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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to deal with multi-criteria classification problems, where data
may be inconsistent with respect to the dominance principle. However, in
real-life datasets, in the presence of noise, the notions of lower and upper
approximations handling inconsistencies were found to be excessively
restrictive which led to the proposal of the variable consistency variant
of the theory. In this paper, we deal with a new approach based on DRSA,
whose main idea is based on the error corrections. A new definition of
the rough set concept known as generalized decision is introduced, the
optimized generalized decision. We show its connections with statistical
inference and dominance-based rough set theory.

1 Introduction

The multicriteria classification problem [10] consists in assignment of objects to
pre-defined decision classes Cly, t € T = {1,...,n}. It is assumed that the classes
are preference-ordered according to an increasing order of class indices, i.e. for all
r,s € T, such that r > s, the objects from C1,. are strictly preferred to the objects
from Cl,. The objects are evaluated on a set of condition criteria (i.e., attributes
with preference-ordered domains). It is assumed that a better evaluation of an
object on a criterion, with other evaluations being fixed, should not worsen its
assignment to a decision class. The problem of multicriteria classification can also
be seen as a data analysis problem, under assumption of monotone relationship
between the decision attribute and particular condition attributes, i.e. that the
expected decision value increases (or decreases) with increasing (or decreasing)
values on condition attributes. This definition is valid only in the probabilistic
sense, so it may happen that there exists in the dataset X an object x; not worse
than another object xx on all condition attributes, however z; is assigned to a
worse class than zj; such a situation violates the monotone nature of data, so
we shall call objects x; and xy inconsistent with respect to dominance principle.



Rough set theory [9] has been adapted to deal with this kind of inconsistency
and the resulting methodology has been called Dominance-based Rough Set Ap-
proach (DRSA) [5,6]. In DRSA, the classical indiscernibility relation has been
replaced by a dominance relation. Using the rough set approach to the analy-
sis of multicriteria classification data, we obtain lower and the upper (rough)
approximations of unions of decision classes. The difference between upper and
lower approximations shows inconsistent objects with respect to the dominance
principle. Another, equivalent picture of this problem can be expressed in terms
of the generalized decision concept [3,4].

Unfortunately, it can happen, that due to the random nature of data and
due to the presence of noise, we loose too much information, thus making the
DRSA inference model not accurate. In this paper, a new approach is proposed,
based on combinatorial optimization for dealing with inconsistency, which can
be viewed as a slightly different way of introducing variable precision in the
DRSA. The new approach is strictly based on the generalized decision concept.
It is an invasive method (contrary to DRSA), which reassigns the objects to
different classes when they are traced to be inconsistent. We show, that this
approach has statistical foundations and is strictly connected with the standard
dominance-based rough set theory.

We assume that we are given a set X = {x1,..., 24}, consisting of £ objects,
with their decision values (class assignments) Y = {y1,...,ys}, where each y; €
T. Each object is described by a set of m condition attributes @ = {q1,.-.,qm}
and by domg; we mean the set of values of attribute g;. By the attribute space
we mean the set V' = domg; X ... x domg,,. Moreover, we denote the evaluation
of object z; on attribute g; by g;(z;). Later on we will abuse the notation a little
bit, identifying each object x with its evaluations on all the condition attributes,
x = (q1(x),...qn(z)). By a class Cl; C X, we mean the set of objects, such that
y; =t ie Cly={z; € X:y; =1t,1 <i < (}

The article is organized in the following way. Section 2 describes main ele-
ments of DRSA. Section 3 presents an algorithmic background for new approach.
The concept of optimized generalized decision is introduced in Section 4. In Sec-
tion 5 the connection with statistical inference is shown. The paper ends with
conclusions. Proofs of the theorems are omitted due to the space limit.

