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Abstract

We define what it means for a learning algorithm to be kernelizable in the case when the instances are vectors,

asymmetric matrices and symmetric matrices, respectively. We can characterize kernelizability in terms of

an invariance of the algorithm to certain orthogonal transformations. If we assume that the algorithm’s

action relies on a linear prediction, then we can show that in each case, the linear parameter vector must be

a certain linear combination of the instances. We give a number of examples of how to apply our methods.

In particular we show how to kernelize multiplicative updates for symmetric instance matrices.

Keywords: Kernelization, multiplicative updates, rotational invariance, Exponentiated Gradient

algorithm, Gradient Descent algorithm.

1. Introduction

The following kernelization trick was popularized by a paper on support vector machines [BGV92] and has

become one of the most successful methods in machine learning: Any algorithm that reduces to computing

dot products between instance vectors x ∈ Rn can be enhanced by a feature map that maps each instance x

to an expanded instance φ(x) ∈ RN as long as there is a kernel function available which efficiently computes

the dot products φ(x)′φ(x̃) between expanded instances. The dimension N of the expanded instances is

typically much larger than the dimension n of the original instances and may even be infinite. Complicated

neural nets are often beaten by simple linear models which are enhanced with a carefully chosen problem

specific feature map or kernel function. Kernelizable algorithms must have the property that they only
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entail the expanded instances φ(x) via the kernel function k(x, x̃) = φ(x)′φ(x̃), i.e. the components of the

feature vectors are never accessed.

In this paper we discuss kernel methods in the matrix domain by first considering instances that are

outer products xy′, where x ∈ Rn and y ∈ Rm, i.e. we first focus on rank 1 instance matrices. It will

then be easy to generalize from outer products to asymmetric instance matrices M ∈ Rn×m. As long as

algorithms only rely on dot products between pairs x, x̃ of left instances and dot products between pairs

y, ỹ of right instances, then we can expand the left instances x via a feature map φ(x) and the right y

instances via a second feature map ψ(y). Note that matrix parameters can model all interactions between

components, and therefore can take second order information into account. We also consider a case when

the instances are symmetric products of the form xx′ with a single feature map. In this case the instances

xx′ become φ(x)φ(x)′.

The goal of this paper is to give “if and only if” conditions for kernelizable algorithms. We do this

for three cases: vector instances, asymmetric matrix instances and symmetric matrix instances under the

assumption that the algorithm is linear and produces a unique solution. The vector case has been largely

worked out in [WV05], but we rephrase it here mainly as a reference for comparison. The matrix cases are

the main contribution of the paper. We define an algorithm to be kernelizable if its output depends on the

data only via the kernel matrix (matrices) which contains the dot products between the instance vectors.

We next give a simple equivalent characterization in each case in terms of certain rotational invariance

properties of the algorithm5. In the vector case, multiplying the instance by an orthogonal matrix must

essentially keep the algorithm unchanged. In the asymmetric matrix case, the algorithm must produce the

same output if the instance matrices are left and right multiplied by two orthogonal matrices. The symmetric

matrix case gives the invariance under left and right multiplication by the same orthogonal matrix.

The main point of the paper is to show that in each case, if the output of the algorithm is a linear

function of the input, then the algorithm is kernelizable iff the linear parameter vector/matrix is a linear

combination of the instances and remains invariant under an appropriate orthogonal transformation. In

particular, in the vector case the parameter vector w must be a linear combination of the instance vectors,

w =
∑

i cixi. When the instances are asymmetric outer products xiy
′
i, then the parameter matrix must

have the form W =
∑

i,j ci,j xiy
′
j . For the symmetric outer products xix

′
i, the symmetric parameter matrix

must have the form W = cI +
∑

i,j ci,j xix
′
j , where I is the identity matrix in Rn and ci,j = cj,i. The

presence of an additional identity term I in the expansion for symmetric matrices stems from the existence

of a unique element that is invariant under all orthogonal transformations. Such an element does not exist

for asymmetric matrices.

We then prove versions of the Representer Theorem for both asymmetric and symmetric outer prod-

5Although invariance is with respect to orthogonal transformations, we use the term rotational invariance rather than
orthogonal invariance, as the former (technically inaccurate) term is commonly used in the literature.
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ucts. This helps us to develop a number of methods for building kernelizable algorithms from optimization

problems. In particular, we give methods for kernelizing the matrix versions of various “multiplicative”

update algorithms [TRW05, War07, KW07]. This family of algorithms is motivated by using the quantum

relative entropy as a regularization, and methods from online learning can be used to prove regret bounds

that grow logarithmically in the dimensions of the vectors. The logarithmic dependence lets us use high

dimensional feature spaces. Moreover, we show that if the loss function is negative (i.e., we are maximizing

gains rather than minimizing losses), then the logarithmic dependence on the dimension can be reduced

to the logarithmic dependence on the rank of the kernel matrix. For outer product instances, this rank is

at most the number of instances T . Multiplicative algorithms learn well when there is a low-rank matrix

that can accurately explain the labels [War07]. The kernel method greatly enhances the applicability of

multiplicative algorithms because now we can expand the instances to outer products of high-dimensional

feature vectors and still obtain efficient algorithms as long as the instance matrices have low total rank.

Relationship to previous work

One way to ensure kernelizability in the vector case is to apply the Representer Theorem [KW71, SHS01].

It states that whenever the solution minimizes the trade-off between a non-decreasing function of the Eu-

clidean distance and a loss function that only depends on the dot products between the weight vector and

expanded instance vectors, then there must be a solution that is a linear combination of the expanded

instance vectors.6 Representer type theorems have recently been generalized to the case of outer product

instances [ABEV09, AMP09]. For instance, it is shown in [ABEV09] that as long as the regularization term

is increasing in the spectrum of the parameter matrix and the loss function only depends on the traces of the

product of the parameter matrix and the outer product instances, then algorithms that minimize a trade-off

between the regularization and the loss can be kernelized. However this is only a necessary condition.

In contrast we give necessary and sufficient conditions for kernelizability. Our characterization based

on rotational invariance immediately leads to a simple Representer Theorem for matrix parameters that

holds under the assumption that the objective of the minimization problem is rotationally invariant and the

solution of the minimization problem is unique. Our proofs are elementary and intuitive, but the resulting

Representer Theorem is incomparable with the one given in [ABEV09] because the latter allows for multiple

solutions. Out methods also lead to a Representer Theorem for the case of symmetric matrix parameter,

which is the mainstay of multiplicative updates, but was not considered in [ABEV09, AMP09]. In [CCBG08]

it was also shown that the matrix version of the p-norm perceptron can be kernelized. Again kernelizability

of this algorithm is easily implied by our methods.

