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Abstract The paper presents the NaviExpert’s Community Traffic (CT)
technology, an interactive, community-based car navigation system. Using
data collected from its users, CT offers services unattainable to earlier sys-
tems. On one hand, the current traffic data are used to recommend the best
routes in the navigation phase, during which many potentially unpredictable
traffic-delaying and traffic-jamming events, like unexpected roadworks, road
accidents, closed roads or diversions, can be taken into account and thereby
successfully avoided. On the other hand, a number of distinctive features,
like immediate localization of various traffic dangers, are offered. Using ex-
clusively real-life data, provided by NaviExpert, the paper presents two illus-
trative case studies concerned with experimental evaluation of solutions to
computational problems related to the community-based services offered by
the system.
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1 Introduction

The Community Traffic (CT), a crucial part of the NaviExpert Navigation
System, is a technology especially designed to interact with its users. CT, rep-
resenting the next, more advanced generation of rapidly developing satellite-
based car navigation systems, collects an assortment of data concerning the
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current traffic situation, which are stored, processed and finally used to rec-
ommend the best routes during the navigation phase. This means that po-
tentially unpredictable traffic-delaying and traffic-jamming events, resulting
from unexpectedly started roadworks, road accidents, closed roads or diver-
sions, can be taken into account and thereby successfully avoided.

In order to operate efficiently, the system processes massive amounts of
data which can be generally categorized into implicit data (automatically gen-
erated by the mobile application) and explicit data (generated purposefully
by the community users). Each kind of data needs specialized procedures. For
example, the information generated by the users may be, for various reasons,
untrue (e.g. because of being outdated). The analysis in this case involves
verifying the reliability of the information sources (i.e. the reliability of those
who submitted the information). Its computational challenges are illustrated
in the first batch of experiments described in this paper.

At the same time, the bulk of the information received by the system is
used for navigational purposes, in particular for finding the fastest routes.
This also calls for specialized procedures, in particular for a good travel time
prediction model. The model must be fairly stable on the one hand, but
flexible enough to react to the dynamically changing traffic situation on the
other. Its computational challenges are illustrated in the second batch of
experiments described in the paper.

Several other commercial navigation solutions exist with similar pur-
pose. For example, the systems Yanosik (yanosik.pl) and Coyote (www.
moncoyote.com) offer services that include collecting user messages and uti-
lizing these messages in danger identification procedures, while TomTom HD
Traffic (www.tomtom.com/en_gb/services/live/hd-traffic) and Garmin
3D Traffic Live (www.garmin.com/traffic) offer services that include esti-
mating travel times and utilizing these times in route finding procedures.
Another example is the system Waze (www.waze.com), which heavily relies
on the community of its users and tries to deal with both of the addressed
data processing aspects.

Problems posed and solved in such systems (including the CT system), i.e.
verifying the reliability of the information sources and, first of all, predicting
the travel times, were described and discussed in numerous papers, including
papers on different approaches to assessing data source credibility [3, 4, 6,
8] and papers on different approaches to learning prediction models from
floating car data [1, 5, 7, 9, 10, 11].

This paper describes selected services offered by the CT system and pro-
vides experimental illustration of the two key aspects. Following this introduc-
tion, Section 2 presents the different generations of car navigating systems,
describing their intrinsic characteristics, while Sections 3 and 4 introduce
two exemplary computational problems related to the community-based ser-
vices offered by the system. The two sections include also two case studies
concerned with experimental evaluation of those problems. The paper is con-
cluded in the final section.
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2 Navigation Systems

Early navigation systems essentially lacked the functionality of collecting data
from their users and reacting to the dynamically changing traffic situation.
In these systems, the route finding was based on information stored within
the system, with fairly limited updating capabilities.

CT uses a new car navigation technology, one which relies on bidirectional
communication between the system and its users. Being a mobile phone-
based application, it allows the users to engage into active interaction with
the system. In general, one can distinguish two kinds of data exchange in CT:
implicit and explicit.

