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Abstract —We consider the problem of ordinal classification with mono-
tonicity constraints. It differs from usual classification by handling back-
ground knowledge about ordered classes, ordered domains of attributes
and about a monotonic relationship between an evaluation of an object
on the attributes and its class assignment. In other words, the class label
(output variable) should not decrease when attribute values (input vari-
ables) increase. Although this problem is of great practical importance,
it has received relatively low attention in machine learning. Among
existing approaches to learning with monotonicity constraints, the most
general is the nonparametric approach, where no other assumption is
made apart from the monotonicity constraints assumption. The main
contribution of this paper is the analysis of the nonparametric approach
from statistical point of view. To this end, we first provide a statistical
framework for classification with monotonicity constraints. Then, we
focus on learning in the nonparametric setting, and we consider two
approaches: the “plug-in” method (classification by estimating first the
class conditional distribution) and the direct method (classification by
minimization of the empirical risk). We show that these two methods are
very closely related. We also perform a thorough theoretical analysis of
their statistical and computational properties, confirmed in a computa-
tional experiment.

Index Terms —Machine learning, monotonicity constraints, ordinal clas-
sification, ordinal regression, preference learning, nonparametric meth-
ods, isotonic regression, isotonic classification, monotone functions.

1 INTRODUCTION

Using background knowledge is of fundamental im-
portance in the learning process. A common type of
such knowledge, concerning data describing decision
problems, is a monotone relationship between input and
output variables. Consider evaluations of objects on ordi-
nal attributes, and decision about their class assignment
to some ordered classes. It is often rational to assume
that the better the evaluation of an object on considered
attributes (input variables), the better its class assign-
ment (output variable). For instance, “the higher the debt
ratio of a company, the higher its level of bankruptcy
risk”; “the better education and experience level of a
candidate for a job, the higher his/her position in the
selection process”. This assumption, commonly accepted
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in decision analysis, is called dominance principle. It is
just a kind of background knowledge referring to so-
called ordinal classification with monotonicity constraints.
Such background knowledge is particularly important in
the decision problems involving preferences, like social
choice, mutliple criteria decision making, or decision
under risk and uncertainty. In these decision problems,
attributes are called criteria [1], [2]; learning from such
data is called preference learning [3]. However, dominance
principle is not limited to preference learning, as other
problems may need to obey this principle, for instance,
discovering laws in physics, like “the greater the mass
and the smaller the distance, the higher the gravity”.
Indeed, monotonicity constraints are frequently en-

countered in data analysis. For example, in the cus-
tomer satisfaction analysis [4], the overall evaluation of
a product by a customer should increase with increasing
evaluations of the product on a set of attributes. In the
house pricing problem [5], the selling price of the house
should increase with, e.g., lot size, number of rooms, and
decrease with, e.g., crime rate or pollution concentration
in the area. Monotonicity also occurs in such domains
as bankruptcy risk prediction [6], option pricing [7],
medical diagnosis [8], [9], credit approval [10], survey
data [11] and many others.
The need of handling background knowledge about

ordinal evaluations and monotonicity constraints in the
learning process led to the development of new algo-
rithms. The examples of such algorithms are Dominance-
based Rough Set Approach (DRSA) [1], [12] along with
decision rule induction [13]–[15], rule ensembles [16],
monotone classification trees [5], [17]–[19], monotone
networks [20], instance-based methods [11], [21], [22]
or isotonic separation [23]. Related problems, where the
classes are ordered, but there are no monotonicity rela-
tionship between attribute evaluation and class assign-
ment, are considered in machine learning and statistics
under the name ordinal regression [24], [25].
The approaches mentioned above assume some partic-

ular class of monotone classification functions (e.g., sets
of rules, neural networks, decision trees, etc.) and pick
one function from that class, based on the training data
(e.g., by minimizing the training error). Interestingly,
when the monotonicity constraints are present, it is
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possible to efficiently work with a very general class
of functions, which put no constraints on the function’s
shape other than the monotonicity constraint [22], [26],
[27]. In other words, it is possible to efficiently do
inference in the class of all monotone functions. We
refer to such an approach as nonparametric approach. It
has the advantage of not making any additional, ill-
founded assumptions about the model apart from the
only justified background knowledge: the monotonicity
constraints. Moreover, even if the learning algorithm
deals with restricted class of monotone functions (e.g.
decision rules, nearest neighbors), the nonparametric
approach can be used as an initial preprocessing pro-
cedure for relabeling the data set and making it obey
the monotonicity constraints; this serves as the nonpara-
metric error correction, based solely on the monotonicity
constraints assumption – such an approach was used,
e.g., in [16], [22], [23], [26].
Although several methods for learning with mono-

tonicity constraints were proposed, there exists no the-
oretical framework for their analysis. In this paper, we
provide such a framework, based on the statistical ap-
proach to the problem. Then, we analyze the compu-
tational and statistical properties of the nonparametric
approach in this framework. Thus, the main contribu-
tion of this paper is twofold. First, we formalize the
approach to learning with monotonicity constraints from
statistical point of view. We show how such constraints
can be handled by making general assumptions about
probability distribution generating the data. We also
formulate necessary and sufficient conditions imposed
on the structure of the loss function, under which the
optimal Bayes classifier is monotone.
Secondly, we analyze nonparametric classification

methods. We consider two general approaches to clas-
sification: the ”plug-in” approach (classification by esti-
mating the class conditional distribution) and the direct
approach (classification by minimization of the empirical
risk). The plug-in approach is based on the multiple
isotonic regression. Although isotonic regression was ex-
tensively studied in the context of regression problems,
hypothesis testing and probability estimation in the
Bernoulli model [28]–[30], application of isotonic regres-
sion to multi-class ordinal classification is a new result.
The direct approach (to which we refer as isotonic classi-
fication) is based on a linear program. We show how the
generalK-class problem can be decomposed into a series
of binary-class subproblems. We also show how to speed
up learning by exploiting some properties of the data,
which allow us to remove some of the variables from
the problem. We analyze the relationship between plug-
in and direct approaches, and show that they coincide
for a large class of loss function. We also investigate their
asymptotic consistency. Finally, we verify the methods in
the extensive computational experiment.
The introduced statistical framework is the original

contribution of the paper, following some preliminary
results from [16], [26]. The nonparametric methods pre-

sented here were initially considered in [22], [22], [26],
[27], but the multiple isotonic regression, its relationship
to isotonic classification, and the analysis of computa-
tional and statistical properties of the two methods are
new.

2 PROBLEM STATEMENT

Let (x, y) ∈ X × Y be an object-label pair generated
according to some unknown distribution P (x, y), where
y is a class label from a finite set of ordered labels
Y = {1, . . . ,K}, x is the object’s description and X is the
input space1. The goal is to find a classifier h : X → Y ,
that accurately predicts value of y using the knowledge
about the object expressed by means of x. The accuracy
of a single prediction ŷ is measured in terms of a loss
function L(y, ŷ), which is a penalty for predicting ŷ when
the actual value is y. The overall accuracy of classifier h
is defined as the expected loss (risk) according to the
probability distribution P (x, y) of the data:

L(h) = E[L(y, h(x))]. (1)

A Bayes classifier is a function h∗ minimizing the expected
loss, h∗ = argminh L(h). The minimum L∗ = L(h∗) is
called the Bayes risk. It follows that [31]:

h∗(x) = argmin
k∈Y

∑

y∈Y

L(y, k)P (y|x). (2)

In other words, h∗(x) minimizes the expected loss at x,
where the expectation is with respect to conditional class
distribution P (y|x). Using Bayes classifier is the best one
can do. Unfortunately, P (x, y) is usually unknown, thus
h∗ is also unknown and the goal is to learn a good
approximation of h∗ using an i.i.d. sample of n training
examples D = {(x1, y1), . . . , (xn, yn)}, called a training
set. There are two general approaches to this problem.
The first approach, referred to as plug-in method, is based
on estimating the conditional distribution P (y|x) by a
set of K functions p̂1(x), . . . , p̂K(x), such that p̂k(x) is the
estimator of P (y = k|x). Then, the classifier ĥ is obtained
by plugging the probability estimators into the definition
of the Bayes classifier (2), i.e.:

ĥ(x) = argmin
k∈Y

∑

y∈Y

L(y, k)p̂y(x). (3)

The second approach is to directly learn a classifier by
minimizing the empirical risk:

LD(h) =
1

n

n
∑

i=1

L(yi, h(xi)),

within some family of classification functions H, i.e.:

ĥ = argmin
h∈H

LD(h). (4)

This approach will be referred to as direct method.

1. Throughout the text, we denote by lower case letters both random
variables and their actual values, which, hopefully, should not lead to
a confusion.
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It is reasonable to assume that L(k, k) = 0 and
L(y, k) > 0 if y 6= k for y, k = 1, . . . ,K . The loss should
also be consistent with the order between class labels,
in the sense that the loss should not decrease, as the
predicted value moves away from the true value. Hence,
following [25], we assume the loss matrix is V-shaped: for
k ≤ y it holds L(y, k − 1) ≥ L(y, k), while for k ≥ y it
holds L(y, k) ≤ L(y, k + 1).

Notice that until now, the proposed framework bears
close resemblance to the problem of ordinal regression.
What makes it specific is the presence of monotonic-
ity constraints. We assume that objects are described
in terms of m input variables with ordered domains.
Therefore, without loss of generality, X ⊆ R

m and object
x is an m-dimensional vector x = (x1, . . . , xm). We
exploit the order properties of X by using the available
knowledge given in terms of dominance relation. We say
that x dominates x′, denoted by x � x′, if each coordinate
(input variable) of x is not smaller than the respective
coordinate of x′, xs ≥ x′s, s = 1, . . . ,m. Notice, that
dominance relation is a partial order on X . The mono-
tonicity constraints require that if x � x′, then x should
be assigned a class label greater or equal to x′.

In the nonparametric procedures considered here, the
dominance relation is the only information about X
which is taken into account: no other properties of x
(such as description in terms of the input variables) are
used. Therefore, one can even consider a more general
setting, in which the dominance relation is a primal con-
cept given in the problem, while the internal structure of
objects is not specified. In other words, we are only given
a partially ordered set (X ,�) and i.i.d. sample D of n
elements from X (along with their class labels). All the
methods considered in this paper are directly applicable
to such a general case.

In the paper, we denote objects from the training set
D by xi or xj , where i, j = 1, . . . , n; if we consider any
object from the whole space X , we denote it by x or x′.
Indices i and j always run in the set {1, . . . , n}, while in-
dices k and y in the set {1, . . . ,K}. We use bold symbols
only for n-dimensional vectors, e.g. y = (y1, . . . , yn).

Let us call a function h : X → Y monotone if for any
x, x′ ∈ X it holds x � x′ → h(x) ≥ h(x′). Let us call
a vector v = (v1, . . . , vn) ∈ Yn monotone, if for each
i, j = 1, . . . , n it holds: xi � xj → vi ≥ vj . In other
words, monotone vectors are defined on the training set
D, while monotone functions on the whole space X .