6 Representer Theorems for general Hilbert spaces instead of vector spaces in RN are studied in [DS12]. In particular, it is
determined which regularization terms guarantee that the existence of a solution that is a linear combination of the expanded
instances.
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We show in this paper for an algorithm to be kernelizable, it must not even be defined as minimizing

the trade-off between a regularization and a loss. Instead we show that kernelizability is characterized by a

geometric invariance property. For the vector case, invariance properties have been used before for giving

necessary conditions for kernelizability [WV05, GBRS09]. Here we essentially repackage the theorem of

[WV05] so that is gives us necessary and sufficient conditions for kearnalizability and then generalize this

characterization to asymmetric and symmetric matrix instances.

We also went through the painstaking exercise of translating our proofs to the case when instance

domains are arbitrary Hilbert spaces instead of real vector spaces in RN . No new insights were gained from

this translation. Therefore in the main body of the paper we present our results in the notationally simpler

case of real vector spaces and relegate the generalization to Hilbert spaces to the appendix.

Multiplicative updates and kernelizability

There are two main families of updates in machine learning that are commonly called “additive” and

“multiplicative”. The algorithms aim to minimize a loss function which is a function of the dot product

between the parameter vector w and the expanded instance vectors φ(x). The additive (a.k.a. Gradient

Descent) updates subtract a multiple of the gradient of the loss from the current parameter. If the loss is

a function of the dot products, then the gradients as well as the entire parameter vector of the additive

updates are always linear combinations of the expanded instances. In this case it is easy to see that the

linear prediction with a new expanded instance only involves computing dot products, and this entire

family of algorithms is kernelizable. Essentially transformation invariance is related to kernelizability and

the Gradient Descent family of updates. The reduction to computing dot products often leads to concise

algorithms. However, as discussed in [WV05, Ng04], this family of updates does not generalize well when

the instances are orthogonal and target weight vectors are sparse.

For the multiplicative (a.k.a. Exponentiated Gradient) family of updates, each component wi of the

parameter vector w is multiplied by a factor that is essentially an exponential of the derivative of the loss

with respect to wi [KW97]. In other words the logarithms of the weights are updated additively, but the

weights themselves are updated multiplicatively. Multiplicative updates on vector parameters are interesting

because the bounds only depend logarithmically on the feature dimension n [Lit88, LW94]. A natural idea

is to expand the instances via a feature map and run a multiplicative update on expanded instances. Now

the bounds are logarithmic in the feature dimension N which is typically much larger while logN might

still be tolerable. However this idea is only useful if the resulting update can be implemented efficiently, i.e.

can be reduced to computing a small number of kernel computations.

Let us discuss these issues some more in connection with the problem of learning k-term DNF formulas.

Efficient learnability of these formulas is a key open problem in machine Learning [Val84]. Consider the

following algorithm for predicting well on a sequence of n dimensional bit patterns labeled consistently
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with a k term DNF formula. First expand the instances using the feature map φ : {0, 1}n → {0, 1}2n

which contains one feature for each of the 2n monomials. Now run the Winnow algorithm [Lit88] from the

multiplicative update family on the expanded examples (φ(xt), yt) which predicts with a linear threshold

function. The mistake bound of this algorithm is O(k log 2n). Thus by doing repeated passes over the

examples, the algorithm finds a consistent threshold function after O(kn) passes. This algorithms has many

good properties: It has a low mistake bound, which leads to good bound in the PAC model [FW95]. However

we don’t know how to implement it efficiently, even though the dot product φ(x) · φ(x′) = k(x,x′) between

two expanded 2n dimensional expanded instances requires only O(n) time to compute [KW97]. In particular,

this algorithm cannot be “kernelized”, i.e. converted into a polynomial number of kernel computations. It

seems that the algorithm must access the individual features and there are too many of them. Nevertheless

in this paper we found a way to kernelize the matrix version of the multiplicative updates which use a density

matrix as their parameter and updates this parameter using matrix logs and exponentials [TRW05, WK06].

Intuitively the updates remain efficient if the dimension of the eigenvectors of the instances is expanded but

the number of non-zero eigenvalues of the instances stay polynomial.

In general, if you “lift” a vector problem to the matrix domain, then the straightforward way to do

this is to place the instance vector along the diagonal of a corresponding instance matrix (See discussion

in [TRW05, WK06, WK08]). However, the update time of the matrix multiplicative updates is typically at

least polynomial in the number of non-zero components on the diagonal. Therefore in the sketched DNF

learning problem, nothing is gained by placing each expanded instance φ(x) on the diagonal of an instance

matrix and running the matrix version of the Winnow algorithm. For more general instance matrices,

the number non-zero diagonal entries becomes the number of non-zero eigenvalues or singular values, and

it seems that multiplicative updates have to pay for the total number of non-zeros eigenvalues in all the

instance matrices (i.e. the total rank of the instance matrices). We have found a case in Section 4 where the

regret bounds provable for matrix multiplicative updates are logarithmic in the total rank instances instead

of the dimension of eigenvectors. As a matter of fact we show here that matrix multiplicative updates are

kernelizable in the sense that the eigenvectors can be expanded (instead of the vector of eigenvalues). The

dimension of the eigenvectors can even be unbounded as long as the dot product between such vectors can

be computed efficiently via a kernel function.

Outline of the paper

In Section 2 we discuss our characterizations of learnability based on notions of rotational invariance.

In Section 3 we give our version of the Representer Theorem and discuss the relationship to the standard

versions. This is followed by some example applications of our characterizations in Section 4. We conclude

the main body of the paper with a number of open problems in Section 5. This is followed by an appendix

where we reformulate our characterization results in the language of Hilbert spaces.

5



2. Kernalization via rotational invariance

Vector instances:

We begin with the case of vector instances x ∈ Rn. Examples (x, `) are labeled instances where ` is in

some fixed label domain. A learning algorithm A is any mapping from example sequences S = {(xt, `t)}Tt=1

followed by a next instance x to some fixed output range. Informally, the output of the algorithm is the

“action” that A takes after receiving the S and an unlabeled instance x. We denote with X̂ the matrix

with the T + 1 instances as columns and call X̂
′
X̂, the augmented kernel matrix, where “augmented” hints

at the fact that we included the unlabeled instance x as the (T + 1)st instance. Note that [X̂
′
X̂]pq is the

dot product x′pxq for 1 ≤ p, q ≤ T + 1.

Definition 2.1. An algorithm A for vector instances is kernelizable, if for any two input sequences S,x

and S̃, x̃ with the same labels and the same augmented kernel matrix, algorithm A maps to the same output,

i.e. A(S,x) = A(S̃, x̃).

