric method, taking into account only the monotonicity constraints expressed
by the dominance relation. Our method is based on isotonic regression and is equivalent to MLE
in binary-class case. Although isotonic regression has already been used to this end in binary-class
case with linear preorder relation, our approach for any number of classes and partial preorder is
new.

Monotone approximation. We proposed a general method for removing the inconsistencies and
“monotonizing” the data in a statistically safe way. The method is called monotone approximation
and is based on relabeling the training objects. This is done in a nonparametric way, by empirical
risk minimization within the class of all monotone functions. Although the problem of relabeling
has already been used, we are first who derived this problem from the statistical perspective and
who showed its connection with isotonic regression. We also first raised and solved the problem of
non-unique optimal solution and we gave a detailed analysis of possible problem reduction to speed
up the computations. Finally, we proved the convergence of our method to the Bayes classifier for
a wide class of probability distributions.
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Stochastic Dominance-based Rough Sets. We extended DRSA into the stochastic setting by
defining the lower approximations (or, equivalently, generalized decision) in the probabilistic way.
Notice that this was done in a different manner than in the previous variable consistency approaches,
which were also based on probabilistic reasoning. After defining the model, we proposed to estimate
the probabilities (which are unknown) by multiple isotonic regression. Our extension has classical
DRSA in the deterministic limit.

Then, we considered the problem of monotone confidence interval estimation, which can be
though of as a generalization of monotone approximation into the abstaining classifiers. We intro-
duced to this end a specific, interval loss function and showed that stochastic DRSA is equivalent
to minimizing this loss within the class of all monotone functions. Since the problem is linear, we
obtain a fast algorithm for calculating the lower approximations without estimation of probabilities
(i.e. isotonic regression does not need to be solved).

Our theory extends well beyond DRSA and can be though of as a statistical base for explanation
of all rough set approaches.

Monotone Rules Ensembles. We introduced new algorithms based on decision rules for ordinal
classification with monotonicity constraints. Our algorithms are based on the so called two-phase
procedure: in the first phase, the monotone approximation (or, equivalently, Stochastic DRSA) is
applied to the training data in order to get rid of the inconsistencies. In the second phase, the
rule ensemble is built on the monotonized data. We explained why monotonization is made and
how it is connected with separability of the data by a set of rules. We proved that the accuracy of
the ensemble learned on the monotonized data without errors, and having a large margin, remains
close to the accuracy of the optimal classifier. We proposed a method of reducing the main K-class
problem into K − 1 binary subproblems and showed the necessary conditions for monotonicity of
the classifier. This constitutes to a general theory of monotone rule ensembles.

Next, we proposed two particular rule induction algorithms for dealing with a linear loss func-
tion. The first algorithm, LPRules (Linear Programming Rule Ensemble), is based on the linear
programming boosting which is known to directly maximize the minimal margin on the dataset.
LPRules produces very small and accurate ensembles. The second algorithm, MORE (Sigmoid
Loss Monotone Rule Ensemble) is based on greedily minimizing a differentiable approximation of
the linear loss (sigmoid loss), using the boosting strategy to learning. MORE also achieves high
accuracy on the real datasets.

Our rule induction methods produce compact and interpretable sets of rules, consistent with
the domain knowledge about the order and monotonicity, maintaining very good prediction perfor-
mance.

Future Research

There still remain many unsolved questions in the investigated research area. We mention below
some problems which we would like to study in the future:

Mining monotonicity constraints. It is not always clear whether the monotone relationship
holds for our data, although the expert may say so. Moreover, even if no domain knowledge is
available, it can be worth considering automatic way of mining the monotonicity constraints from
data. This improves our knowledge about the problem and thus mining the monotonicity constraints
can be regarded as a part of the knowledge discovery process.
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Reduction of dimensionality. The nonparametric methods (isotonic regression, monotone ap-
proximation) are based only on dominance relation. As the dimensionality of the problem (number
of attributes m) increases, the dominance relation becomes sparse and the nonparametric methods
become less reliable, since less objects are comparable by a dominance relation. This is one of the
manifestations of the famous curse of dimensionality (Bellman, 1961). Generally, if m is too high,
one should decrease the dimension of the space by removing some of the attributes. This is in fact
a feature selection process but now is driven not only by choosing the most informative attributes
but also the most monotone ones. There is a need for the research in this area.

More extensive experimental evaluation. We plan to extend the computational experiment
into more datasets. We are currently at the stage of gathering the data.

Ranking with monotonicity constraints. The final and most important issue planned for our
future research is the extension of the theory proposed in this thesis into the ranking problems,
where the monotonicity constraints are present in the data. In particular, we would like to develop
a statistical framework based on the rank loss formulation of the ranking problem.
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M. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the
margin. pages 1001–1008, 2006.
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