Car floating data, i.e., time-stamped geographical positions of the GPS
devices (and thus the vehicles that carry them), are collected and sent to
the system implicitly. These raw positions are converted to passages through
road segments (i.e. road units between two adjacent junctions) of the under-
lying road network, which, under proper assumptions, permits the system to
draw more or less accurate conclusions regarding the general fluency of the
traffic on the segments. The most immediate deductions regard the actual
average speeds of the passages. In result, when searching for fastest routes
the system may find it advisable to avoid a particular segment in favour of
other segments, which may make the route longer, but ultimately faster.

The remaining difficulty in the fastest route planning is the lack of data on
passages through segments. Consider a road segment through which no pas-
sages have been observed for some recent time. This may imply that there is
no traffic there, so redirecting cars to this segment makes good sense. Unfor-
tunately, observing no passages through a given segment may also imply that
(owing to some unpredictable traffic situation, e.g. a serious road accident)
the segment had been entirely closed for traffic. In this case, redirecting cars
through this segment makes no sense.

To deal with this problem, CT allows its users to generate and submit
appropriate messages that inform the system (and thereby its whole user
community) about specific traffic situations, like new diversions, various road
dangers, speed cameras, etc. The submitted messages can generally be cate-
gorized into reporting (or confirming) messages and cancelling messages. For
various reasons, the different pieces of information submitted by the users
may be untrue (for example because they are no longer up-to-date). This
is why the systems attempts to verify the received messages. Verifying such
kind of information is, in general, a complex problem. The idea actually uti-
lized here is that of verifying the reliability of the information sources (i.e. of
those users who submitted the particular pieces of information).

In addition to route finding, navigating, and gathering user reports, the
CT system offers numerous other services, like characterizing and visualizing
the current traffic state of selected areas in real time or finding approximate
geographical position for mobile phones not equipped with GPS function-
ality (so-called ‘cell ID’ identification). Some especially interesting services
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arise from cooperation with other communities and involve utilizing recom-
mendations supplied by users of those communities, e.g. recommendations of
restaurants, supplied by the users of gastronauci.pl or recommendations
of natural/architectural monuments, supplied by the users of wikipedia.pl.
Finally, the system’s community can also influence many very system-specific
issues, like road categorization or navigational messages.

3 Estimating the Reliability of Submitted Messages

This section illustrates the analysis of warning reports against road dangers,
speed cameras, and road checks, submitted to the system by the community
users. Unfortunately, such submissions are often quite scattered as far as
their location is concerned, because different users move in different directions
and, additionally, they generate their messages with various delays. In result,
locations of warnings that concern the same event may vary considerably. To
be useful, however, these reports should be not only true but also as accurate
as possible as far as their locations are concerned. Their analysis is therefore
twofold. Firstly, the reports are clustered to discover distinct events and,
secondly, their reliability is verified. Below, we illustrate the second phase of
the analyses.

3.1 Modified Voting

The simplest idea of computing the reliability of a warning against an
event involves computing the ratio of positive reports (i.e. messages that re-
port/confirm the existence of the event) to all reports, the procedure referred
to as ‘voting’. Let n be the number of all reports in a group of reports and
pos the number of positive reports in this group. Then the voting reliability
of a warning is equal to pos

n .
This voting approach may be slightly modified in order to reduce the

reliability of warnings characterized with only few reports: one may notice
that when there is only one positive report in a group, then the generated
warning would receive reliability of 100%. Therefore, the modified voting
reliability is computed as pos

n ×
n+1
n+2 .

3.2 Expectation Maximization

Another idea involves building a specialized probability model for the given
data generation scenario. All the variables involved in the scenario are binary:
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a report is either positive or negative, a warning either exists or it does not.
Thus, a probabilistic model is not difficult to establish [4].

Let ne and nu be the number of events and users, respectively. Each user
ui, i = 1, . . . , nu, may send a report concerning an event ej , j = 1, . . . , ne.
Let us further assume that we have a set D of such reports represented by
binary variables rij , stating whether a user ui confirmed or did not confirm
the event ej . The probability of the observed data can be then expressed by:

p(D)=
∏

(i,j)∈D

(
p(ui)

[
p(ej)

rij (1−p(ej))1−rij
]
+(1−p(ui))

[
(1−p(ej))rijp(ej)1−rij

])
,

where p(ej) is a probability of a positive event ej (i.e., the reliability of a
warning) and p(ui) is a probability that a user ui sends a reliable report (i.e,
the reliability of the user). Although these parameters are initially unknown,
their values may be estimated using the submitted reports. The problem can
be formulated and solved by maximizing the likelihood of observed data,
p(D), which is the core of the Expectation Maximization (EM) algorithm [2].