2 Dominance-based Rough Set Approach

Within DRSA [5,6], we define the dominance relation D as a binary relation
on X in the following way: for any z;, 2, € X we say that z; dominates xy,
x;Dxy, if on every condition attribute, x; has evaluation not worse than xy,
gj(x;) > gj(xk), for all 1 < j < m. The dominance relation D is a partial pre-
order on X, i.e. it is reflexive and transitive. The dominance principle can be
expressed as follows. For all x;,z; € X it holds:

inD.Z‘j = y; = Y (1)



The rough approximations concern granules resulting from information car-
ried out by the decisions. The decision granules can be expressed by unions of
decision classes: for all t € T

Clf ={mieX:y; >t}, ClF={z;€X:y; <t} (2)
The condition granules are dominating and dominated sets defined as:

Dt (z) ={x; € X : z; Dz}, D~ (z) ={z; € X : 2Dz, }. (3)

Lower rough approzimations of C’lt2 and Cltg, t € T, are defined as follows:

ClZ ={z; € X : D*(x;) CCIZ}, Clf ={z; € X : D (x;) CCIT}Y. (4)

Upper rough approzximations of C'ltZ and Cltg7 t € T, are defined as follows:

Cl; ={w; € X: D~ (x)NCIZ £0}, Ol ={x; € X : D*(x;) N CIE #0}.

()

In the rest of this section we focus our attention on the generalized decision

[3]. Consider the following definition of generalized decision §; = [l;, u;] for object
r; € X, where:

l; = min{y;: x;Dx;, x; € X}, (6)
u; = max{y;: x;Dz;,z; € X} (7

In other words, the generalized decision reflects an interval of decision classes
to which an object may belong due to the inconsistencies with the dominance
principle caused by this object. Obviously, I; < y; < u; for every x; € X and
if I; = uy, then object x; is consistent with respect to the dominance principle
with every other object z; € X.

Let us remark that the dominance-based rough approximations may be ex-
pressed using generalized decision:

CZ={zeX:l;>t} Cl, ={meX:u; >t}

- 8
CIF ={m;e X u <t} Ol ={z;eX:l <t} (®)

It is also possible to obtain generalized decision using the rough approxima-
tion:

l; = max {t:xi IS Qtz} = min {t:xi € @tg} (9)
u; = min {t:xi € @tg} = max {t:xi € @f} (10)

Those two descriptions are fully equivalent. For the purpose of this text
we will look at the concept of generalized decision from a different point of



view. Let us define the following relation: the decision range o = [I%, u®] is more
informative than 8 = [I%, u?] if « C 8. We show now that the generalized decision
concept (thus also DRSA rough approximations) is in fact the unique optimal
non-invasive approach that holds the maximum possible amount of information
which can be obtained from given data:

Theorem 1. The generalized decisions §; = [l;,u;], for x; € X, are most in-
formative ranges from any set of decisions ranges of the form a; = [I¢,ug] that
have the following properties:

1. The sets {(x;,1¢):x; € X} and {(x;, u):x; € X}, composed of objects with,
respectively, decisions I and u assigned instead of y; are consistent with
the dominance principle.

2. For each x; € X it holds I{ < wy; <wu.

3 Minimal Reassignment

A new proposal of the definitions of lower and upper approximations of unions of
classes is based on the concept of minimal reassignment. At first, we define the
reassignment of an object x; € X as changing its decision value y;. Moreover,
by minimal reassignment we mean reassigning the smallest possible number of
objects to make the set X consistent (with respect to the dominance principle).
One can see, that such a reassignment of objects corresponds to indicating and
correcting possible errors in the dataset, i.e. it is an invasive approach.

We denote the minimal number of reassigned objects from X by R. To com-
pute R, one can formulate a linear programming problem. Such problems were
already considered in [2] (in the context of binary and multi-class classification)
and also in [1] (in the context of boolean regression). Here we formulate a similar
problem, but with a different aim.

