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m No assumptions on the process generating the outcomes!



Algorithms

The minimax algorithm

Normalized maximum likelihood (NML) achieves the minimal
worst-case regret:

k
Pra, = argminmax R(P, ") = 5 logn + o(1)
zn

© Optimal
@ Hard to calculate, often impractical
@ Requires knowledge of time horizon



Algorithms

Maximum likelihood (ML) strategy

Predicts with the best distribution on past outcomes:
P(zps|z") = Py (Tnt1),

where 6,, = argming 37| —log Py(;).
© Simple to calculate, often used in practice
k

© Suboptimal: the constant in O(logn) much larger than 3
@ Requires bounding the data to achieve logarithmic regret
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where én+1 = arg ming Z;‘;Lll —log Py(x;)
m Achieves asymptotically optimal regret glogn +0(1).

m SNML coincides with NML given that the current iteration is
the last iteration.

m Relationship to Bayesian strategy with Jeffreys’ prior.