3.3 Experimental Study

The two methods of reliability estimation were compared on a set of user
reports generated during a nine-month period of 2007 in the area surrounding
the city of Poznań. Only reports related to speed cameras were used; 954
reports were available in this setting.

The modified voting and the EM algorithm both use a reliability threshold
to filter unreliable warnings. The values of the threshold were varied from 0
to 1 with 0.1 step.

A reference set of warnings (ground-truth) was available in this exper-
iment, as precise information on the existence of speed cameras in the 43
places mentioned in users’ reports was acquired. In 29 cases the speed cam-
eras did exist (reliability equal to 100%), while in 14 cases they did not exist
(reliability equal to 0%). One may notice, however, that the reference set is
not a properly drawn random sample of potential speed camera positions.

To measure the quality of the approaches we use the number of warnings
reported by the methods and the mean square error (MSE) of the reliability
of the reported warnings with respect to the ground-truth. We only consider
warnings that matched the ground truth (this makes it an optimistic estimate,
as we do not count warnings that are not related to any of the considered 43
potential places).

The results of the experiment are shown in Table 1. Its contents reveals
that the EM algorithm significantly outperforms the voting method for all
thresholds. It is also worth noting that, starting from the threshold equal
to 0.6, the EM algorithm generates 20 ground-truth warnings with perfect
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Table 1 Comparison of the two methods for estimating reliability of warnings: the voting

method and the EM algorithm

Threshold Voting EM

#warnings MSE #warnings MSE

0.0 34 0.120 35 0.094
0.1 34 0.120 34 0.096

0.2 34 0.120 31 0.080

0.3 34 0.120 31 0.080
0.4 32 0.118 22 0.022

0.5 30 0.115 21 0.014

0.6 29 0.109 20 0.000
0.7 24 0.052 20 0.000

0.8 16 0.013 19 0.000

0.9 09 0.006 19 0.000
1.0 00 0.000 17 0.000

precision: MSE series approaches 0. A similar case for the voting algorithm
starts from 0.8, but then the number of matched warnings starts to fall and
its drop in MSE is mainly due to that fall.

4 Estimating the Travel Time

This section illustrates the analysis of data for finding fastest routes, which
can be effectively found only when the system has access to accurate estimates
of travel times for each road segment. In other words, the goal is to predict
the vehicle’s travel time between two given points on a road network, which,
in order to reduce its computational complexity, is cast to that of estimating
the travel time on single road segments.

4.1 The Prediction Model

More formally, we formulate the problem as a prediction of an unknown value
of the vehicle travel time yst on a particular road segment s ∈ {1, . . . , S} in a
given time point t. The task is then to find a function f(s, t) that estimates
the value of yst using a set of training samples {(yi, si, ti)}Ni=1. We measure
the accuracy of a single prediction ŷst = f(s, t) by a loss function L(yst, ŷst),
which determines the penalty for predicting ŷst when its true value is yst. A
reasonable loss function in this case is the squared error loss:

L(yst, ŷst) = (yst − ŷst)2.
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The whole procedure involves constructing two distinct models, which are
finally merged into one, combined model.

The first model, referred to as static, is responsible for predicting overall
trends in the traffic. It uses a set of past observations, discovering (potentially
existing in the data) repeatable traffic flow patterns (e.g. “at every Sunday
morning, on a road segment in the city centre, the traffic is low”). This
stability constitutes its strength (the ability to predict for the long-term, e.g.
with a horizon of a few days), but also its weakness (the inability to react to
dynamically changing traffic situation).