We next rewrite this characterization using the following elementary lemma:

Lemma 2.2. Two matrices A,B ∈ Rn×t are orthogonal transformations of each other (i.e. there is an

orthogonal matrix U , such that B = UA) iff the kernel matrices A′A and B′B are the same.

For any orthogonal matrix U ∈ Rn×n, let US denote the transformed sequence {(Uxt, `t)}Tt=1. Note that

the labels remain unchanged. The above lemma implies the following corollary, which gives and equivalent

definition of kernelizability:

Corollary 2.3. An algorithm A for vector instances is kernelizable iff for all sequences S, next instance x

and orthogonal matrix U ,

A(S,x) = A(US,Ux).

Proof. The sequences S,x and US,Ux have the same labels and augmented kernel matrix. Therefore, A

kernelizable implies that A(S,x) = A(US,Ux) for all suitable S, x and U . To prove the contrapositive of

the opposite implication we assume there are two sequences S,x and S̃, x̃ with the same augmented kernel

matrix for which A produces a different output (witnessing that A is not kernelizable). Then by the above

lemma there is an orthogonal matrix U for which S̃ = US, x̃ = Ux, and therefore A(S,x) 6= A(US,Ux).

2

We now focus on a special class of algorithm and then characterize kernelizability for this class.

Definition 2.4. An algorithm A for vector instances is linear, if upon receiving input sequence S and an

unlabeled instance x, the algorithm first computes a weight vector w ∈ Rn from the input sequence S, and

then outputs the dot product w′x.
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In short, a linear algorithm is the algorithm which learns a linear function. Note, that we only require the

output of the algorithm to be linear with respect to x; clearly, the produced w may be nonlinear in S.

Theorem 2.5. A linear algorithm A for vector instances is kernelizable iff for every input sequence S =

{(xt, `t)}Tt=1 the weight vector w is a linear combination of the instances of S, and the coefficients of the

linear combination depend on S only via the kernel matrix X ′X, where X contains the instances {xt}Tt=1

as columns.

This can be proven by essentially repackaging a theorem given in [WV05]. The key contribution of this

paper is that we will develop analogous theorems for the case when the instances are matrices.

Asymmetric matrix instances:

We first consider the case of asymmetric matrices. In this case the instances are outer products xy′,

where x ∈ Rn and y ∈ Rm. Examples have the form (xy′, `), where ` is from some labeling domain. A

learning algorithm A is again, any mapping from example sequences S = {(xty
′
t, `t)}Tt=1, followed by a next

instance xy′ to some fixed output range.7 Now we have two augmented kernel matrices, X̂
′
X̂ and Ŷ

′
Ŷ ,

where X̂ contains the T instances {xt}Tt=1 plus x as columns and Ŷ is defined similarly.

The structure of this section is analogous to the previous section on vector instances. We begin with our

definition of kernelizability:

Definition 2.6. An algorithm A for asymmetric outer product instances is kernelizable, if for any two

input sequences S,xy′ and S̃, x̃ỹ′ with the same labels and the same augmented kernel matrices, algorithm

A maps to the same output, i.e. A(S,xy′) = A(S̃, x̃ỹ′).

In the asymmetric case, we need two orthogonal matrices. For any orthogonal matrices U ∈ Rn×n, and

V ∈ Rm×m, we let USV ′ denote the transformed sequence {(Uxty
′
tV
′, `t)}Tt=1. By applying Lemma 2.2

twice (to the left vectors xt and the right vectors yt), we immediately get the following alternate definition

of kernelizability:

Corollary 2.7. An algorithm A for asymmetric outer product instances is kernelizable iff for all sequences

S, next instances xy′ and orthogonal matrices U ,V ,

A(S,xy′) = A(USV ′,Uxy′V ′).

The generalization of the linearity of algorithms to the matrix domain is straightforward:

Definition 2.8. An algorithm A for outer product instances is linear, if upon input S and xy′, the algorithm

first computes a weight matrix W ∈ Rn×m from the input sequence S, and then outputs the trace tr(W ′xy′).

7For conciseness we use outer products xy′ as instances instead of the longer notation (x,y). Technically this means that
the kernel matrices are only determined up to sign patterns but this is immaterial.
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We now give a characterization of the kernerlizability for linear algorithms:

Theorem 2.9. A linear algorithm A for asymmetric outer product instances is kernelizable iff for every

input sequence S = {(xty
′
t, `t)}Tt=1 the weight matrix of A can be written as W = XCY ′, where X contains

the instances {xt}Tt=1 as columns, Y contains the {yt}Tt=1 as columns, and the coefficient matrix C ∈ RT×T

depends on S only via the kernel matrices X ′X and Y ′Y .

Note that the expression W = XCY ′ is just a concise way of expressing the linear combination of instances∑T
i=1

∑T
j=1 Cij xiy

′
j .

Proof. Let W (S) denote the weight matrix produced by algorithm A from the sequence S. Since A

outputs the trace, A(S,xy′) = tr(W (S)′xy′), it follows from Corollary 2.7 that A is kernelizable iff:

tr(W (S)′ xy′) = tr(W (USV ′)′ Uxy′V ′), (2.1)

for all sequences S, orthogonal matrices U ,V of dimensions n×n and m×m, and instances xy′, for x ∈ Rn

and y ∈ Rm.

The proof of the “if” part is easy: Since C depends on S only via the kernel matrices, C is invariant

under orthogonal transformation S 7→ USV ′ (which leaves the kernel matrices unchanged), and thus

W (USV ′) = UXCY ′V ′ = UW (S)V ′. This implies (2.1) and kernelizability:

tr(W (USV ′)′Uxy′V ′) = tr((UW (S)V ′)′Uxy′V ′) = tr(W (S)′xy′).

The proof of the “only if” part is divided into two parts. In Part 1, we first show that (2.1) implies

that for any S, W (S) = XCY ′ for some C ∈ RT×T . In Part 2, we show that (2.1) implies that for any

S and orthogonal matrices U ,V of dimensions n× n and m×m, respectively, W (USV ′) = UXCY ′V ′.

This means that C is invariant under left and right orthogonal transformations U and V of the example

sequence S, and thus by Lemma 2.2 this is equivalent to stating that C depends on S only via the kernel

matrices X ′X and Y ′Y .