3 MONOTONICITY CONSTRAINTS

In this section, we formalize the concept of monotonicity
constraints from statistical point of view, by imposing
constraints on the probability distribution generating
the data. Then, we formulate necessary and sufficient
conditions imposed on the structure of the loss function,
under which the optimal Bayes classifier is monotone.

3.1 Stochastic Dominance

The monotonicity constraints require that if x � x′ then
x should be assigned a class not lower than that of x′.
In practice, these constraints are not always satisfied,
which suggests that the order relation � does not impose
“hard” constraints, so that the constraints should rather
be defined in a probabilistic setting. Consider two points
x, x′ ∈ X , such that x � x′. The core of the concept of
monotonicity constraints lies in the following assump-
tion: fix k ∈ {1, . . . ,K}; then, the probability that x will
get class label equal to at least k should not be smaller
than the probability that x′ will get class label equal to
at least k:

P (y ≥ k|x) ≥ P (y ≥ k|x′). (5)

In other words, the probability of the event {y ≥ k} is
a monotone function for every k. Since P (y ≥ k) = 1 −
P (y < k), (5) is equivalent to P (y ≤ k|x) ≤ P (y ≤ k|x′)
for each k. Notice, that (5) is a relation between two
probability distributions, conditioned at x and x′, respec-
tively. This relation is known as (first order) stochastic
dominance [32]. We overload the symbol � and use it
also to denote the stochastic dominance relation between
distributions. Therefore, (5) can be concisely written as:

x � x′ =⇒ P (y|x) � P (y|x′), (6)

where P (y|x) and P (y|x′) denote the class conditional
distributions at x and x′, respectively. We will call a prob-
ability distribution monotonically constrained if it satisfies
(6). Notice that in [11], [33] stochastic dominance was
also used, but to define the properties of the estimator,
not the properties of the probability distribution.

3.2 Monotone Bayes Classifier

In the classification problem, we aim at finding the classi-
fier which is as close as possible to the Bayes classifier. In
other words, the Bayes classifier is our “target function”
which we try to approximate. Thus, not surprisingly,
we require that in the classification with monotonic-
ity constraints the Bayes classifier must be monotone2.
Remark, however, that although the probability distri-
bution is monotonically constrained, the monotonicity
of the Bayes classifier does not always hold. For in-
stance, the Bayes classifier for 0-1 loss (the mode of
the distribution) is not monotone under stochastic domi-
nance assumption. Indeed, consider the following 3-class
counter-example: let x � x′ and let us define the condi-
tional distributions at x and x′ as P (y|x) = (0.1, 0.5, 0.4)
and P (y|x′) = (0.3, 0.3, 0.4). Although P (y|x) � P (y|x′),
the mode of P (y|x′) (output of the Bayes classifier) is 3,
while the mode of P (y|x) is 2.
It appears that some specific constraints must be im-

posed on the loss function in order to maintain the

2. The Bayes classifier may not be unique, because it is defined only
up to a zero measure set. To avoid this problem, we assume that for
every x ∈ X , the Bayes classifier returns the class label k with the
smallest conditional risk E[L(y, k)|x]; in case of ties on the conditional
risk, the lowest label is always chosen.
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monotonicity of the Bayes classifier. They are given in
the following theorem:
Theorem 1: Let the loss function L(y, k) be V-shaped.

The Bayes classifier is monotone for every monotonically
constrained distribution P (x, y) if and only if the loss
function satisfies for every y, k ∈ {1, . . . ,K − 1}, the
following condition:

L(y, k + 1)− L(y, k) ≥ L(y + 1, k + 1)− L(y + 1, k). (7)

The proof can be found in the Appendix. It follows
from Theorem 1 that condition (7) is necessary and
sufficient for monotonicity of the Bayes classifier. The
latter property is desired in the classification with mono-
tonicity constraints, otherwise there would be no point in
minimizing the risk within the class of monotone func-
tions. Therefore, we will call the loss function satisfying
(7) a monotone loss function.

3.3 Monotone Bayes Classifier and Convex Loss

We analyze condition (7) in case of a popular subclass of
the loss functions. Namely, the loss function is very often
expressed in the form L(y, k) = c(y − k), with c(0) =
0 and c(k) > 0 for k 6= 0. The loss functions of such
type are, for instance, 0-1 loss (c(k) = 1k 6=0),

3 absolute
error loss (c(k) = |k|), or squared error loss (c(k) = k2).
Moreover, every binary loss has this form, because it is
determined by two values L(1, 2) = c(−1) and L(2, 1) =
c(1).
Let Ȳ = {−(K− 1), . . . ,−1, 0, 1, . . . ,K − 1}. Let us call

a function c : Ȳ → R convex if for every k, such that
−(K − 1) < k < K − 1, we have:

c(k) ≤
c(k − 1) + c(k + 1)

2
. (8)

This is a natural definition of convexity for a function
defined over integer-valued domain. The convexity turns
out to be a crucial property determining the monotonic-
ity of the Bayes classifier:
Theorem 2: Let L(y, k) = c(y− k) be the V-shaped loss

function. Then, the Bayes classifier h∗(x) is monotone if
and only if c(k) is convex.

Proof: Condition (7) can now be expressed as:

c(y − k − 1)− c(y − k) ≥ c(y − k)− c(y − k + 1)

which is equivalent to condition (8).
Corollary 1: Let L(y, k) = |y − k|p, for p ≥ 0, be the

loss function, and let K ≥ 3. Then the Bayes classifier is
monotone if and only if p ≥ 1.

Proof: Function f(z) = |z|p is convex for p ≥ 1 and
strictly concave for p < 1. Therefore, condition (8) holds
if and only if p ≥ 1.
We assumed K ≥ 3, since when K = 2, every loss

function is convex (and thus monotone). Corollary 1 im-
plies that 0-1 loss (p → 0) does not result in the monotone
Bayes classifier, while absolute error loss (p = 1) and

3. 1A is an indicator function, equal to 1 if A is true, and 0 otherwise.

squared-error loss (p = 2) do ensure monotonicity. This
suggests that 0-1 loss is not a proper loss function for
ordinal classification for K ≥ 3, if one assumes stochastic
dominance between the conditional distributions.

3.4 Linear Loss Function

In this paper, we focus on a specific class of the loss
functions, called linear loss functions [34], defined as:

L(y, k) =

{

α(k − y) if k > y
(1− α)(y − k) if k ≤ y,

(9)

where 0 < α < 1. From Corollary 1, we immediately
have that the linear loss is a monotone loss function. For
α = 1

2 we have an absolute error loss lyk = |k− y| (up to
the proportional constant). The purpose of introducing
(9) is to model asymmetric cost of misclassification: for
α > 1

2 , predicting higher class than the actual class y
is more penalized than predicting the lower class; for
α < 1

2 we have the opposite situation. Such a loss
function can be useful e.g. in medicine: consider clas-
sifying patient into classes according to her/his health
condition: “good”, “moderate”, “bad”, “very bad”. Then,
predicting the patient’s condition to be better than it
really is, is usually more dangerous than predicting the
condition to be worse than it is. It is known [34], that
such a loss function is minimized by (1 − α)-quantile
of the conditional distribution4, i.e., by such y1−α that
P (y ≤ y1−α) ≥ 1−α and P (y ≥ y1−α) ≥ α . For α = 1

2 we
obtain the median of the distribution. Minimization of
the linear loss has a very important property of being in-
dependent of the particular encoding of the class labels.
Indeed, the quantile of a distribution is invariant under
any strictly monotonic (order-preserving) transformation
of the domain of the distribution.

4 THE PLUG-IN APPROACH

For the rest of the paper, we will consider nonparametric
methods of classification. They are called “nonparamet-
ric”, because they exploit the class of all monotone func-
tions. The nonparametric approach has the advantage of
not making any additional assumptions about the model
apart from the monotonicity constraints.
In this section, we consider the plug-in approach

to nonparametric classification. Since it follows from
(3), that the classifier is determined by the estimators
p̂1(x), . . . , p̂K(x) of the conditional class distribution, we
will need to construct a good method for estimating
P (y|x). Knowing P (y|x) has two main advantages: first,
the conditional distribution allows determination of the
optimal prediction for any loss function, according to
(2); secondly, the conditional distribution measures the
confidence of prediction. Our estimation method is based
on isotonic regression. This approach has been first pro-
posed by [35], [36], and, independently, by [37]. Here we

4. We remind that, in general, p-quantile of probability distribution
P (x) is defined as a value xp such that P (x ≤ xp) ≥ p and P (x ≥
xp) ≥ 1− p.
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analyze it for the first time in the statistical framework
for classification with monotonicity constraints.
Note that as a direct corollary from Theorem 1 we

have:
Corollary 2: Let ĥ : X → Y be a plug-in classifier

defined by (3) and let L(y, k) be a monotone loss func-
tions. Then ĥ is monotone, provided that for every
k = 2, . . . ,K , function:

P̂k(x) :=

K
∑

k′=k

p̂k′(x) (10)

is monotone, where p̂1(x), . . . , p̂K(x) are estimators of the
conditional class distribution.

Proof: We only need to apply Theorem 1 with dis-
tribution P (y ≥ k|x) := P̂k(x), which, according to (6),
is monotonically constrained if P̂k(x) is monotone for
every k = 2, . . . ,K .

Corollary 2 provides us with a natural constraint (10),
which should be satisfied by reasonable estimators of
the conditional class distribution.

4.1 Binary-class Problem and Isotonic Regression

Let us first restrict to the binary case (K = 2), and for the
sake of clarity, let us use the set of class labels Y = {0, 1}.
For each xi, we have a single estimator p̂1(xi), because
p̂0(xi) = 1 − p̂1(xi). Let us concisely denote p̂1(xi) as
p̂i. In the plug-in method for binary class problem, we
propose to use a vector conditional density estimators
p̂ = (p̂1, . . . , p̂n), which is an isotonic regression of the
vector of labels y = (y1, . . . , yn).
Let us call a vector p̂ = (p̂1, . . . , p̂n) an isotonic re-

gression of y = (y1, . . . , yn) if p̂ is the solution of the
following problem:

minimize:
∑n

i=1(yi − pi)
2

subject to: xi � xj =⇒ pi ≥ pj i, j = 1, . . . , n,
(11)

so that p̂ minimizes the squared error in the set of all
monotone vectors p = (p1, . . . , pn). The constraints in
(11) are necessary, as they correspond to monotonicity
constraints (10) which in turn guarantee monotonicity of
the classifier. Although choosing the squared error loss
as a measure of error seem arbitrary, it can be shown
that minimizing many other error functions yields to
the same solution p̂ [30]. In particular, it can be shown
that the isotonic regression is the maximum likelihood
estimator of probabilities given monotonicity constraints
(for details, and proof, see [30]).
The isotonic regression is a quadratic optimization

problem with linear constraints, and therefore can be
solved efficiently by most of general-purpose optimiza-
tion solvers. [38] proposed a heuristic algorithm giving
results close to optimum in O(n2). The exact algorithm
works in O(n4) [39]. However, the size of the prob-
lem can usually be significantly reduced beforehand. To
show this, we introduce an important property of the
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Fig. 1. Binary-class example with two input variables.
Objects with y = 0 are dark, while with y = 1 – light. The
estimate of probability of class 1, p̂i, is shown. Notice that
for consistent objects (x1, x5, x6, x9, x10) it holds yi = p̂i.

isotonic regression, which will be used several times in
this paper. A subset L ⊆ {x1, . . . , xn} is a lower set if
xi ∈ L implies xj � xi → xj ∈ L. Similarly, a subset
U is an upper set if xi ∈ U implies xj � xi → xj ∈ U .
For any vector f , let us denote by Av(f , A) = 1

|A|

∑

i∈A fi
the average value of f on a set A. Then, the following
theorem holds:

Theorem 3: [30]. Let p̂ be the isotonic regression of ŷ.
Then,

p̂i = min
L:xi∈L

max
U :xi∈U

Av(y, L ∩ U),

where the minimum and the maximum are taken over
all lower and upper sets, respectively.