This poor reactivity is the main reason for introducing the second model,
referred to as dynamic, which exploits recent observations in real-time. Its
goal is to use the most recent of the incoming data to improve the short-term
predictions of the static model fs(s, t). The dynamic model is introduced to
account for those changes in the traffic that cannot be explained by exploiting
its long-term and periodic behaviour.

The resulting model combines the estimates delivered by the static and
dynamic models in the following way:

f(s, t) =
λ

rd(s, t) + λ
fs(s, t) +

rd(s, t)

rd(s, t) + λ
fd(s, t), (1)

where rd(s, t) ≥ 0 is a reliability of the dynamic model fd for a given segment
s and a given time point t, and λ ≥ 0 is a mixing parameter (tuned exper-
imentally). The reliability defines our trust in the dynamic model. If there
are only few or no recent observations, then rd should be set to a value close
to zero or to zero, respectively.

In the following, we use simple static and simple dynamic models to il-
lustrate the capability of the combined model to accurately estimate travel
times in the traffic network. Despite their simplicity, these two models, when
combined, are powerful enough to be used in practical situations.

4.2 The Static and Dynamic Components

The simplest static model, referred to as the global mean, is based on global
averaging:

fs(s, t) = l(s)×
∑N

i=1 yi∑N
i=1 l(si)

, (2)

where l(s) is the length of the segment s.
The significant improvement of this model can be obtained by using the

segment mean model, which averages the travel times on each road segment
separately:

fs(s, t) =

∑
si=s yi∑
si=s 1

. (3)
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The particular dynamic model fd is constructed as a time series for each
road segment. Prediction fd(s, t) for a given segment s and a given time
point t is computed using previous observations ysti , ti < t, from segment
s. Training data are then represented for each segment s ∈ {1, . . . S} in
the form (yst1 , yst2 , . . . , ystNs

), where Ns is the number of observations for
segment s. These observations are aggregated by being averaged over a given
time interval T (tuned experimentally):

fd(s, t) =

∑
t−ti<T ysti∑
t−ti<T 1

. (4)

The reliability parameter rd(s, t) of this model is set to the number of
observations from T , i.e., to (

∑
t−ti<T 1). Thus, we can reformulate the final,

combined model (1) to:

f(s, t) =
λfs(s, t) +

∑
t−ti<T ysti

λ+
∑

t−ti<T 1
, (5)

which produces as its output a weighted average over the static model and
the most recent observations.

4.3 Experimental Study

In the experiments, we use floating car data that cover the area of Poznań
with broad surroundings. The area can be defined as a rectangular envelope
with side lengths of above 60 km, centred at 52.3964°N 16.8421°E. In the time
domain, the observations span three weeks of 2011: from September 12th till
October 2nd, collected between 5:00 a.m. and the midnight (i.e. excluding
night hours). The entire data set contains about 3.8 million observations. It
should be stressed, however, that the observations are sparse and not evenly
distributed in time and space.

We split the data into two parts: the training set and the test set. The
training set covers the observations collected during the first two weeks, i.e.
from September 12th till September 25th, and is used to construct the static
model and to tune the λ parameter. The test set covers observations collected
during the last week, i.e. from September 26th till October 2nd, and is used
to test the overall performance of the models.

We use in total three methods for travel time estimation: the global mean
(GM), the segment mean (SM), and the combination of the segment mean
with the dynamic model (CM). We take the observations from the last 5, 15,
30, 60, 120 minutes for building the dynamic model and optimize λ in range
[0.0, 5.0] with step 0.5.
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Table 2 Results of the three models on test set. Mean absolute (MAE) and root mean

squared error (RMSE) are reported.

Model MAE [min] MAE [%] RMSE [min] RMSE [%]

GM 0.1818 100.0 0.5464 100.00

SM 0.1322 72.74 0.4710 86.20
CM, λ=0.0, T = 5 min 0.1322 72.74 0.4710 86.20

CM, λ=2.0, T = 15 min 0.1287 70.80 0.4567 83.58

CM, λ=2.0, T = 30 min 0.1260 69.33 0.4430 81.07
CM, λ=2.5, T = 60 min 0.1247 68.61 0.4357 79.73

CM, λ=4.0, T = 120 min 0.1255 69.05 0.4344 79.50

The results of the experiment are shown in Table 2. The table reveals that the
segment mean improves significantly over the global mean, and the dynamic
model improves further over the segment mean. This is due to the adaptive
nature of the dynamic model. Interestingly, the best results are obtained for
the time interval T equal to 120 minutes.