Proof of Part 1: Let {x̂p}r1p=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
and {ŷq}

r2
q=1 be an or-

thonormal basis for Span
(
{yt}Tt=1

)
, where r1 and r2 are the ranks of the corresponding spaces. Since

x̂p ∈ Span({x1, · · · ,xT }) and ŷq ∈ Span({y1, · · · ,yT }), there exist matrices P ∈ RT×r1 and Q ∈ RT×r2

such that

x̂p =

T∑
i=1

P i,pxi and ŷq =

T∑
j=1

Qj,qyj . (2.2)

Complete these two bases to orthonormal bases for Rm and Rn, respectively, and denote these bases as

{x̂i}ni=1 and {ŷj}mj=1. Since {x̂iŷ
′
j | i = 1 . . . n, j = 1 . . .m} is an orthonormal basis for Rn×m we can rewrite

the matrix W (S) ∈ Rn×m as

W (S) =

n∑
i=1

m∑
j=1

ĉi,jx̂iŷ
′
j .
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Choose any index p ∈ {r1+1, . . . , n}, and any index q ∈ {1, . . . ,m}, and we now show that ĉp,q = 0 (the case

q ∈ {r2 + 1, . . . ,m} and p ∈ {1, . . . , n} is proven similarly). We use the notion of transformation invariance

(2.1). We choose the new instance the be x = x̂p and y = ŷq. Furthermore, we choose U as the Hauseholder

reflection matrix, U = I − 2x̂px̂
′
p and V = I. It holds that x̂p ⊥ xt for any t = 1, . . . , T , because p > r1

and {x̂i}r1i=1 is the orthogonal basis for Span
(
{xt}Tt=1

)
. This implies that Uxt = xt − 2x̂p(x̂′pxt) = xt, i.e.

the left instances are not affected by U . Also, V yt = Iyt = yt, i.e. the right instances are not affected

by V . It thus follows that the transformed sample USV ′ is same as the original sample S, and therefore

W (USV ′) = W (S). Thus the l.h.s. of Equation (2.1) becomes:

tr(W (S)′xy′) = tr

((∑
i,j

ĉi,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
=
∑
i,j

ĉi,jx̂
′
ix̂pŷ

′
qŷj = ĉp,qx̂

′
px̂pŷ

′
qŷq = ĉp,q.

However since x̂′px̂p = 1, we have Ux̂p = x̂p − 2x̂px̂
′
px̂p = −x̂p and therefore the r.h.s. of Equation (2.1)

has the opposite sign:

tr(W (USV )′Uxy′V ′) = −tr(W (S)′x̂pŷ
′
q) = −ĉp,q.

We conclude that the transformation invariance (2.1) implies ĉp,q = 0 if p > r1 (and similarly ĉp,q = 0 if

q > r2). It follows that

W (S) =

r1∑
p=1

r2∑
q=1

ĉp,qx̂pŷ
′
q.

and we now prove Part 1 by plugging (2.2) into the above:

W (S) =
∑
p,q

ĉp,q
∑
i

∑
j

P i,pQj,qxiy
′
j =

∑
i,j

∑
p,q

P i,pĉp,qQj,q︸ ︷︷ ︸
Ci,j

xiy
′
j .

Proof of Part 2: By Part 1, W (S) =
∑r1

i=1

∑r2
j=1 ĉi,jx̂iŷ

′
j . By applying Part 1 to the sequence USV ′

we get W (USV ′) =
∑r1

i=1

∑r2
j=1 d̂i,jUx̂iŷ

′
jV
′ for some coefficients d̂i,j , because if {x̂i}r1i=1 is an orthonor-

mal basis for Span
(
{xt}Tt=1

)
, {Ux̂i}r1i=1 is an orthonormal basis for Span

(
{Uxt}Tt=1

)
(and similarly for

Span
(
{yt}Tt=1

)
and Span

(
{V yt}Tt=1

)
). To finish the proof, it suffices to show that ĉp,q = d̂p,q for any

p ∈ {1, . . . , r1} and any q ∈ {1, . . . , r2}. Then Part 2 follows immediately by plugging (2.2) into the above

equality. By (2.1),

ĉp,q = tr
((∑

i,j

ĉi,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= tr(W (S)′x̂pŷ

′
q) = tr(W (USV ′)′Ux̂pŷqV

′)

= tr
((∑

i,j

d̂i,jUx̂iŷ
′
jV
′
)′
Ux̂pŷ

′
qV
′
)

= tr
((∑

i,j

d̂i,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= d̂p,q.

2
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Note that the size of the coefficient matrix C is quadratic in the number of instances T . Actually r1× r2
non-zero coefficients suffice, where r1, r2 is the rank of the kernel matrices X,Y , respectively. The reason

for the quadratic size is that transformation invariance for asymmetric matrices involves two orthogonal

matrices U and V . If we viewed the outer products xty
′
t in Rn×m as vectors in Rnm and assumed rotational

invariance with respect to a single orthogonal matrix of dimension k = nm, then S would have the form∑
t ct xty

′
t, i.e. only one coefficient per outer product instance.

There are straightforward generalizations of the above theorem to the case when the instances are general

matrices of a given rank s. Using the SVD decomposition, the instances then can be written as sums of a

fixed number of outer products. That is, now the instances have the form

Xt
n×s

Y ′t
s×m

=

s∑
q=1

xq
ty

q
t
′
.

In other words the vectors {xq
t}sq=1 and {yq

t}sq=1 are the columns of Xt and Y t, respectively. The above

theorem remains essentially unchanged, but for a sequence {XtY
′
t}Tt=1 of T instances, the kernel matrix

XX ′ is formed by letting X contain the columns of all Xt, which adds up to sT columns in total. Similarly,

Y contains the sT columns of all Y t and both indices in the sums in the proof of Theorem 2.9 range from

one to sT .

Symmetric matrix instances:

Let us now consider the case of symmetric outer product instances. A broad set of applications falls

into this framework, including Principal Component Analysis, Fisher Discriminant Function, or Quantum

Information Theory. In this case, the instances are xx′ for x ∈ Rn, and the learning algorithm A is any

mapping from example sequences S = {(xtx
′
t, `t)}Tt=1 followed by a next instance xx′ to some fixed output

range. Contrary to asymmetric instances, we now have a single augmented kernel matrix X̂
′
X̂, which

contains the T instances {xt}Tt=1 plus x as columns.

Definition 2.10. An algorithm A for symmetric outer product instances is kernelizable, if for any two

input sequences S,xx′ and S̃, x̃x̃′ with the same labels and the same augmented kernel matrix, algorithm

A maps to the same output, i.e. A(S,xx′) = A(S̃, x̃x̃′).

By applying Lemma 2.2, we immediately get the following alternate definition of kernelizability:

Corollary 2.11. An algorithm A for symmetric outer product instances is kernelizable iff for all S, xx′

and orthogonal matrices U ,

A(S,xx′) = A(USU ′,Uxx′U ′).

Note that contrary to the asymmetric case, the same matrix U is applied on both sides.