Using Theorem 3, one can show that the isotonic regres-
sion problem can be significantly reduced, since the op-
timal values of some of the variables are known a priori.
Let us call object xi consistent if for every j = 1, . . . , n, it
holds: xi � xj → yi ≥ yj and xi � xj → yi ≤ yj . We can
use consistency property to significantly reduce the size
of the problem:

Theorem 4: Let p̂ be the isotonic regression of y. Then,
p̂i = yi if and only if object xi is consistent.

Proof: We consider the case yi = 1 (the case yi = 0
is analogous). If xi is consistent, then for every xj , such
that xj � xi, we have yj = 1. Thus, the upper set Ui =
{xj : xj � xi} includes only objects with yj = 1. But then,
for every lower set L, such that xi ∈ L, Av(y, L ∩ Ui) =
1, which by Theorem 3 implies p̂i = 1. Conversely, if xi

is not consistent, then there exists xj , such that xj � xi

and yj = 0; but then, for every upper set U , such that
xi ∈ U , we must have xj ∈ U . Choose any of such sets
and a trivial lower set L0 = {x1, . . . , xn}, and notice that
Av(y, L0 ∩ U) < 1, which by Theorem 3 implies p̂i < 1.

Thus, only consistent objects have optimal values
equal to 1 or 0. We can set p̂i = yi for each consistent
object xi and optimize (11) only for inconsistent objects,
which usually gives a large reduction of the problem
size (number of variables). A simple example of isotonic
regression is shown in Figure 1.
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4.2 Multi-class Problem

In the multi-class case, we propose an estimator based
on the multiple isotonic regression. The idea is to decom-
pose the K-class problem into a sequence of binary clas-
sification problems and apply isotonic regression to each
of the binary problems. Although each of the problems
is tackled separately, we prove that the final estimator is
a consistent conditional probability distribution.
Let Y = {1, . . . ,K}, and for a given xi let us define

K − 1 dummy values yik = 1yi≥k, k = 2, . . . ,K . We
can think of solving the general K-class problem in
terms of solving K − 1 binary problems. In the k-th
binary problem, dummy values yik play the role of class
labels with Y = {0, 1}, while variables of the problem
correspond to estimating the probabilities P (y ≥ k|xi).
Let us fix k = 2, . . . ,K . We define the vector of estimators
q̂k = (q̂1k, . . . , q̂nk) of the probabilities P (y ≥ k|xi), as the
isotonic regression of vector yk = (y1k, . . . , ynk), i.e. the
optimal solution to the problem:

minimize
∑n

i=1(yik − pi)
2

subject to xi � xj =⇒ pi ≥ pj i, j = 1, . . . , n.
(12)

Having obtained the solution of (12) for each k =
2, . . . ,K , we construct the estimators p̂ik of P (y = k|xi)
as:

p̂ik =







q̂ik if k = K,
q̂ik − q̂i,k+1 if 2 ≤ k < K,
1− q̂i,k+1 if k = 1.

(13)

These estimators are unique because the isotonic re-
gression is unique. They boil down to the previous
problem (11) in the binary-class case. However, as the
K − 1 problems (12) are solved independently, we must
guarantee that q̂ik < q̂i,k+1 will never happen, because
otherwise we would have negative probabilities p̂ik:
Theorem 5: For each i = 1, . . . , n, estimators

{p̂i1, . . . , p̂iK} form a probability distribution, i.e.
∑K

k=1 p̂ik = 1, and for each k, p̂ik ≥ 0.
Proof: It immediately follows from definition (13)

that:

K
∑

k=1

p̂ik = 1− q̂i,2 +

K−1
∑

k=2

(

q̂ik − q̂i,k+1

)

+ q̂iK = 1.

Now, we prove the non-negativity of p̂ik. First, notice
that the isotonic regression (11) is bounded between 0
and 1. This follows from Theorem 3, since yik ∈ {0, 1}
and thus Av(y, A) ∈ [0, 1] for any subset A. This shows
that p̂i1 ≥ 0 and p̂iK ≥ 0. To show that p̂ik ≥ 0 for
k = 2, . . . ,K − 1, we must show that q̂ik − q̂i,k+1 ≥ 0.
Since yik = 1yi≥k ≥ 1yi≥k+1 = yi,k+1, we have that
Av(yk, A) ≥ Av(yk+1 , A) for every subset A. Thus, for
any lower set L, such that xi ∈ L, we must have:

max
U :xi∈U

Av(yk, L ∩ U) ≥ max
U :xi∈U

Av(yk+1, L ∩ U).

Then, however, it follows from Theorem (3), that q̂ik ≥
q̂i,k+1.
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Fig. 2. 3-class example with two input variables. Objects
with y = 1 are black, with y = 2 are gray, and with y = 3
are light. The vector of probability estimates (p̂i1, p̂i2, p̂i3)
is shown below each objects. Notice that for consistent
objects (x1, x4, x5, x9, x10), the probability concentrates
on a single class yi.

Thus, the problem of probability estimation for multi-
class case is decomposed into K − 1 isotonic regression
problems (12). The probability estimators are obtained
each time from the optimal solution by (13). They always
form a proper probability distribution, i.e. they are non-
negative and sum to unity. Theorem 4 applies for each
k = 2, . . . ,K .
A simple example of three-class problem is shown in

Figure 2.

4.3 Extension Beyond the Training Set

So far, we got estimators of the conditional probability
distributions only for objects from the training set D, i.e.
at the points xi, i = 1, . . . , n. One can, however, simply
extend the estimated probabilities to the whole space X .
Consider first the binary problem Y = {0, 1} and proba-
bility estimate p̂i for object xi. Since the estimates were
obtained by solving the isotonic regression (11), it must
hold xi � xj → p̂i ≥ p̂j . The monotonicity constraint (6)
for K = 2 states that the probability p(x) = P (y = 1|x) is
a monotone function. Therefore, a valid extension p̂(x)
of the vector of estimators p̂ = (p̂1 . . . , p̂n) must satisfy
two conditions:

1) p̂(x) = p̂i (the extension is consistent with respect
to the estimators).

2) For every x, x′ ∈ X it holds x � x′ → p̂(x) ≥ p̂(x′)
(the extension is monotone).

Potharst and Feelders [5] considered extending the
monotone functions from the training set to the whole
space X . They showed that there is a minimal and a
maximal extension, defined as:

p̂min(x) = max{p̂i : xi � x},

p̂max(x) = min{p̂i : xi � x},

and every valid extension p̂(x) satisfies p̂min(x) ≤ p̂(x) ≤
p̂max(x) for every x ∈ X . Moreover, every monotone
function satisfying the above condition is a valid exten-
sion. Therefore, we will consider a simple, yet sufficient,
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generalization of those two, defined as:

pλ(x) = λp̂min(x) + (1− λ)p̂min(x), (14)

for λ ∈ [0, 1]. For λ ∈ {0, 1}, we retrieve back the minimal
and maximal extensions.
In multi-class case, the situation is analogous. Instead

of p̂i, we have the estimators q̂ik of P (y ≥ k|xi), for
k = 2, . . .K , obtained from (12). The stochastic domi-
nance principle is equivalent to stating that P (y ≥ k|xi)
must be a monotone function for each k. Therefore, the
extensions {q̂2(x), . . . , q̂K(x)} must be monotone. We can
proceed analogously as before, defining the minimal, the
maximal and λ-parametrized extension q̂min

k (x), q̂max
k (x)

and q̂λk (x).

5 THE DIRECT METHOD

In this section, we consider the direct approach to clas-
sification, defined in (4), based on the empirical risk
minimization within the class of all monotone functions.
Although such a class of functions cannot be described
with a finite number of parameters, minimization can
be done effectively since we are only interested in val-
ues of monotone functions at points from D. It is not
hard to verify that a monotone function minimizing the
empirical risk can be obtained by solving the following
optimization problem:

minimize:
∑n

i=1 L(yi, di)
subject to: xi � xj → di ≥ dj i, j = 1, . . . , n,

di ∈ {1, . . . ,K} i = 1, . . . , n,
(15)

where di are variables of the problem (values of the
optimal monotone function at points from D). The prob-
lem has one more interesting interpretation: relabel the
objects to make the dataset monotone, such that new
class labels are as close as possible to the original class
labels, where the closeness is measured in terms of the
loss function. The new labels in (15) are the optimal
values of variables di. Therefore, replacing the original
labels by the new labels can be used in the preprocessing
phase along with any classification algorithm, and corre-
sponds to the nonparametric error correction. Since the
nonparametric classification problem resembles isotonic
regression (except that a discrete output variable is now
considered), it will be called isotonic classification, and its
optimal solution d̂ will be called isotonic classification
of y.
The problem (15) was already considered in [23], [40].

It was shown that the problem can be solved either by
linear programming or by maximum network flow in
O(n3). In both cases, (15) must be transformed to a more
useful form. Let dik, for k = 2, . . . ,K , be binary variables
with the following interpretation: “dik = 1 iff new class
label of object xi is at least k”. Such interpretation implies
that dik ≥ di,k+1; for instance, for K = 5, di = 1 is
encoded as [di1 = 0, di2 = 0, di3 = 0, di4 = 0], d2 is
encoded as [1, 0, 0, 0], d3 as [1, 1, 0, 0], d4 as [1, 1, 1, 0] and
d5 as [1, 1, 1, 1]. Thus, the new label of object xi can be

obtained from di = 1 +
∑K

k=2 dik . The monotonicity of
new labels implies that for any xi � xj we must have
dik ≥ djk for each k = 2, . . . ,K . Finally, the loss function
can be reformulated as:

L(yi, di) =

yi
∑

k=2

(L(yi, k−1)− L(yi, k))(1 − dik)

+

K
∑

k=yi+1

(L(yi, k)− L(yi, k−1))dik

=
K
∑

k=2

(L(yi, k)− L(yi, k − 1))dik

+
K
∑

k=yi+1

(L(yi, k − 1)− L(yi, k)) (16)

and the second sum on the right-hand side can be
dropped, because it is constant. Thus, denoting δ(y, k) =
L(y, k) − L(y, k − 1), we transformed problem (15) into
the following problem:

minimize:
∑n

i=1

∑K
k=2 δ(yi, k)dik

subject to: xi � xj =⇒ dik ≥ djk i, j = 1, . . . , n,
k = 2, . . . ,K,

di,k ≥ di,k+1 i = 1, . . . , n,
k = 2, . . . ,K − 1,

dik ∈ {0, 1} i = 1, . . . , n,
k = 2, . . . ,K.