5 Conclusions

The paper describes the range of services offered by the NaviExpert’s Com-
munity Traffic system, a next generation interactive technology that uses var-
ious kinds of user-supplied data for finding and recommending best routes
during the navigation phase. The development of such systems is directed
towards building community networks of their users. Interacting actively
with the system, the community can provide data of enormous usability.
Their most obvious application is in current route finding, which in result
becomes much more reactive to unpredictable traffic-delaying and traffic-
jamming events. Another, exclusively community-oriented, application is in
shaping the system services, the quality of which may be positively influenced
by the community’s feedback. Still another application, arising from cooper-
ation with other communities, includes utilizing evaluations of pre-defined
objects (e.g. points of interest) supplied by users of those communities.

In two small case studies the papers illustrates an experimental evalua-
tion of two important aspects of the complex data processing carried out
by the system: the reliability of information submitted by the community,
and the flexibility of the travel time prediction. In each case, two different
types of methods were tested: a basically simple, but computationally little
demanding method (simple voting in reliability estimation and simple aver-
aging in travel time estimation) and a more advanced, but computationally
more demanding method (expectation maximization in reliability estimation
and combined model in travel time estimation). In both cases the more ad-
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vanced methods significantly outperformed the simple ones, achieving results
that make these methods useful enough to be used to practical applications,
despite their increased computational demands.

Acknowledgements This research is as a part of the project UDA-POIG.01.04.00-30-

066/11-00 carried out by NaviExpert Sp. z o. o., co-financed by the European Regional

Development Fund under the Operational Programme ‘Innovative Economy’.

References

1. Billings, D., Yang, J.: Application of the ARIMA models to urban roadway travel time

prediction — a case study. In: IEEE International Conference on Systems, Man and
Cybernetics, 2006. SMC’06, vol. 3 (2006)

2. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1997)
3. Hilligoss, B., Rieh, S.Y.: Developing a unifying framework of credibility assessment:

Construct, heuristics, and interaction in context. Information Processing and Man-

agement 44, 1467–1484 (2008)
4. Kubiak, M.: Credibility assessment in an on-line car navigation system by means of

the Expectation Maximization algorithm. Foundations of Computing and Decision

Sciences 32(4), 275–294 (2007)
5. Liu, H., van Lint, H., van Zuylen, H., Zhang, K.: Two distinct ways of using Kalman

filters to predict urban arterial travel time. In: Intelligent Transportation Systems

Conference, 2006. ITSC’06. IEEE, pp. 845–850. IEEE (2006)
6. Premaratne, K., Nunez, R., Wickramarathne, T., Murthi, M., Pravia, M., Kuebler, S.,

Scheutz, M.: Credibility assessment and inference for fusion of hard and soft informa-

tion. In: Proceedings of AHFE (2012)
7. Rice, J., Van Zwet, E.: A simple and effective method for predicting travel times on

freeways. Intelligent Transportation Systems, IEEE Transactions on 5(3), 200–207
(2004)

8. Tseng, S., Fogg, B.J.: Credibility and computing technology. Communications of the

ACM 42(5), 39–44 (1999)
9. Van Lint, J., Hoogendoorn, S., Van Zuylen, H.: Accurate freeway travel time prediction

with state-space neural networks under missing data. Transportation Research Part

C 13(5–6), 347–369 (2005)
10. Wan, K., Kornhauser, A.: Turn-by-turn routing decision based on copula travel time

estimation with observable floating-car data. In: Transportation Research Board 89th

Annual Meeting, 10-2723 (2010)
11. Zhu, T., Kong, X., Lv, W., Zhang, Y., Du, B.: Travel time prediction for float car

system based on time series. In: Advanced Communication Technology (ICACT),
2010 The 12th International Conference on, vol. 2, pp. 1503–1508 (2010)