10



Definition 2.12. An algorithm A for symmetric outer product instances is linear, if upon input S and xx′,

the algorithm first computes a symmetric weight matrix W ∈ Rn×n from the input sequence S, and then

outputs the trace tr(W ′xx′).8

Theorem 2.13. A linear algorithm A is kernelizable iff for every input sequence S = {(xtx
′
t, `t)}Tt=1 the

weight matrix of A can be written as W = XCX ′+cI, where X contains the instances {xt}Tt=1 as columns,

C ∈ RT×T is a symmetric coefficient matrix, c is a real number, I is the identity matrix in Rn, and C and

c depend on S only via the kernel matrix X ′X.

Proof. By Corollary (2.11), A is kernelizable if and only if:

tr(W (S)′ xx′) = tr(W (USU ′)′ Uxx′U ′), (2.3)

for all S,U ,xx′. The proof of the “if” part is easy and very similar to that of Theorem 2.9: Since C and c

depend on S only via the kernel matrix, C and c are invariant under orthogonal transformation S 7→ USU ′,

and thus W (USU ′) = UXCX ′U ′ + cI = UW (S)U ′. This implies (2.3) and kernelizability:

tr(W (USU ′)′Uxx′U ′) = tr((UW (S)U ′)′Uxx′U ′) = tr(W (S)′xx′).

The proof of the “only if” part is divided into two parts, as in Theorem 2.9. In Part 1, we show that

(2.3) implies that for any S, W (S) = XCX ′+ cI for some symmetric C ∈ RT×T and c ∈ R. Then, in Part

2, we show that (2.3) implies that for any S and any orthogonal matrix U , W (USU ′) = UXCX ′U ′+ cI.

This means that C and c are invariant under orthogonal transformations of the example sequence S, and

thus by Lemma 2.2 this is equivalent to stating that C and c depend on S only via the kernel matrix X ′X.

Proof of Part 1: Let {x̂p}rp=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
. Since x̂p ∈ Span

(
{xt}Tt=1

)
,

there exists matrix P ∈ RT×r such that

x̂p =

T∑
i=1

P i,pxi. (2.4)

Complete this basis to an orthonormal basis {x̂i}ni=1 for Rn. We decompose W (S) =
∑

i,j ĉi,jx̂ix̂
′
j , and

due to symmetry of W (S), ĉi,j = ĉj,i for all i, j.

We need to show that (a) ĉp,q = 0 if p 6= q and either p > r or q > r, and that (b) ĉp,p = ĉ for some

constant ĉ, for p > r. We show (a) first. Due to the symmetry of W (S), it suffices to show that that

ĉp,q = 0 for any q > r and any p ≥ 1, p 6= q. Choose x = x̂p + x̂q and U as the Hauseholder reflection

I − 2x̂qx̂
′
q. Then, for any 1 ≤ t ≤ T , we have Uxt = xt − 2x̂qx̂

′
qxt = xt (because q > r and thus x̂q lies

outside Span
(
{xt}Tt=1

)
). Thus, the transformed sample USU ′ is the same as the original sample S, and

8The assumption on the symmetry of W comes without loss of generality: Given any matrix W , we can always take a

symmetrized version W sym = W+W ′

2
, and for any xx′, it holds tr(W ′

symxx′) = tr(W ′xx′).

11



W (USU ′) = W (S). On the other hand, Ux̂p = x̂p − 2x̂qx̂
′
qx̂p = x̂p, and Ux̂q = x̂q − 2x̂qx̂

′
qx̂q = −x̂q.

Therefore, the l.h.s. and r.h.s. of (2.3) become

tr(W (S)′xx′) =
∑
i,j

ĉi,jx̂
′
i(x̂p + x̂q)(x̂′p + x̂′q)x̂j = ĉp,p + ĉq,q + ĉp,q + ĉq,p,

tr(W (USU)′Uxx′U ′) =
∑
i,j

ĉi,jx̂
′
i(x̂p − x̂q)(x̂′p − x̂′q)x̂j = ĉp,p + ĉq,q − ĉp,q − ĉq,p,

which along with ĉp,q = ĉq,p implies ĉp,q = 0.

To show (b), we choose x = x̂p (we remind that p > r), and U to be a permutation matrix that swaps

the basis vectors x̂p and x̂q for some q > r, while leaving all other basis vectors unchanged, i.e.:

U = I − x̂px̂
′
p − x̂qx̂

′
q + x̂px̂

′
q + x̂qx̂

′
p.

For this choice of U , UU ′ = I, Ux̂p = x̂q, Ux̂q = x̂p, and Uxt = xt for all 1 ≤ t ≤ T (because p, q > r).

Thus, the transformed sample USU ′ is the same as the original sample S, so that W (USU ′) = W (S).

On the other hand, Uxx′U ′ = Ux̂px̂
′
pU
′ = x̂qx̂

′
q. The l.h.s. and r.h.s. (2.3) become

tr(W (S)′xx′) =
∑
i,j

ĉi,j x̂
′
ix̂px̂

′
px̂j = ĉp,p,

tr(W (USU)′Uxx′U ′) =
∑
i,j

ĉi,j x̂
′
ix̂qx̂

′
qx̂j = ĉq,q,

which implies ĉp,p = ĉq,q. Since q was an arbitrary index such that q > r, we conclude that ĉp,p = ĉ for some

constant ĉ, for all p > r.

We conclude that the transformation invariance (2.3) implies that

W (S) =

r∑
p=1

r∑
q=1

ĉp,qx̂px̂
′
q + ĉ

n∑
p=r+1

x̂px̂
′
p =

r∑
p=1

r∑
q=1

(ĉp,q − ĉδpq)x̂px̂
′
q + ĉ

n∑
p=1

x̂px̂
′
p

and we now prove Part 1 by plugging (2.4) into the above:

W (S) =
∑
p,q

(ĉp,q − ĉδpq)
∑
i,j

P i,pP j,qxix
′
j + ĉ

n∑
p=1

x̂px̂
′
p

=
∑
i,j

(∑
p,q

P i,p(ĉp,q − ĉδpq)P j,q

)
︸ ︷︷ ︸

Ci,j

xix
′
j + ĉ︸︷︷︸

c

n∑
p=1

x̂px̂
′
p︸ ︷︷ ︸

I

.