(17)
This is a linear program with integer variables. However,
the integer condition (last constraint) can be relaxed to
0 ≤ dik ≤ 1 and we end up with an ordinary linear
program. The relaxation of this constraint follows from
the fact that the matrix of coefficients of the constraints
is totally unimodular and the right hand sides of the
constraints are integer. In such a case, every feasible
(hence also every optimal) basic solution is always inte-
ger. Therefore, we do need to impose integer constraints,
because we will obtain an integer solution anyway (see
[23], [41] for more details).
Here, we will focus on two particular cases: binary

classification problem, and multi-class classification with
linear loss function (9). We will analyze computational
and statistical properties of the method. We will also
show how to cope with a drawback of isotonic classifi-
cation: in most cases the optimal solution is not unique.

5.1 Reduction of the Problem Size

In this section, we provide a general method for reduc-
tion of the size of the isotonic classification problem. [23]
proposed a reduction method for binary classification.
Here, we show how to reduce problem (15) in the most
general case. For each xi, let us define the lower and upper
class labels, respectively, as:

li = min{yj : xj � xi, j = 1, . . . , n}
ui = max{yj : xj � xi, j = 1, . . . , n}.

(18)
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The following, simple lemma (proof of which can be
found in the Appendix) states, that lower and upper
labels appears to be indicators of inconsistencies in the
dataset:
Lemma 1: The following holds:

1) li ≤ yi ≤ ui.
2) ui = li if and only if xi is consistent.
3) For each xi � xj , we have li ≥ lj and ui ≥ uj .

The isotonic classification problem, formulated as (17),
has n×(K−1) variables. Removing any of these variables
is very desirable. Given the above lemma, we are able
to obtain a priori the optimal values of some of the
variables:
Theorem 6: Let d̂ be any isotonic classification of y.

Then, we have li ≤ d̂i ≤ ui for each i = 1, . . . , n.
The proof is in the Appendix. Theorem (6) implies that

we can remove consistent objects from the optimization
process, since we know a priori that d̂i = yi for such
objects. Moreover, for other objects, we can bound the
values of the variables di to a smaller range (li, ui), which
will speed up the optimization process. In many cases,
this can dramatically reduce the size of the problem [26].

5.2 Binary Isotonic Classification

Let us consider the simplest problem of isotonic classi-
fication, when K = 2 and Y = {0, 1}. Since L(0, 0) =
L(1, 1) = 0 and the loss function is invariant under
multiplication of every value by a constant factor, there

is only one “degree of freedom” α = L(0,1)
L(0,1)+L(1,0) . One

can easily show that the Bayes classifier h∗(x) has one
of the following forms:

h∗(x) = 1P (y=1|x)≥α, h∗(x) = 1P (y=1|x)>α, (19)

or can be any monotone function between these two. The
isotonic classification problem (15) can be presented in
the simplified form: since we have K = 2, we can omit
index k for the variables; moreover, by introducing:

w0 = α, w1 = 1− α, (20)

we can write (15) as:

minimize
∑n

i=1 wyi
|yi − di|

subject to xi � xj =⇒ di ≥ dj i, j = 1, . . . , n.
(21)

As it was mentioned before, the integer constraint di ∈
{0, 1} can be relaxed to 0 ≤ di ≤ 1 (due to unimodu-
larity). Moreover, the relaxed constraint can further be
dropped, because if there were any di ≥ 1 (or di ≤ 0)
in any feasible solution, we could decrease their values
down to 1 (or increase up to 0), obtaining a new feasible
solution with a smaller value of the objective function.
We transformed problem (15) into (21) to show that

it strongly resembles isotonic regression (11). In the
isotonic regression problem, we minimize L2-norm (sum
of squares) between vectors y and p, while in (21) we
minimize L1-norm (sum of absolute values) between y

and d. In fact, both problems are closely connected. To
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Fig. 3. Binary-class isotonic classification with α = 1
2 ; the

dataset is the same as in Figure 1. The new class label is
shown below on the right side of each object. The isotonic
classification is not unique; two objects have class labels
0 − 1, which means that they are assigned label 0 in the
smallest isotonic classification, and label 1 in the greatest
isotonic classification.

investigate this issue in a greater detail, let us present a
useful property of isotonic regression. Suppose p̂ is the
isotonic regression of y. By a level set of p̂, denoted by
[p̂ = a], we mean the subset of {1, . . . , n} on which p̂ has
constant value a, i.e. [p̂ = a] = {i : p̂i = a}. The following
theorem holds:
Theorem 7: [30] Suppose p̂ is the isotonic regression of

y. If a is any real number such that the level set [p̂ = a]
is not empty, then a = Av(y, [p̂ = a]).
The following theorem holds (proven in the Appendix):
Theorem 8: Let p̂ be the isotonic regression of y. Then,

the vectors d̂∗ given by d̂∗i = 1p̂i>α, and d̂∗ given by
d̂∗i = 1p̂i≥α, are the isotonic classifications of y. Moreover,
if d̂ is any isotonic classification, it must hold d̂∗i ≤ d̂i ≤
d̂∗i , for all i = 1, . . . , n. In particular, if d̂∗ = d̂∗, then the
isotonic classification is unique.

Let us call d̂∗ the greatest, and d̂∗ the smallest isotonic
classification of y. Theorem 8 states that if the MLE
estimator (isotonic regression) p̂i is greater (or smaller)
than α, then the optimal value for the corresponding
variable d̂i in the binary isotonic regression problem
(21) is 1 (or 0). In other words, the functions 1p̂i≥α and
1p̂i>α, or any monotone function in between, minimize
the loss function on the training set D. However, the
above functions are counterpart of the Bayes classifier
(19) and thus are the classifiers produced by the plug-in
method. This means that the plug-in method, and the direct
method coincide for binary classification.
It follows from Theorem 8 that the isotonic classifi-

cation may be non-unique. In particular, the non-unique
variables are exactly those di, for which p̂i = α. This sug-
gests a procedure of finding the greatest and the smallest
isotonic classification. The idea is to solve (21) twice, first
with perturbing α by a small positive amount ǫ, and
then with perturbing α by a small negative amount ǫ.
A solution to the first problem is the greatest isotonic
classification, while a solution to the second problem
– the smallest isotonic classification. Indeed, Theorem 7
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states that for a given xi, p̂i is equal to the average of yj
over all the objects xj having the same value p̂j = p̂i. In
our case, since yi ∈ {0, 1}, every p̂i must be of the form
r

r+s
, where r, s ≤ n. When α is emphnot of the form

r
r+s

for some integers r, s ≤ n, then the binary isotonic
classification is thus unique (there will be no p̂i = α).
On the other hand, if α is of the form r

r+s
, increasing

α by sufficiently small ǫ, such that α + ǫ is not of the
form r

r+s
, and there is no other number γ = r

r+s
for

some r, s ≤ n such that α < γ < α + ǫ, will give a
unique isotonic classification equal the greatest α-binary
isotonic classification, d̂∗ (because there is no p̂i such
that α < p̂i ≤ α + ǫ). One can show that ǫ ≤ n−2 is
sufficient. Similarly, decreasing α by ǫ will lead us to the
smallest isotonic classification d̂∗. Thus, we have proved
the following theorem.
Theorem 9: If α is not of the form r

r+s
for some r, s ≤ n,

the α-binary isotonic classification is unique. Otherwise,
the greatest α-binary isotonic classification d̂∗ can be
found by increasing the value of α by ǫ ≤ n−2 and
solving problem (21). Similarly, the smallest α-binary
isotonic classification d̂∗ can be found by decreasing the
value of α by ǫ ≤ n−2 and solving again (21).
A simple example of binary isotonic classification is

shown in Figure 3. Comparison with Figure 1 shows
relation between new labels and probability estimates,
as stated in Theorem 8.

5.3 Linear Isotonic Classification

Let us analyze the problem of isotonic classification
(15) with the linear loss (9), which will be called linear
isotonic classification. We have already shown in Theorem
8 that there exists a correspondence between binary
isotonic regression and binary isotonic classification, and
therefore the direct and plug-in methods coincide. In
the forthcoming theorem, we will show that an analo-
gous relationship takes place between multiple isotonic
regression and linear isotonic classification:
Theorem 10: Let q̂k be the isotonic regression of yk,

k = 2, . . . ,K . Then, vectors d̂∗ and d̂∗ defined as
d̂∗i = 1+

∑K

k=2 1q̂ik>α and d̂∗i = 1+
∑K

k=2 1q̂ik≥α, are the
linear isotonic classifications of y. Moreover, every other
linear isotonic classification d̂ satisfies d̂∗i ≤ d̂i ≤ d̂∗i ,
i = 1, . . . , n.
See the Appendix for the proof. There are several

important conclusions following from Theorem 10. First
of all, the problem of isotonic classification (15) for
extended linear loss can be solved by solving a sequence
of K − 1 simple weighted binary problems. Although it
seems that we now have K − 1 problem instead of one
problem, from the computational point of view this is
a great gain, because we decomposed the problem with
(K − 1) × n variables into K − 1 subproblems with n
variables each.
Moreover, a closer look at how d̂∗ and d̂∗ are defined

reveals an interesting fact: for each i = 1, . . . , n, every
d̂i such that d̂∗i ≤ d̂i ≤ d̂∗i , is the (1 − α)-quantile of the
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Fig. 4. Linear isotonic classification for α = 1
2 . In the

top figure, the 3-class dataset is shown with new labels
assigned; in the middle and bottom figures, there are
shown the datasets used in 2 binary subproblems (with
new labels). E.g., label 2 − 3 means that the object is
assigned label 2 in the lowest isotonic classification and
label 3 in the greatest isotonic classification.

probability distribution {p̂i1, . . . , p̂iK}, obtained in (13)
from the multiple isotonic regression. Since the Bayes
classifier for linear loss is the (1 − α)-quantile of the
conditional probability distribution, d̂∗ and d̂∗ are the
classifiers produced by the plug-in method. This means
that the plug-in method, and the direct method coincide for
linear loss function.

Finally, notice that similarly to the case of binary
classification, we can give a simple procedure for finding
the greatest and the smallest solutions. The idea is to find
the greatest and the smallest solutions for each binary
problem, by perturbing α by small amount ±ǫ, and then
combine to separate solutions together. Due to space
limit, we omit the details.

As an example, consider the example shown in Figure
4, illustrating how the three-class problem is transformed
to two binary problems. For simplicity we assume that
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Fig. 5. A distribution, for which nonparametric classifica-
tion is inconsistent.

α = 1
2 , i.e. the loss function is an ordinary (sym-

metric) absolute error. Notice that for any object, the
new class label in the top figure can be obtained from

d̂i = 1 +
∑K

k=2 d̂ik, i.e. by summing up new class labels
in middle and bottom figures and adding 1. Moreover,
new class labels in the middle figure are always greater
or equal than those on the bottom figure. This is exactly
the conclusion of Theorem 10.