For each object x; € X we introduce n—1 binary variables di, t € {2,...,n},
having the following interpretation: d;; = 1 iff object x; € C’ltZ (note that always
d;1 = 1, since C’ll2 = X). Such interpretation implies the following conditions:

if ' >t then d;p < dj (11)

for all 4 € {1,...,¢} (otherwise it would be possible that there exists object x;
belonging to C’ltz,, but not belonging to C’ltz, where t' > t). Moreover, we give
a new value of decision y] to object z; according to the rule: y; = 1+ > 1, d;
(the highest ¢ such that x; belongs to C’ltz). So, for each object x; € U the cost
function of the problem can be formulated as R; = (1 — d; ) + d; y,+1. Indeed,
the value of decision for z; changes iff R; =1 [4].
The following conditions must be satisfied for X to be consistent according
to (1):
dit > djt Vi,jt J?iD.Z‘j 2 <t<n (12)



Finally, we can formulate the problem in terms of integer linear programming:

4 J4
minimize R = Z R, = Z ((1 — d’i,yi) + di,yﬁ-l) (13)
i=1 =1
subject to djpy < dy 1<i<t, 2<t<t' <n
dit > djy 1<i,j<¢ x;Dxj, 2<t<n
dir € {0,1} 1<i<{, 2<t<n

The matrix of constraints in this case is totally unimodular [2,8], because it
contains in each row either two values 1 and -1 or one value 1, and the right
hand sides of the constraints are integer. Thus, we can relax the integer condition
reformulating it as 0 < d;; < 1, and get a linear programming problem. In [2],
the authors give also a way for further reduction of the problem size. Here, we
prove a more general result using the language of DRSA.

Theorem 2. There always exists an optimal solution of (13), yi = 1+ o d};,
for which the following condition holds: [; < y! <wu;, 1 <i</.

Theorem 2 enables a strong reduction of the number of variables. For each
object x;, variables d;; can be set to 1 for ¢ < [;, and to O for ¢ > wu;, since there
exists an optimal solution to (13) with such values of the variables. In particular,
if an object z; is consistent (i.e. [; = u;), the class assignment for this object
remains the same.

4 Construction of the Optimized Generalized Decisions

The reassignment cannot be directly applied to the objects from X, since the
optimal solution may not be unique. Indeed, in some cases one can find different
subsets of X, for which the change of decision values leads to the same value of
cost function R. It would mean that the reassignment of class labels for some
inconsistent objects depends on the algorithm used, which is definitely undesir-
able. To avoid that problem, we must investigate the properties of the set of
optimal feasible solutions of the problem (13).

Let us remark the set of all feasible solutions to the problem (13) by F', where
by solution f we mean a vector of new decision values assigned to objects from
X, ie f={(f1,...,fe), where f; is the decision value assigned by solution f to
object x;. We also denote the set of optimal feasible solutions by OF'. Obviously,
OF C F and OF # ), since there exist feasible solutions, e.g. f = (1,...,1).

Assume that we have two optimal feasible solutions f = (f1,..., f¢) and
g = (g1,---,9¢).- We define “min” and “max” operators on F as min{f, g} =
(min{f1,01},...,min{fr, g¢}) and max{f, g} = (max{f1,91},..., max{fe,ge}).
The question arises, whether if f,g € OF then min{f, ¢} and max{f, g} also
belong to OF? The following lemma gives the answer:

Lemma 1. Assume f,g € OF. Then min{f, g}, max{f,g} € OF.



Having the lemma, we can start to investigate the properties of the order in
OF. We define a binary relation > on OF as follows:

Vigeor (f=geVicicefi > gi) (14)

It can be easily verified that it is a partial order relation. We now state the
following theorem:

Theorem 3. There exist the greatest and the smallest element in the ordered
set (OF, =)

Theorem 3 provides the way to define for all x; € X the optimized generalized

decisions 0} = [IF,u}] as follows:
ul =y =max{f;: f € OF} (16)

Of course, both [* and u* are consistent with respect to dominance principle
(since they belong to OF). The definitions are more resistant to noisy data,
since they appear as solutions with minimal number of reassigned objects. It
can be shown that using the classical generalized decision, for any consistent set
X we can add two “nasty” objects to X (one, which dominates every object
in X, but has the lowest possible class, and another which is dominated by
every object in X, but has the highest possible class) to make the generalized
decisions completely noninformative, i.e. for every object x; € X, I; equals to
the lowest possible class and u; equals to the highest possible class. If we use
the optimized generalized decisions to this problem, two “nasty” objects will be
relabeled (properly recognized as errors) and nothing else will change.