Without loss of generality, C is symmetric, because if Ci,j 6= Cj,i, then changing both to
Ci,j+Cj,i

2 does

not change W (S). Indeed,

∑
i,j

Ci,j + Cj,i

2
xix

′
j + cI =

1

2

∑
i,j

Ci,jxix
′
j + cI

+
1

2

∑
i,j

Ci,jxjx
′
i + cI


=

1

2
W +

1

2
W ′ = W .
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Proof of Part 2: By Part 1, W (S) =
∑r

i=1

∑r
j=1 ĉi,jx̂ix̂

′
j + ĉ

∑n
i=r+1 x̂ix̂

′
i. By applying Part 1 to the

sequence USU ′ we get W (USU ′) =
∑r

i=1

∑r
j=1 d̂i,jUx̂ix̂

′
jU
′ + d̂

∑n
i=r+1 Ux̂ix̂

′
iU
′ for some coefficients

d̂i,j , d̂, because if {x̂i}ri=1 is an orthonormal basis for Span
(
{xt}Tt=1

)
, then {Ux̂i}ri=1 is an orthonormal

basis for Span
(
{Uxt}Tt=1

)
, and if {x̂i}ni=1 is an orthonormal basis for Rn, then so is {Ux̂i}ni=1. To finish

the proof, it suffices to show that ĉp,q = d̂p,q for any p, q ∈ {1, . . . , r}, and that ĉ = d̂. Then Part 2 follows

immediately by plugging (2.4) into the above equality. By (2.3), for 1 ≤ p, q ≤ r,

ĉp,q = tr
((∑

i,j

ĉi,jx̂ix̂
′
j + ĉ

n∑
i=r+1

x̂ix̂
′
i

)′
x̂px̂

′
q

)
= tr((W (S))′x̂px̂

′
q)

= tr(W (USU ′)′Ux̂px̂qU
′) = tr

((∑
i,j

d̂i,jUx̂ix̂
′
jU
′ + d̂

n∑
i=r+1

Ux̂ix̂
′
iU
′
)′
Ux̂px̂

′
qU
′
)

= tr
((∑

i,j

d̂i,jx̂ix̂
′
j + d̂

n∑
i=r+1

x̂ix̂
′
i

)′
x̂px̂

′
q

)
= d̂p,q.

Similarly, for any p > r,

ĉ = tr((W (S))′x̂px̂
′
p) = tr(W (USU ′)′Ux̂px̂pU

′) = d̂.

2

Comparing Theorem 2.13 with Theorem 2.9, an additional term cI entered the expansion. The presence

of the identity term I in the expansion for symmetric matrices stems from the existence of a unique element

that is invariant under all orthogonal transformations, i.e. the identity matrix. Such an element does not

exist for asymmetric matrices. We note, that the output tr(W (S)xx′) of the algorithms with the parameter

matrix W (S) = XCX ′+ cI can be be written only be means of coefficient matrix C, the single coefficient

c and the dot products x′jx and x′x.

Note that when the feature map x→ φ(x) is not the identity, then the dot products become dot products

between the expanded instances φ(xj) and φ(x), respectively. In particular, the term cI can easily be dealt

with when the instances are expanded, as it leads to the expressions of the form tr(cIφ(x)φ(x)′) = c k(x,x).

Also Theorem 2.13 generalizes easily from symmetric outer product instances to symmetric matrix instances

with fixed rank s.

An example of algorithm, which falls into the framework of Theorem 2.13, but not of Theorem 2.9, is

the aforementioned Matrix Exponentiated Gradient. The weight matrix proportional to exp (
∑

i αixix
′
i),

for some coefficients αi, is clearly a full rank matrix. However, eigenvalues of W in the space orthogonal to

Span({x1, · · · ,xt}) are all equal to each other. This is because exp (
∑

i αixix
′
i) acts by exponentiating the

eigevalues of
∑

i αixix
′
i, which are zero outside the data span. Therefore, MEG is a kernelizable algorithm.
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3. Kernelization via Representer Theorems

A standard way to ensure kernelizability of an algorithm is to apply the Representer Theorem [KW71,

SHS01]. In the vector case, it states that whenever the solution minimizes the trade-off between essentially a

non-decreasing function of the Euclidean distance and a loss function that only depends on the dot products

between the weight vector and feature vector, then there always is a solution which is a linear combination

of the feature vectors [DS12]. Representer type theorems have recently been generalized to the case of outer

product instances [ABEV09, AMP09]. In particular, the following Representer Theorem for asymmetric

outer product instances was proven in [ABEV09]: Given a penalty function Ω(W ) =
∑d

i=1 si(σi(W )),

where {σ1, . . . , σd} is the set of singular values of W in decreasing order, and si are non-decreasing functions

satisfying s(0) = 0, then there exists a solution to the minimization problem

min
W

Ω(W ) + η
∑
t

losst(tr(W
′xty

′
t)), (3.1)

which can be written as W =
∑

i,j Ci,jxiy
′
j = XCY ′. Representer theorems rely on the following proof

method: If the algorithm is defined as a minimization problem that regularizes with a function that shrinks

with the spectrum, and if the weight matrix had an orthogonal component (outside the data span), then

removing this component would not change the predictions on the set of instances but would decrease the

regularization term.

Note that representer theorems only give necessary conditions for kernelization. In contrast, our geomet-

ric characterizations of linear algorithms give necessary and sufficient conditions for kernelization provided

that the solution to the optimization problem is always unique. Also, our proof methods have a different

flavor: If the weight matrix has an orthogonal component, then we build an instance with this orthogonal

component and show that the prediction on this instance and the prediction on a transformed instance

do not match. Moreover, the geometric characterization presented in Section 2, immediately leads to the

following version of the Representer Theorem:

Theorem 3.1. Consider the minimization problem minW L(W ,S), which for all S has a unique solu-

tion and is rotationally invariant, i.e. for any S and any orthogonal matrices U and V , L(W ,S) =

L(UWV ′,USV ′). In this case the solution W ∗(S) can be written as W ∗(S) = XCY ′ where C depends

on S only via the kernel matrices X ′X, Y ′Y .

Proof. Let A be a linear algorithm which, upon receiving input sequence S, produces the weight matrix

W ∗(S). In this definition, we used the fact that W ∗(S) is uniquely defined for any S. Due to the rotational

invariance of L and the uniqueness of the solution, W ∗(USV ′) = UW ∗(S)V ′. Thus for any xy′,

tr(W ∗(S)′xy′) = tr(V ′W ∗(USV ′)′Uxy′) = tr(W ∗(USV ′)′UxyV ′),

and the theorem now follows from the forward direction of Theorem 2.9. 2
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The problem (3.1) is rotationally invariant (because Ω is a function of the singular values only), so

Theorem 3.1 applies as long as the solution is unique. Note that [ABEV09] specify somewhat different

conditions: no uniqueness assumption is needed, rather some structure of the penalty function is imposed.