5.4 Extension Beyond the Training Set

The linear isotonic classification d̂ is defined only at
training points xi, i = 1, . . . , n. Since we are dealing with
a class of all monotone functions, we can extend isotonic
classification to X by using any monotone function
ĥ : X → Y , such that ĥ(xi) = d̂i, for each i = 1, . . . , n.
Similarly as in Section 4.3, we define the following
minimal and maximal extensions:

ĥmin(x) = max{d̂∗i : xi � x},

ĥmax(x) = min{d̂∗i : xi � x}, (22)

We will now prove that every valid extension is bounded
by ĥmin(x) from below and by ĥmax(x) from above:
Theorem 11: Let ĥ : X → Y be monotone and sup-

pose there exists an isotonic classification d̂ such that
ĥ(xi) = d̂i, for each i = 1, . . . , n (i.e. ĥ(x) is a valid
extension of the isotonic classification). Then, for each
x ∈ X , ĥmin(x) ≤ ĥ(x) ≤ ĥmax(x).

Proof: We know that for each i, d̂∗i ≤ d̂i ≤ d̂∗i . For
every x ∈ X , since ĥ(x) is monotone, we must have that
if xi � x then ĥ(x) ≥ ĥ(xi) = d̂i. But this means that
ĥ(x) ≥ max{d̂i : xi � x} ≥ max{d̂∗i : xi � x} = ĥmin(x).
Analogously, we can show that ĥ(x) ≤ ĥmax(x).

6 ASYMPTOTIC CONSISTENCY

Let us consider the sequence of classifiers (ĥ1, ĥ2, . . .),
denoted by ĥn, where each ĥn is trained on a dataset
Dn of size n. We say that ĥn is strongly consistent [31] if:

lim
n→∞

L(hn) = L∗,

with probability one, i.e. for almost every sequence of
datasets (D1, D2, . . .). In other words, as the size of the

training set increases, the risk of the classifier approaches
the Bayes risk, i.e. ĥn approaches the best possible
classifier ĥ∗. In this section we will consider the consis-
tency of nonparametric classification with monotonicity
constraints.

It is easy to show that the methods described in
previous sections are not consistent for every distribution
P (x, y). Consider, for instance, the binary-class problem,
let the input space be the unit square, X = [0, 1]2, so
that x = (x1, x2), and let the distribution be such that
P (x) puts all its mass uniformly on the diagonal of the
square, i.e. on the points x, for which x1 = 1 − x2 (see
Fig. 5). We can set P (y = 1|x) = 1 for x such that
x1 ≥ 1/2, otherwise P (y = 1|x) = 0 (the distribution
is then monotonically constrained), so that the Bayes
risk is 0. Due to the form of P (x), with probability one,
none of the objects dominates any other object (they all
lie at the diagonal). This means that to every point x
at the diagonal, apart from a finite number of training
data points, any extension of isotonic classification ĥn (or
plug-in classifier based on the isotonic regression) will
assign the same output value, because, with probability
one, there exists no xi such that x � xi or x � xi.
Therefore L(ĥn) = 1/2 for all n.

The above example shows the extreme case, in which
inconsistency follows from the the fact, that with prob-
ability one, the objects are incomparable and mono-
tonicity constraints do not apply. This suggests that the
properties of P (x) play the most important role in estab-
lishing the consistency for nonparametric classification.
This is indeed the case and, as the theorems below show,
it is enough to assume that P (x) has density on X
(with respect to the Lebesgue measure) to make sure that
nonparametric procedures are consistent.

We will use this result to show consistency of non-
parametric methods of classification with monotonicity
constraints. We first address the consistency of isotonic
classification.

Theorem 12: Let X = R
m and assume P (x, y) is mono-

tonically constrained and P (x) has density on X . Let ĥn

be any valid extension of the linear isotonic classification
trained on dataset D of size n. Then, ĥn is strongly
consistent.

The proof can be found in the Appendix. Our next results
concerns the consistency of plug-in classification meth-
ods. It comes as no surprise, that it crucially depends
on the behavior of isotonic regression for large sample
sizes. Below, we show that under similar assumptions
as before, isotonic regression is consistent in the mean
squared error sense.

Lemma 2: Let X = R
m, Y = {0, 1} and assume P (x, y)

is monotonically constrained and P (x) has density on
X . Let p̂n : X → [0, 1] be any valid extension of isotonic
regresssion of the dataset D of size n. Let η(x) := P (y =
1|x). Then:

lim
n→∞

E

[

(p̂n(x) − η(x))2
∣

∣

∣
Dn

]

= 0
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with probability one.
Lemma 2 will be used to show consistency of the plug-

in classifier based on the isotonic regression:
Theorem 13: Let X = R

m and assume P (x, y) is mono-
tonically constrained and P (x) has density on X . Let
p̂kn : X → [0, 1], k = 2, . . . ,K , be any valid extension of
multiple isotonic regresssion of the dataset D of size n,
and let ĥn : X → Y be the plug-in classifier defined as:

ĥn(x) = argmin
k∈Y

∑

y∈Y

L(y, k)p̂yn(x). (23)

Then ĥn is strongly consistent.
Note, that Theorem 13 does not put any constraints

on the loss function. Theorem 13 is thus, in some sense,
stronger than Theorem 12, as the latter assumes linear
loss function, while the former makes no such assump-
tion. Nevertheless, since isotonic classification is compu-
tationally easier than isotonic regression, and both direct
and plug-in methods coincide for linear loss function, we
advice that, in general, isotonic classification should be
preferred in applications.

7 EXPERIMENTAL RESULTS

In this section, we verify the performance of isotonic
classification in the extensive computational experiment
on both artificial and real data. We focus on both the
prediction accuracy, and the computational speed-up
due to introduced decomposition methods.

7.1 Artificial Data

Isotonic classification replaces the original labels with
new, monotone labels. It can therefore be used as an
initial preprocessing procedure for relabeling the data
set and making it consistent with the monotonicity
constraints. In the experiment, we tested a few stan-
dard classification algorithms (such as decision trees or
linear classifiers) on the data sets with monotonicity
constraints. We wished to check if preprocessing the
data with isotonic classification (“monotonizing” the
training set) can increase the predictive performance of
subsequently applied classification algorithm.
We performed the experiment on numerous artificial

data sets. Working with artificial data allows a controlled
variation of all parameters (number of attributes, objects,
Bayes risk) and estimation of the predictive performance
with a high accuracy. The data sets have been generated
as follows. Objects x = (x1, . . . , xm) ∈ R

m were gener-
ated uniformly on a cube [0, 1]m. From the prediction
point of view, the most important characteristic of the
data is the underlying “target” function – the Bayes
classification function h∗(x) ∈ {1, . . . ,K}. We assumed
that h∗(x) = k iff θk−1 ≤ f(x) ≤ θk, where f(x)
is a real-valued function, described below, and −∞ =
θ0 < θ1 < . . . < θK = ∞ are K + 1 thresholds.
The noise (non-zero Bayes risk) was introduced to the
model by randomly relabeling the objects from the Bayes

label h∗(x) to a randomly chosen label. The relabeling
probability was set to get the pre-specified Bayes risk
R∗. The conditional distribution made in this way is
monotonically constrained as long as the function f(x)
is monotone. The function f(x) has the following form:

f(x) =

T
∑

t=1

atrt(x), (24)

where at is positive and each rt(x) has one of the two
following forms:

rt(x) =

ms
∏

s=1

1xjs≥bs or rt(x) = −

ms
∏

s=1

1xjs≤bs ,

where js ∈ {1, . . . ,m} and bs ∈ [0, 1]. One can show that
f(x) is a monotone function. Moreover, every monotone
function can be approximated arbitrarily close (with
respect to an Lp norm) by a function of the form (24). All
parameters of the model, apart from T , R∗ and θk, were
chosen at random: we set at, bs ∼ U(0, 1); each js was
chosen randomly from {1, . . . ,m}; values ms are chosen
according to the exponential law P (ms = j) = 2−j . Any
of the two forms of rt(x) is equally likely. Parameter
T models the “smoothness” of the function and is set
to 100 × m in the experiment. The thresholds θk were
chosen so that the prior probabilities of all classes were
equal: P (y = k) = 1/K . The parameters still to be
determined were: number of classes K , sample size n,
dimensionality m and Bayes risk R∗. We chose K = 5,
n = 1000, m ∈ {4, 6, 8, 10} and R∗ ∈ {0.1, 0.2, 0.3, 0.4}
(Bayes risk is measured by the absolute error loss). For
each combination of these parameters, we generated 20
models of the form (24). For each model, we trained the
method on 10 separate sets of size 1000 and tested on 10
separate sets of the same size.

We chose four state-of-the-art classification methods:
C4.5 [42], AdaBoost [43] with C4.5 as a base learner
(20 iterations), logistic regression, and RankBoost [44]
with stump as a base learner (50 iterations). We used
absolute error loss as a measure of accuracy. Since all
the algorithms, except RankBoost, produce a conditional
class distribution as an output, we adapted each al-
gorithm to the absolute error loss by predicting with
the median of the conditional distribution. RankBoost is
designed to minimize the rank loss, but can be also easily
adapted to deal with ordinal classification for any loss
function, as described in [45]. Each classifier was learned
in two copies, either with or without preprocessing with
isotonic classification. In other words, one copy of the
classifier was learned on the original data, while another
copy – on the monotonized data, with inconsistencies
removed. Each classifiers was run on 20 models, For
each model, the average accuracy (absolute error) over
10 testing sets was calculated for both copies of the
classifier. We then performed a sign test between models
to verify if any of the methods is significantly better. We
chose the significance level α = 0.05, which means that
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TABLE 1
The average accuracy (absolute error) of classification obtained on the artificial data. The significantly higher result is

marked with bold.

Dataset C4.5 AdaBoost Logistic RankBoost
R∗ m orig mon orig mon orig mon orig mon
0.1 4 0.464 0.454 0.365 0.353 0.215 0.211 0.303 0.295

6 0.684 0.677 0.52 0.516 0.221 0.219 0.351 0.345

8 0.841 0.838 0.613 0.613 0.223 0.223 0.387 0.386
10 0.955 0.951 0.682 0.682 0.231 0.231 0.419 0.417

0.2 4 0.575 0.542 0.486 0.453 0.312 0.304 0.396 0.377

6 0.78 0.759 0.62 0.605 0.321 0.315 0.435 0.424

8 0.928 0.919 0.705 0.703 0.328 0.324 0.471 0.465

10 1.024 1.024 0.774 0.768 0.34 0.339 0.506 0.505
0.3 4 0.688 0.632 0.602 0.55 0.414 0.4 0.486 0.464

6 0.878 0.839 0.718 0.694 0.424 0.413 0.523 0.508

8 1.013 0.994 0.803 0.789 0.437 0.429 0.558 0.552

10 1.093 1.089 0.853 0.852 0.44 0.436 0.58 0.58
0.4 4 0.795 0.711 0.719 0.641 0.521 0.5 0.578 0.549

6 0.975 0.922 0.824 0.787 0.529 0.514 0.614 0.596

8 1.09 1.062 0.891 0.872 0.538 0.526 0.638 0.63

10 1.162 1.152 0.938 0.932 0.544 0.537 0.663 0.659

TABLE 2
Computational times (in seconds) without and with appyling the decomposition methods.

