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Sequential prediction with logarithmic loss
(a.k.a. prequential coding, sequential probability assignment)

Sequence of outcomes x1, x2, . . . ∈ X , revealed one by one.

In each iteration, after observing xn = x1, x2, . . . , xn, a
forecaster predicts xn+1 by assigning a distribution P (·|xn).

After xn+1 is revealed, the forecaster incurs logarithmic loss
− logP (xn+1|xn).

Regret of the forecaster relative to a set of distributions
P = {Pθ|θ ∈ Θ}:

R(P, xn) =

n∑
i=1

− logP (xi|xi−1)− inf
θ∈Θ

n∑
i=1

− logPθ(xi|xi−1).

Goal: minimize the worst-case regret.

We choose P to be an exponential family of distributions
(Gaussian, Bernoulli, Poisson, binomial, Gamma, etc.)

No assumptions on the process generating the outcomes!
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Algorithms

The minimax algorithm

Normalized maximum likelihood (NML) achieves the minimal
worst-case regret:

PNML = arg min
P

max
xn
R(P, xn) =

k

2
log n+O(1)

Optimal
Hard to calculate, often impractical
Requires knowledge of time horizon
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Algorithms

Maximum likelihood (ML) strategy

Predicts with the best distribution on past outcomes:
P (xn+1|xn) = Pθ̂n(xn+1),

where θ̂n = arg minθ
∑n

i=1− logPθ(xi).

Simple to calculate, often used in practice
Suboptimal: the constant in O(log n) much larger than k

2
Requires bounding the data to achieve logarithmic regret
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Our contribution

Include the current (to be predicted) outcome into calculation of
the maximum likelihood

Sequential normalized maximum likelihood (SNML):

P (xn+1|xn) ∝ Pθ̂n+1
(xn+1),

where θ̂n+1 = arg minθ
∑n+1

i=1 − logPθ(xi)

Achieves asymptotically optimal regret k
2 log n+O(1).

SNML coincides with NML given that the current iteration is
the last iteration.

Relationship to Bayesian strategy with Jeffreys’ prior.
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