However, we can strengthen Theorem 3.1 in such a way that we no longer require that the optimization

problem has a unique solution, but we only require that we can always pick a single solution out of the set

of optimal solutions in a rotationally invariant way, i.e. if W ∗(S) is the solution picked for a sequence S,

then W ∗(USV ′) = UW ∗(S)V ′ for any orthogonal U and V . For example, if there exist multiple optimal

solutions, but the shortest optimal solution is unique (i.e. the one minimizing some rotation invariant matrix

norm ‖ · ‖ among all optimal solutions), then the algorithm can choose this solution and our Representer

Theorem 3.1 will apply. This is e.g. the case when Ω(W ) = 0 (i.e. no regularization) and when the shortest

solution is unique.

Most importantly, our conditions apply to a much wider class of linear algorithms, which does not need be

defined as solution to the optimization problem above. Moreover, using our approach it is straightforward to

generalize the Representer Theorem to the optimization problem with constraints, as long as the constraints

are rotationally invariant and the solution is unique. Finally, we easily obtain the version of the Representer

Theorem for the case of symmetric outer products, which is the mainstay of multiplicative updates, but

which has not been considered elsewhere:

Theorem 3.2. Consider the problem minsym.W L(W ,S), which for all S has a unique solution and is

rotationally invariant, i.e. for any S and any orthogonal matrix U , L(W ,S) = L(UWU ′,USU ′). In this

case the solution W ∗(S) can be written as W ∗(S) = XCX ′ + cI, where C and c depend on S only via

the kernel matrix X ′X.

Proof. Essentially the same as proof of Theorem 3.1. 2

We conclude this section with a discussion of an optimization problem that exemplifies the difference

between the Representer Theorem approach and ours. Consider minimizing the following quadric loss:

min
w∈R

( (w) · (1) )2 − 1)2.

Thus we are optimizing a 1-dimensional weight vector (w) and there is a single instance vector (1) of

dimension 1. Note that there is no regularization term. There are two solutions at ±1. Even after adding

the regularization w2 to the objective, then there are still two minima. The Representer Theorem for vector

instances implies that there is a solution which is a linear combination of the instances. This is clearly

the case since both solutions are linear combinations of the instance vector (1). The objective is rotation

invariant (which in dimension 1 means invariance under multiplying both w and the instance vector by −1),

but since there are multiple solutions, our theorems don’t apply. Both solutions have the same norm and
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therefore there is no unique shortest solution. As a matter of fact, there is no way to distinguish the two

solutions in a rotation invariant way.

4. Example applications

We provide a few examples of how the arguments given in this paper can shed light on the kernelization

of algorithms for particular learning problems. We focus on the online setting, i.e. when the instances are

revealed sequentially to the learner. We also give algorithms only for the matrix case (both asymmetric and

symmetric), as the vector case has been much exploited in the last decades, mostly in connection to support

vector machines.

The algorithms of this section require the use of the singular value decomposition of the matrix XCY ′,

or the eigenvalue decomposition (in the symmetric case) of the symmetric matrix XCX ′. As discussed in

the introduction, the dimensions n and m of the left instances xi and the right instances yi, respectively,

are typically much larger than the number of instances T (see Figure 4.1). Thus the dimension of the matrix

XCY ′ ∈ Rn×m (or XCX ′ ∈ Rn×n) is too large. The key is to obtain its decomposition in terms of the

smaller kernel matrices X ′X,Y ′Y ∈ RT×T :

Lemma 4.1. For any left instance set X ∈ Rn×T , right instance set Y ∈ Rm×T and square matrix C ∈

RT×T , if UΣV ′ is a compact SVD of
√
X ′XC

√
Y ′Y , where Σ = diag(σ1, · · · , σr), then the compact SVD

of XCY ′ is ŨΣṼ with Ũ = XC
√
Y ′Y V Σ−1 and Ṽ = Y C ′

√
X ′XUΣ−1. Similarly, for any X ∈ Rn×T

and symmetric matrix C ∈ RT×T , if UΣU ′ is a compact eigendecomposition of
√
X ′XC

√
X ′X, where

Σ = diag(σ1, · · · , σr), then the compact eigendecomposition of XCX ′ is ŨΣŨ
′

with Ũ =XC
√
X ′XUΣ−1.

Proof. Since Σ contains the non-zero singular value of
√
X ′XC

√
Y ′Y , Σ−1 is well defined and the values

are non-increasing as you go down the diagonal of Σ. It is easy to check that the columns of Ũ and Ṽ are

orthonormal:

Ũ
′
Ũ = Σ−1V ′

√
Y ′Y C ′X ′ XC

√
Y ′Y V Σ−1

= Σ−1V ′
√
Y ′Y C ′

√
X ′X︸ ︷︷ ︸

V ΣU ′

√
X ′XC

√
Y ′Y︸ ︷︷ ︸

UΣV ′

V Σ−1

= Σ−1Σ ΣΣ−1 = I,

Ṽ
′
Ṽ = Σ−1U ′

√
X ′XCY ′ Y C ′

√
X ′X UΣ−1

= Σ−1U ′
√
X ′XC

√
Y ′Y︸ ︷︷ ︸

UΣV ′

√
Y ′Y C ′

√
X ′X︸ ︷︷ ︸

V ΣU ′

UΣ−1

= Σ−1Σ = I.
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X XX ′

X ′X

Figure 4.1: Illustrative scheme for Lemma 4.1: Left instance matrix (top left), Gram matrix (top right), kernel matrix (bottom
left).

The following completes the proof that ŨΣṼ
′

is the compact SVD decomposition of XCY ′.

Ũ
′
XCY ′ Ṽ = Σ−1V ′

√
Y ′Y C ′X ′ XCY ′ Y C ′

√
X ′X UΣ−1

= Σ−1V ′
√
Y ′Y C ′

√
X ′X︸ ︷︷ ︸

V ΣU ′

√
X ′XC

√
Y ′Y︸ ︷︷ ︸

UΣV ′

√
Y ′Y C ′

√
X ′X︸ ︷︷ ︸

V ΣU ′

UΣ−1

= Σ−1 ΣΣΣ Σ−1 = Σ.

This proves the first part of the lemma. The second part (eigendecomposition) is proven in the same way,

by setting V = U and Y = X in the derivation. 2

For symmetric instances, a particularly simple case is obtained when C = I. Then,
√
X ′X C

√
X ′X

simplifies to the kernel matrix X ′X, and the above decomposition lemma simplifies to a derivation of the

eigendecomposition of the (symmetric) covariance matrix XX ′ from the eigendecomposition of the (single)

kernel matrix X ′X:

Corollary 4.2. For any X ∈ Rn×T , if UΣU ′ is a compact eigendecomposition of X ′X, then XX ′ has

the compact eigendecomposition ŨΣŨ
′
, where Ũ = XUΣ−1/2.