Dataset n = 200 n = 500 n = 1000 n = 2000 n = 5000
R∗ m without with without with without with without with without with
0.1 6 0.086 0.014 0.358 0.024 2.314 0.069 18.791 0.269 291.200 2.528

8 0.024 0.003 0.127 0.015 0.605 0.057 4.343 0.220 79.080 1.724
0.2 6 0.042 0.004 0.466 0.016 3.091 0.089 23.969 0.405 385.611 7.255

8 0.021 0.003 0.157 0.016 0.836 0.058 5.952 0.231 109.142 1.754

one copy of the classifier must outperform another copy
on at least 15 out of 20 models.

The results of the experiment are shown in Table
1. They unquestionably show that removing inconsis-
tencies can only improve the accuracy. There is not
even a single combination of parameters, for which
monotonization would lead to a worse performance.
The strength of the improvement, however, depends on
the properties of the dataset. The highest improvement
is gained for high Bayes risk (large amount of noise),
mostly due the fact that isotonic classification works as
error correction based on the domain knowledge about
the monotonicity. When the level of noise in the data is
high, using knowledge about the probability distribution
(monotonicity constraints) is especially beneficial, and
relabeling the objects significantly decreases the amount
of noisy labels. The improvement also decreases with
the number of attributes m. This can be explained by
observing that the dominance relation becomes sparse in
high dimensions and only few objects are then relabeled.

In Table 2, we present the running times for isotonic
classification on a standard laptop, with algorithms writ-
ten in Java, using an open-source linear programming
solver lp solve. The running times were given for exem-
plary combinations of parameters (R∗, n and m). They
only concern the monotonization by isotonic classifica-
tion, not the running times of classification algorithms.
They are given in two versions, without and with the

TABLE 3
Data sets used in experiments.

Data set #attributes #objects #classes
ESL 4 488 8
SWD 10 1000 4
LEV 4 1000 5
Housing 8 506 4
Wisconsin 9 699 2
Ljubljana 8 286 2
Car 6 1728 4
CPU 6 209 4

decomposition methods introduced in this paper (based
on Theorem 6 and Theorem 10). It is clear that using
our methods speeds up the computations at least several
times, and often even by orders of magnitude.

7.2 Real Data

In the artificial data experiment, we have shown that iso-
tonic classification can significantly improve prediction
accuracy of standard classification algorithms when used
as a preprocessing tool. In this section, we show on the
real data sets that isotonic classification also works well
as a standalone classifier, outperforming standard classi-
fication algorithms which do not take ordinal properties
of the data into account.
We used 8 datasets, for which it is known from a

domain knowledge that monotonicity constraints are
present; 3 survey data sets (ESL, SWD and LEV) were
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TABLE 4
Results of the experiment: average MAE ± standard
error of MAE. For each data set, results within one
standard error from the best are marked with bold

Dataset IsoSep J48 SVM NB
ESL 0.328±0.023 0.369±0.022 0.355±0.023 0.333±0.024

SWD 0.442±0.018 0.442±0.016 0.435±0.016 0.457±0.016

LEV 0.398±0.017 0.415±0.018 0.444±0.016 0.441±0.017

Housing 0.286±0.02 0.332±0.023 0.314±0.025 0.506±0.033

CPU 0.099±0.02 0.1±0.019 0.371±0.03 0.18±0.033

Ljubljana 0.241±0.024 0.259±0.021 0.299±0.023 0.252±0.025

Wisconsin 0.03±0.007 0.046±0.009 0.03±0.007 0.037±0.007

Car 0.045±0.006 0.09±0.008 0.078±0.007 0.177±0.008

obtained from [21], and 5 data sets (Housing, Breast
cancer Wisconsin, Breast cancer Ljulbijana, Car, CPU)
were collected from UCI repository [46]. A detailed
characteristic of all data sets is shown in Table 3. We
compared isotonic classification with 3 standard “off-the-
shelf” classification algorithms used in machine learning:
decision trees (C4.5), Naive Bayes and Support Vector
Machines (SVM) [47]. The measure of error was the mean
absolute error (MAE) and, as before, we adapted each
algorithm to the absolute error loss by predicting with
the median of the conditional distribution. The error of
each classifier was estimated by a 10-fold cross valida-
tion, repeated 10 times to improve the replicability of the
experiment. The results (average MAE and its standard
deviation) are given in Table 4. The results show that
isotonic classification, a simple classifier exploiting solely
the dominance relation in the data, outperforms the
standard classification algorithm in most of the cases.

8 CONCLUSIONS

We presented a statistical theory for ordinal classifica-
tion with monotonicity constraints. While background
knowledge often suggests consideration of these con-
straints with respect to real data sets, they are rarely
taken into account in machine learning research. We
considered the problem in its most general formulation,
when the only knowledge about the set of objects is
expressed solely through the dominance relation �. We
introduced a probabilistic model for ordinal classification
with monotonicity constraints, based on the concept of
stochastic dominance, and we investigated the possible
loss functions in this setting. Our analysis suggests that
convex losses are most suitable for ordinal classification
with monotonicity constraints.
We also analyzed nonparametric classification meth-

ods. We considered both classification by estimating
the class conditional distribution (“plug-in” method),
and classification by minimization of the empirical risk
(direct method). The plug-in approach is based on the
multiple isotonic regression, while the empirical risk
minimization approach (isotonic classification) is based
on a linear program, and thus is computationally easier.
We have shown that both approaches are closely related

to each other, and they coincide for a linear loss function.
We proposed how to decompose the general K-class
classification problem into several binary-class subprob-
lems. We have also shown how to speed up learning by
exploiting some properties of the data. We investigated
the asymptotic consistency of the considered methods.
Finally, we verified our approach in the extensive com-
putational experiment.
Theoretical analysis performed in this paper provides

a necessary foundation for nonparametric methods of
ordinal classification with monotonicity constraints. It
also provides arguments which permit to claim that
the proposed approach is computationally feasible. We
hope that our results will be of interest for machine
learning community, because monotone relationships are
frequently encountered in the applications, and because
nonparametric methods considered here play important
role in many learning algorithms for ordinal classifica-
tion with monotonicity constraints.
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APPENDIX A
PROOF OF THEOREM 1
Theorem 1: Let the loss function L(y, k) be V-shaped.

The Bayes classifier is monotone for every monotonically
constrained distribution P (x, y) if and only if the loss
function satisfies for every y, k ∈ {1, . . . ,K − 1}, the
following condition:

L(y, k+ 1)−L(y, k) ≥ L(y+ 1, k+ 1)−L(y+ 1, k). (25)

Proof:We prove the “if” part. Suppose condition (25)
holds. Denoting δ(y, k) = L(y, k + 1) − L(y, k), we can
concisely write (25) as:

δ(y, k) ≥ δ(y + 1, k). (26)

Let P (x, y) be any monotonically constrained probability
distribution and let x, x′ ∈ X be any two points such
that x � x′. Let us denote Pk = P (y ≤ k|x) and Qk =
P (y ≤ k|x′), and let us define P0 = Q0 = 0. From the
monotonicity constraints, we have Pk ≤ Qk for every
k. We will investigate the quantity ∆(u|x) = E[L(y, u +
1)|x] − E[L(y, u)|x], which is the difference between the
expected losses for predicting labels u+ 1 and u. Using
the introduced notation, we have:

∆(u|x) =

K
∑

k=1

P (y = k|x)
(

L(k, u+ 1)− L(k, u)
)

=

K
∑

k=1

(Pk − Pk−1)δ(k, u)

=

K−1
∑

k=1

Pk

(

δ(k, u)− δ(k + 1, u)
)

+ PKδ(K,u)

≥
K−1
∑

k=1

Qk

(

δ(k, u)− δ(k + 1, u)
)

+QKδ(K,u)

= ∆(u|x′),

where the inequality comes from the fact that Pk ≤ Qk,
and from (26). This means that the difference in expected
loss for any two contiguous class labels u+1 and u does
not increase when we move from x to x′; but this means
that the difference in expected loss between any class
labels v and u does not increase when passing from x to
x′.
Now, suppose that v is a Bayes classifier for x′, i.e.:

v = argmin
k∈Y

E[L(y, k)|x′].

Choose some u < v. We have:

0 > E[L(y, v)|x′]−E[L(y, u)|x′] ≥ E[L(y, v)|x]−E[L(y, u)|x],
which means that u cannot be the Bayes classifier for x.
Thus, Bayes classifier must be monotone.
We now prove the “only if” part. We show that if

the Bayes classifier is monotone for every monotonically
constrained distribution, then (25) must hold. Assume
the contrary, that condition (8) is violated, i.e. L(y0, k0)−
L(y0, k0 − 1) < L(y0 + 1, k0)− L(y0 + 1, k0 − 1) for some

k0, y0. We construct conditional probability distribution
for objects x � x′ such that P (y|x) � P (y|x′), while at
the same time the Bayes classifier violates monotonicity
condition, i.e. h∗(x) < h∗(x′), which will prove the thesis.
We start with setting P (y = k|x) = 0 for each x ∈ X , for
every class label k /∈ {y0, k0, k0−1}. This effectively elim-
inates other classes (they never occur in the problem) so
that we end up with three-class problem which is much
easier to analyze than a general K-class problem. Thus,
without loss of generality we assume K = 3 and the
violation of (8) has the form L(2, 3) > L(1, 3)− L(1, 2).
First, we will construct a probability distribution z =

(z1, z2, z3) and later from this distribution we will con-
struct distributions at points x and x′. We will choose
distribution z so that the expected loss for predicting
class 2 is equal to the loss for predicting 3, and smaller
than for class 1, i.e.:

z1l13 + z2l23 = z1l12 + z3l32
z1l13 + z2l23 < z2l21 + z3l31

(27)

where we abbreviate lyk = L(y, k) and use the fact that
lyy = 0 for each y. Substituting z3 = 1 − z2 − z1 and
knowing that both l32+ l13− l12 and l13+ l31 are positive
(loss is V-shaped), we transform these expressions to:

z1 = A−Bz2, z1 < C −Dz2, (28)

where:

A =
l32

l32 + l13 − l12
, B =

l23 + l32
l32 + l13 − l12

,

C =
l31

l31 + l13
, D =

l23 + l31 − l21
l31 + l13

.