Optimized generalized decision is a direct consequence of the non-uniqueness
of optimal solution to the minimal reassignment problem (so also to the prob-
lems considered in [2,1]). Also note that using (15) and (16) and reversing the
transformation with 8 we end up with new definitions of optimized lower and
upper approximations.

The problem which is still not solved is how to find the smallest and the
greatest solutions in an efficient way. We propose to do this as follows: we modify
the objective function of (13) by introducing the additional term:

R=e> > du (17)

and when we seek the greatest solution we subtract R’ from the original objective
function, while when we seek the smallest solution we add R’ to the original
objective function, so we solve two linear programs with the following objective
functions:

V4
Ri=Y Ri+R =R+R (18)

i=1



To prove, that by minimizing the new objective function we indeed find what
we require, we define I = Zle(ui —1;). The following theorem holds:

Theorem 4. When minimizing objective functions (18) one finds the smallest
and the greatest solution provided ¢ < I71.

Note that the solutions to the modified problem are unique.

5 Statistical Base of Minimal Reassignment

In this section we introduce a statistical justification for the described approach.
We counsider here only the binary (two-class) problem, however this approach can
be extended to the multi-class case. We state the following assumptions: each
pair (z;,y;) € X x Y is a realization of random vector (X,Y), independent and
identically distributed (i.i.d.) [7,12]. Moreover, we assume that the statistical
model is of the form Y = b(X) & ¢, where b(-) is some function, such that
b(z) € {0,1} for all x € V and b(zx) is isotonic (monotone and decreasing) for
all z € V. We observe y which is the composition (& is binary addition) of b(x)
and some variable e which is the random noise. If ¢(z) = 1, then we say, that the
decision value was misclassified, while if €(z) = 0, than we say that the decision
value was correct. We assume that Pr(e = 1) < % = p and it is independent of
x, so each object is misclassified with the same probability p.

We now use the maximum likelihood estimate (MLE). We do not know the
real decision values b(z;) = b; for all z; € X and we treat them as parameters.
We fix all z; and treat only y; as random. Finally, considering B = {b1,...,bs}
and denoting by ¢; the value of variable € for object x;, the MLE is as follows:

4

L(B;Y) = Pr(Y|B) = [ | Pr(yilb:) HP“ —p)' (19)
i=1

Taking minus logarithm of (19) (the negative 1og—hkehhood) we equivalently
minimize:

~

¢
—InL(B;Y) Zezlnp l—ei)ln(l—p))zlnl_pZei—i-fln(l—p)

i=1 i=1
(20)
We see, that for any fixed value of p, the negative log-likelihood reaches its
minimum when the sum Zle €; is minimal. Thus, for any p, to maximize the
likelihood, we must minimize the number of misclassifications. This is equivalent
to finding values b;,1 < i < ¢, which are monotone, i.e. consistent with the
dominance principle, and such that the number of misclassifications Zle € =

Zle |b; — y;| is minimal. Precisely, this is the two-class problem of minimal
reassignment.

Finally, we should notice that for each € X, b(x) is the most probable
value of y (decision) for given z, since p < % Therefore, we estimate the decision



values, that would be assigned to the object by the optimal Bayes classifier [7],
i.e. the classifier which has the smallest expected error.

6 Conclusions

We propose a new extension of the Dominance-based Rough Set Approach
(DRSA), which involves a combinatorial optimization problem concerning min-
imal reassignment of objects. As it is strongly related to the standard DRSA,
we describe our approach in terms of the generalized decision concept. By reas-
signing the minimal number of objects we end up with a non-univocal optimal
solution. However, by considering the whole set of optimal solution, we can op-
timize the generalized decision, so as to make it more robust in the presence of
noisy data.

On the other hand, reassigning the objects to different classes in view of
making the dataset consistent, has a statistical justification. Under assumption
of common misclassification probability for all of the objects, it is nothing else
than a maximum likelihood estimate of the optimal Bayes classifier.
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