Notice that A,C > 0 and B > 1. We first show that:

B −D > 0
⇐⇒ (l23 + l32)(l31 + l13) >

(l32 + l13 − l12)(l23 + l31 − l21)
⇐⇒ (l31 − l32)(l23 − l13 + l12) + l12(l23 + l32)

+l21(l32 + l13 − l12) > 0,

(29)

which holds, because all the terms in the last equation
are positive. Moreover:

BC −AD > 0
⇐⇒ (l23 + l32)l31 − l32(l23 + l31 − l21) > 0
⇐⇒ l23(l31 − l32) + l32l21 > 0,

(30)

which holds, because, again, all the terms are positive.
Finally:

A− C < B −D
⇐⇒ l32(l31 + l13)− l31(l32 + l13 − l12)

−(l23 + l32)(l31 + l13)
+(l23 + l31 − l21)(l32 + l13 − l12) < 0

⇐⇒ −l23(l31 − k32)− l21(l13 − l12 + l32)− l12l23 < 0,
(31)

which holds, because all the terms on the left hand side
are negative. We replace the first expression in (28) by
the second expression to obtain:

A− z2B < C − z2D ⇐⇒ z2(B −D) > A− C

⇐⇒ z2 >
A− C

B −D
,
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because B −D > 0 from (29). We must show that there
exists distribution z1, z2, z3, such that z1 = A−Bz2, and
z2 > A−C

B−D . Fix z2 = ǫ+max{0, A−C
B−D}. From (31) it follows

that A−C
B−D < 1, thus we can always find a positive ǫ, such

that 0 < z2 < 1. Moreover:

z1 = A−Bz2 = −Bǫ+min

{

A,A−B
A− C

B −D

}

= −Bǫ+min

{

A,
BC −AD

B −D

}

,

and since A > 0, and it follows from (30) that BC−AD
B−D >

0, we have z1 > 0 for a sufficiently small ǫ. Moreover,
since A < 1, for sufficiently small ǫ, we have z1 < 1.
Finally, notice that:

z1 + z2 = A− (B − 1)z2

= −ǫ(B − 1) + min

{

A,A− (B − 1)
A− C

B −D

}

(we used the fact that B > 1), which means that z1+z2 <
1 for a sufficiently small ǫ. Thus, all requirements are
satisfied for z1, z2, z3 to be a probability distribution for
which (27) hold.

Since the inequality in (27) is strict, it will be still
satisfied for another distribution q = (q1, q2, q3), such that
q1 = z1 + γ, q2 = z2 − γ and q3 = z3 with a sufficiently
small γ, so that we have q1l13 + q2l23 < q2l21+ q3l31, and
thus class 3 has smaller expected loss (according to q)
than class 1. Moreover, similarly to the way we got the
first equation in (28) from (27), we can show that the
following holds:

q1l13 + q2l23 < q1l12 + q3l32 ⇐⇒ q1 < A−Bq2. (32)

It follows for positive γ that:

q1 = z1 + γ = A−Bz2 + γ < A−Bz2 +Bγ

= A−B(z2 − γ) = A−Bq2,

so that inequality (32) holds, which means that the class
label 3 has lower expected loss than class label 2. More-
over, if we choose another distribution p = (p1, p2, p3),
such that p1 = z1 − γ, p2 = z2 + γ, p3 = z3, for the same
positive γ, we have:

p1 = z1 − γ = A−Bz2 − γ > A−Bz2 −Bγ

= A−B(z2 + γ) = A−Bp2,

which means that for distribution p, class label 2 has
lower expected loss than class label 3. But distribution p
stochastically dominates distribution q, since p1 = z1 −
γ < z1 + γ = q1 and p2 = q2. Thus, we can choose any
x, x′, such that x � x′, and assign P (y = k|x′) := qk,
P (y = k|x) := pk for each k, and from the above analysis
it follows that h∗(x) = 2 < 3 = h∗(x′), a contradiction.

APPENDIX B
PROOF OF LEMMA 1
Lemma 1: The following holds:

1) li ≤ yi ≤ ui.
2) ui = li if and only if xi is consistent.
3) For each xi � xj , we have li ≥ lj and ui ≥ uj .

Proof: We successively prove three parts of the the-
orem:

1) Since xi � xi, yi belongs to the set from which the
minimum and the maximum is taken in (18). This
immediately implies li ≤ yi ≤ ui.

2) If xi is consistent, then according to the definition
of consistency, for every object xj � xi it must hold
yj ≥ yi. This implies that li ≥ yi and from property
1 we have yi = li. Similarly, one can show that
yi = ui.
Assume li = ui. This means that yi = li, so for
every object xj � xi, it must hold yj ≥ yi. From
yi = ui we conclude that for each object xj � xi, it
must hold yj ≤ yi. Thus, xi is consistent.

3) If xi � xj , then {yt : xt � xi, t = 1, . . . , n} ⊆
{yt : xt � xj , t = 1, . . . , n}. This implies li ≥ lj ,
since the minimum of the subset must be greater
than the minimum of the whole set. Analogously,
one can show that ui ≥ uj .

APPENDIX C
PROOF OF THEOREM 6
We first need a simple lemma:
Lemma 3: For every monotone loss function L(y, k) it

holds that L(y, k) > L(y, k+1) if k < y, and L(y, k−1) <
L(y, k) if k > y.

Proof: We will prove the first inequality, and the
second one can be proved analogously. From (25) we
have that L(y, k+1)−L(y, k) ≥ L(y+1, k+1)−L(y+1, k).
Repeating this iteratively, we must finally get:

L(y, k + 1)− L(y, k) ≥ L(y + 2, k + 1)− L(y + 2, k)

≥ . . . ≥ L(k, k + 1)− L(k, k) > 0,

where the last inequality comes from L(k, k) = 0 and
L(y, k) > 0 for y 6= k.
Theorem 6: Let d̂ be any isotonic classification of y.

Then, we have li ≤ d̂i ≤ ui for each i = 1, . . . , n.
Proof: Let I be a subset of those i for which d̂i < li .

Similarly, let J be a subset of those i for which d̂i > ui.
Let us consider solution d̃ such that d̃i = li for i ∈ I ,
d̃i = ui for i ∈ J , and d̃i = d̂i otherwise. If any of the
sets I or J is non-empty, d̃i has a lower objective value
then d̂i. Indeed, suppose, e.g., that I is nonempty and
choose any i ∈ I . From Lemma 1 we have li ≤ yi ≤ ui,
so that d̂i < li = d̃i ≤ yi. Then, using Lemma 3 it follows
that L(yi, d̃i) < L(yi, d̂i).
Thus, it is enough to prove that solution d̃i is feasible.

Then, I and J must be empty, because otherwise it
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would contradict the optimality of d̂i. To prove the
feasibility of d̃i in problem (15), we must show that:

xi � xj =⇒ d̃i ≥ d̃j i, j = 1, . . . , n. (33)

Notice that for i ∈ I , d̃i > d̂i, and for i ∈ J , d̃i < d̂i.
Choose any xi � xj . First we consider i ∈ I , then i ∈ J
and, finally, the case i /∈ I ∪ J :

1) Case i ∈ I . Then, if j ∈ I , d̃i = li ≥ lj = d̃j . If j /∈ J ,
d̃i > d̂i ≥ d̂j ≥ d̃j .

2) Case i ∈ J . Then, d̃i = ui ≥ uj ≥ d̃j .
3) Case i /∈ I ∪ J . Then, if j ∈ I , d̃i ≥ li ≥ lj = d̃j . If

j /∈ I , d̃i = d̂i ≥ d̂j ≥ d̃j .

APPENDIX D
PROOF OF THEOREM 8
Theorem 8: Let p̂ be the isotonic regression of y. Then,

the vectors d̂∗ given by d̂∗i = 1p̂i>α, and d̂∗ given by
d̂∗i = 1p̂i≥α, are the isotonic classifications of y. Moreover,
if d̂ is any isotonic classification, it must hold d̂∗i ≤ d̂i ≤
d̂∗i , for all i = 1, . . . , n. In particular, if d̂∗ = d̂∗, then the
isotonic classification is unique.

Proof: We start with proving the second part of the
theorem. Let d̂ be any isotonic classification of y, i.e.
any optimal solution of (15). Then Û = {xi : d̂i = 1}
is an upper set. We will show that if xi ∈ Û , then
p̂i ≥ α. Assume the contrary, that for some i, p̂i < α.
From Theorem 3, there exists a lower set L such that
maxU :xi∈U Av(y, L∩U) < α, which implies that Av(y, L∩
Û) < α. Let us construct a solution d̃, such that d̃i = 0 for
i ∈ L∩Û , and d̃i = d̂i otherwise. Solution d̃ has a smaller
loss than d̂: by denoting nk = |{xi ∈ L∩ Û : yi = k}|, the
total loss of d̃ on L∩ Û is n1(1− α), while the total loss
of d̂ on L∩ Û is n0α; but from Av(y, L∩ Û ) < α we have

n1

n0+n1
< α, which means that n1(1−α) < n0α. Moreover,

we will now show that solution d̃ is feasible: we choose
xj , xj such that xi � xj and prove that d̃i ≥ d̃j . To do
that, we consider four possible cases:

1) Case i, j ∈ L ∩ Û . Then, d̃i = d̃j = 0.
2) Case i, j /∈ L ∩ Û . Then, d̃i = d̂i ≥ d̂j = d̃j .
3) Case i /∈ L ∩ Û and j ∈ L ∩ Û . Then, d̃i ≥ 0 = d̃j .
4) Case i ∈ L ∩ Û and j /∈ L ∩ Û . Since xi � xj , then

xj ∈ L, so that xj /∈ Û and thus d̃j = 0.

We proved that d̃ is feasible and has lower cost than
d̂, which is a contradiction. Thus, we conclude that if
xi ∈ Û , then p̂i ≥ α. Similarly, one can show that for
a lower set L̂ = {xi : d̂i = 0}, if xi ∈ L̂, then p̂i ≤ α.
This proves that if d̂ is the optimal solution of (15), then
d̂∗i ≤ d̂i ≤ d̂∗i , for all i = 1, . . . , n.
Now, we prove the first part. Let us consider set B =

{xi : p̂i = α}. Theorem 7 says that Av(y, B) = α. By
denoting nk = |{xi ∈ B : yi = k}|, we have that n1

n0+n1
=

α, which means that n0α = n1(1− α).
If we choose any optimal solution d̂, then d̂∗, d̂

∗ and
d̂ differ only for i ∈ B, because d̂∗i ≤ d̂i ≤ d̂∗i for all i

and d̂∗i = d̂∗i for i /∈ B. The total cost of d̂∗ and d̂∗ on B
is n0α and n1(1−α), respectively, while the total cost of
d̂ on B is between these two values. Above, we showed,
however, that n0α = n1(1−α), which proves that d̂∗ and
d̂∗ are optimal.

APPENDIX E
PROOF OF THEOREM 10
Theorem 10: Let q̂k be the isotonic regression of yk,

k = 2, . . . ,K . Then, vectors d̂∗ and d̂∗ defined as
d̂∗i = 1+

∑K
k=2 1q̂ik>α and d̂∗i = 1+

∑K
k=2 1q̂ik≥α, are the

linear isotonic classifications of y. Moreover, every other
linear isotonic classification d̂ satisfies d̂∗i ≤ d̂i ≤ d̂∗i ,
i = 1, . . . , n.

Proof: For linear loss function, we have:

δ(yi, k) = L(yi, k)− L(yi, k − 1) = α(1− yik)− (1− α)yik

and by adding a constant value
∑n

i=1

∑K
k=2(1− α)yik to

the objective of (17), we equivalently minimize:

n
∑

i=1

K
∑

k=2

(1 − α)yik(1 − dik) + α(1 − yik)dik

=

K
∑

k=2

n
∑

i=1

wyik
|yik − dik|, (34)

where w0 = α and w1 = 1 − α. For each k, the loss
function looks exactly like the loss in the binary problem
(15), where yik now plays the role of the binary class
label. Unfortunately, those K − 1 binary problems are
not independent due to constraint dik ≥ di,k+1 in (17),
which involves variables for different k. We will proceed
as follows. Let us denote problem (17) by P and let us
denote problem (17) without constraint dik ≥ di,k+1 by
P ′. We will find the greatest and the smallest optimal
solutions of P ′ and show that they satisfy constraint
dik ≥ di,k+1 anyway. This will imply that they are also
the greatest and the smallest solutions of P , because
the minimum of a more constrained problem cannot
decrease.
Thus, let us ignore constraint dik ≥ di,k+1 for a while;

then, problem P ′ decomposes into K − 1 binary prob-
lems, which can be solved separately. The maximal and
minimal solutions for the k-th binary problem, denoted
respectively as d̂∗

k and d̂∗k, are equal to d̂∗ik = 1q̂ik≥α

and d̂∗ik = 1q̂ik>α for each i. Maximal and minimal
solutions for the general problem P ′ consist of maximal
and minimal solutions for binary problems and are thus
equal to d̂∗ and d̂∗. However, constraint dik ≥ di,k+1

is satisfied by maximal and minimal solutions d̂∗
k and

d̂∗k, because it follows from Theorem 5, that for each i,
q̂ik ≥ q̂i,k+1, which means that 1q̂ik≥α ≥ 1q̂i,k+1≥α and

1q̂ik>α ≥ 1q̂i,k+1>α. This implies that ˆvecd∗ and d̂∗ are
the greatest and the smallest solutions of the original
problem (17), i.e. the greatest and the smallest isotonic
classifications of y.
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APPENDIX F
PROOF OF THEOREM 12, LEMMA 2, AND THE-
OREM 13
The proofs in this section are based on the following
result, shown in [1]. Let us define a monotone layer as a
set M ⊆ X such that if x ∈ M , then for every x′ � x,
also x′ ∈ M . Let M be the family of all monotone layers
on X . Let {x1, . . . , xn} be the set of n data points in X ,
and let NM(x1, . . . , xn) be the cardinality of the set:

{{x1, . . . , xn} ∩M : M ∈ M} .
[1] showed (Theorem 13.13 and remark below Corollary
13.3) that if P has density on X = R

m, then:

E [NM(x1, . . . , xn)] = eo(n). (35)

We will use this result to show consistency of non-
parametric methods of classification with monotonicity
constraints. We first address the consistency of isotonic
classification.
Theorem 12: Let X = R

m and assume P (x, y) is mono-
tonically constrained and P (x) has density on X . Let ĥn

be any valid extension of the linear isotonic classification
trained on dataset D of size n. Then, ĥn is strongly
consistent.

Proof: First, assume Y = {0, 1} and denote by H
the set of all monotone functions h : X → Y . Let ĥn be
any minimizer of the empirical risk in the class H. Since
P (x, y) is monotonically constrained, from Corollary 1
we have that the Bayes classifier h∗ ∈ H. Vapnik-
Chervonenkis inequality (see, e.g., Lemma 8.2 in [1])
states, that:

L(ĥn)− inf
h∈H

L(h) = L(ĥn)− L∗ ≤ sup
h∈H

|LDn
(h)− L(h)|,

where LDn
(h) is the empirical risk. Since L(y, k) =

α1y=0∧k=1 + (1− α)1y=1∧k=0,

LDn
(h)− L(h) = α (PDn

(Ah)− P (Ah))

+ (1− α) (PDn
(A′

h)− P (A′
h)) ,

where PDn
(A) = 1

n

∑n
i=1 1(xi,yi)∈A is the empirical dis-

tribution, and the sets Ah and A′
h are defined as:

Ah = {(x, y) : h(x) = 1 ∧ y = 0},
A′

h = {(x, y) : h(x) = 0 ∧ y = 1}.
Using the above, and the fact that α < 1, we get:

sup
h∈H

|LDn
(h)− L(h)| ≤ sup

Ah : h∈H

|PDn
(Ah)− P (Ah)|

+ sup
A′

h
: h∈H

|PDn
(A′

h)− P (A′
h)|

≤ 2 sup
A∈A

|PDn
(A) − P (A)|,

where A = {Ah : h ∈ H} ∪ {A′
h : h ∈ H}. A well

known result by Vapnik and Chervonenkis (see, e.g. [1],
Theorem 12.5) states that:

P

{

sup
A∈A

|PDn
(A) − P (A)| > ǫ

}

≤ 8E [NA((x1, y1), . . . , (xn, yn))] e
−nǫ2/32.

Notice, that every set A ∈ A has the form A = M × {0}
or A = M̄ × {1}, for some monotone layer M ∈ M
(M̄ denotes X − M ). This is because every h ∈ H is a
monotone function. Therefore:

NA((x1, y1), . . . , (xn, yn)) ≤ 2NM(x1, . . . , xn).

Using the above inequalities along with (35), we get:

P
(

L(ĥn)− L∗ ≥ ǫ
)

≤ Ce−nǫ2/32+o(n)

and thus from Borel-Cantelli lemma limn→∞ L(ĥn) = L∗

with probability one.

Now, consider the general case Y = {1, . . . ,K}. We
will first prove the theorem for ĥmin

n (x). Let yk = 1y≥k

and ĥnk(x) = 1ĥmin
n (x)≥k, for k = 2, . . . ,K . If we denote

the linear loss function by L(y, k), then it is easy to see
that:

L(y, ĥmin
n (x)) =

K
∑

k=2

L(yk, ĥnk(x)). (36)

For each k, consider the random variable yk = 1y≥k and
let P (x, yk) denote the distribution induced from P (x, y).
Notice that P (x, yk) is monotonically constrained. More-
over, h∗

k(x) = 1h∗(x)≥k is the Bayes classifier for P (x, yk)
with linear loss. From Theorem 10 it follows that
ĥnk(xi) = 1q̂ik≥α for each xi, which is the optimal solu-
tion to isotonic classification for the k-th binary problem,
so ĥnk(x) is the extension of the k-th binary isotonic
classification. Therefore, we can apply the theorem for
the binary-class case and conclude that limn→∞ L(ĥnk) =
L(h∗

k), for all k = 2, . . . ,K , with probability one. Then,
however, it follows from (36) that limn→∞ L(ĥmin

n ) = L∗

with probability one. Similar conclusion can be drawn
for ĥmax

n . Let ĥn : X → Y be any valid extension of iso-
tonic classification. Then ĥmin

n (x) ≤ ĥn(x) ≤ ĥmax
n (x), and

we conclude that limn→∞ L(ĥn) = L∗ with probability
one.

Lemma 2: Let X = R
m, Y = {0, 1} and assume P (x, y)

is monotonically constrained and P (x) has density on
X . Let p̂n : X → [0, 1] be any valid extension of isotonic
regresssion of the dataset D of size n. Let η(x) := P (y =
1|x). Then:

lim
n→∞

E

[

(p̂n(x) − η(x))2
∣

∣

∣
Dn

]

= 0

with probability one.

Proof: Using standard arguments about the bias-
variance decomposition, we get:

E

[

(p̂n(x)− y)2
∣

∣

∣
Dn

]

= E

[

(p̂n(x)− η(x))2
∣

∣

∣
Dn

]

+ E
[

(η(x) − y)2
]

.

Let P denote the class of all monotone regression func-
tions p : X → [0, 1]. Following arguments as in Vapnik-
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Chervonenkis inequality, one can show [1], that:

E

[

(p̂n(x)− η(x))2
∣

∣

∣
Dn

]

= E

[

(p̂n(x)− y)2
∣

∣

∣
Dn

]

− E
[

(η(x) − y)2
]

≤ sup
p∈P

∣

∣EDn

[

(p(x) − y)2
]

− E
[

(p(x) − y)2
]
∣

∣ ,

where EDn
is the empirical mean EDn

[f(x, y)] :=
1
n

∑n
i=1 f(xi, yi). If we define f(x, y) := (p(x) − y)2 and

denote by F the class of all such functions f , we can
write:

E

[

(p̂n(x)− η(x))2
∣

∣

∣
Dn

]

≤ sup
f∈F

|EDn
[f(x, y)]− E [f(x, y)]| .

Lemma 29.1 in [1] states that:

sup
f∈F

|EDn
[f(x, y)]− E [f(x, y)]|

≤ sup
f∈F ,t>0

|PDn
[f(x, y) > t]− P [f(x, y) > t]| ,

where PDn
is defined as in the proof of Theorem 12. For

every f ∈ F , and every t > 0 the set:

{f(x, y) > t} = {(p(x)− y)2 > t}
= {p(x) >

√
t ∧ y = 0} ∪ {p(x) < 1−

√
t ∧ y = 1},

can be written as M × 0 ∪ M̄ ′ × 1 ⊂ X × Y , where M
and M ′ are some disjoint monotone layers. Using (35)
and similar arguments as in the proof of Theorem 12,
we can bound:

P
(

E

[

(p̂n(x) − η(x))2
∣

∣

∣
Dn

]

> ǫ
)

≤ Ce−nǫ2/32+o(n),

and the theorem follows from Borel-Cantelli lemma.

Theorem 13: Let X = R
m and assume P (x, y) is mono-

tonically constrained and P (x) has density on X . Let
p̂kn : X → [0, 1], k = 2, . . . ,K , be any valid extension of
multiple isotonic regresssion of the dataset D of size n,
and let ĥn : X → Y be the plug-in classifier defined as:

ĥn(x) = argmin
k∈Y

∑

y∈Y

L(y, k)p̂yn(x). (37)

Then ĥn is strongly consistent.

Proof: For any x ∈ X ,

Z(x) := E[L(y, ĥn(x)) − L(y, h∗(x))|x]

=

K
∑

y=1

ηy(x)
(

L(y, ĥn(x)) − L(y, h∗(x))
)

,

where ηy(x) := P (y|x). It follows from definition (37)
that:

K
∑

y=1

p̂yn(x)
(

L(y, ĥn(x)) − L(y, h∗(x))
)

< 0,

and therefore:

Z(x) ≤
K
∑

y=1

(ηy(x) − p̂yn(x))
(

L(y, ĥn(x))− L(y, h∗(x))
)

≤ C

K
∑

y=1

|ηy(x) − p̂yn(x)| ,

where C := maxy,k,k′(L(y, k)− L(y, k′)). We have:

L(ĥn)− L∗ = E[Z(x)|Dn]

≤ C

K
∑

y=1

E
[

|ηy(x)− p̂yn(x)|
∣

∣Dn

]

≤ C

K
∑

y=1

√

E

[

(ηy(x) − p̂yn(x))
2 ∣
∣Dn

]

,(38)

where the last inequality follows from the Cauchy-
Schwarz inequality. But the right hand side of (38) con-
verges to 0 with probability one, since, using arguments
as in the proof of Theorem 12, for each k, the distribution
P (x, yk) induced from P (x, y) by defining yk = 1y≥k, is
monotonically constrained and therefore we can apply
Lemma 2. Thus, limn→∞ L(ĥn) = L∗ with probability
one, as claimed.
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