This known fact was key to the kernelization of PCA and Fisher Linear Discriminant Functions [SSM98,

MRW+99]. Its proof is much simpler than our decomposition lemma based on the SVD decomposition. In

the above corollary, the covariance matrix XX ′ is symmetric positive definite. Curiously enough, when we

try to decompose XCX ′, when C is diagonal with negative entries, then our more intricate version of the

lemma based on the SVD decomposition seems to be necessary.

Asymmetric case and additive updates:

Consider the following online learning problem: The data {(xty
′
t, `t)}Tt=1 is revealed to the learner

sequentially. The learner predicts at trial t with a matrix W t ∈ W from some convex set W, and suffers a
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convex loss denoted as loss(tr(W ′
txty

′
t), `t). The goal of the learner is to have total loss in trials t = 1, . . . , T

not much higher then the total loss of the best matrix W ∗ ∈ W chosen in hindsight, i.e. to have small regret

Reg(S) =
∑
t

loss(tr(W ′
txty

′
t), `t)− min

W∈W

∑
t

loss(tr(W ′xty
′
t), `t).

Assume that W = {W : ‖W ‖ ≤ B}, where ‖W ‖ is a rotationally invariant norm, i.e. depends on W only

via its singular values. A typical choice, used e.g. in collaborative filtering, would be the trace norm ‖W ‖1.

Let us also assume for simplicity that ‖xt‖2 ≤ 1 and ‖yt‖2 ≤ 1 for all t, where ‖ · ‖2 is the Euclidean

norm. A popular approach to solve the minimization problem is the online gradient descent (GD) [HW01]:

Let ∂t(W ) denote the subgradient ∂ˆ̀
t
loss(ˆ̀

t, `t) at ˆ̀
t = tr(W ′xty

′
t). The GD step can be derived as the

solution to the following optimization problem:

W t+1 = argmin
W∈W

‖W −W t‖2F + η∂t(W t) tr(W ′xty
′
t), (4.1)

where ‖ · ‖F is the Frobenious norm. Solving (4.1) leads to the additive update:

W t+1 = proj (W t − η∂t(W t)xty
′
t) ,

where the projection operation is defined as

proj(W ) = argmin
‖W̃ ‖≤B

‖W − W̃ ‖2F .

Since the norm ‖ · ‖ is rotationally invariant, the projection becomes a projection on the singular values

{σ1, . . . , σmin{n,m}} of W [DSSST10]. For example, if ‖ ·‖ is the spectral norm, the projection gives a vector

of singular values {σ′1, . . . , σ′n}, such that σ′i = min{σi, B}. For ‖ · ‖ being the trace norm, the projection

leads to σi 7→ (σi − τ)+, where τ is the smallest value for which
∑

i(σi − τ)+ ≤ B.

When W 1 = 0, one can show that the problem (4.1) is rotationally invariant for all t; in other words,

for any t, for any orthogonal transformation of the instances S 7→ USV ′, the weight matrix W t transforms

as W t(USV ′) = UW t(S)V ′. The proof is by induction: The claim is trivially true for t = 1, as W 1 = 0.

Given that W t(USV ′) = UW t(S)V ′, we have:

W t+1(USV ′) = argmin
W∈W

‖W −UW tV
′‖2F + η∂t(W t) tr(W ′Uxty

′
tV
′)

= argmin
UWV ′∈W

‖UWV ′ −UW tV
′‖2F + η∂t(W t) tr(V W ′U ′Uxty

′
tV
′)

= argmin
UWV ′∈UWV ′

‖W −W t‖2F + η∂t(W t) tr(W ′xty
′
t)

= U

(
argmin
W∈W

‖W −W t‖2F + η∂t(W t) tr(W ′xty
′
t)

)
V ′

= UW t+1(S)V ′,
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where in the first line we used the fact that ∂t(W t) is invariant under transformation of both S 7→ USV ′

and W t 7→ USV ′ (as it depends on W t only through the trace tr(W ′
txty

′
t)), in the third line we used

W = UWV ′ (norm constraint), and the invariance of Frobenious norm under orthogonal transformation.

This proves the rotational invariance of (4.1).

Due to the strictly convex objective function, (4.1) has a unique solution, and we conclude from Theorem

3.1 that W t is in the span of the data, i.e. has the form XCY ′. Thus the algorithm can be kernelized by

calculating the SVD of the matrices XCY ′ i.t.o. of the kernel matrices using Lemma 4.1. Also the output

tr(XCY ′xy′) = x′XCY ′y only relies on the kernel matrices. For the trace norm, it can be shown using a

standard analysis of GD, that given |∂t(W )| ≤ G, Reg(S) ≤ BG
√
T , and is independent of the dimension

of the feature space9 [SST11], while for spectral norm Reg(S) ≤ BG
√

min{n,m}T .

Symmetric case and multiplicative updates:

In the symmetric case, the data sequence becomes {(xtx
′
t, `t)}Tt=1. Let us assume for simplicity that

‖xt‖2 = 1 for all t. The learner predicts at trial t with the symmetric matrix W t ∈ W, and suffers loss

loss(tr(W ′
txtx

′
t), `t). We focus on the interesting case when W is a set of positive-semidefinite matrices

with unit trace (density matrices), a generalization of the probability simplex to symmetric matrices. A

choice of the algorithm is the Matrix Exponentiated Gradient (EG) [TRW05], defined as a trade-off between

minimization of the quantum relative entropy and the negative gradient of the loss:

W t+1 = argmin
W∈W

tr (W (logW − logW t)) + η∂t(W t) tr(W ′xtx
′
t), (4.2)

which leads to to the following multiplicative update [TRW05]:

W t+1 =
exp (logW t − η∂t(W t)xtx

′
t)

Zt
, (4.3)

where Zt = tr (exp (logW t − η∂t(W t)xtx
′
t)) is the normalization factor. When W 1 = I/n, a simple

inductive argument proves rotational invariance of (4.2) for all t. Indeed, it trivially holds W 1(USU ′) =

UW 1(S)U ′. Now, given that W t(USU ′) = UWt(S)U ′, we have:

W t+1(USU ′) = argmin
W∈W

tr
(
W
(
logW −U logW tU

′))+ η∂t(W t)tr(W
′Uxtx

′
tU
′)

= argmin
UWU ′∈W

tr
(
UWU ′U (logW − logW t)U

′)+ η∂t(W t)tr(UW ′U ′Uxtx
′
tU
′)

= argmin
UWU ′∈UWU ′

tr (W (logW − logW t)) + η∂t(W t)tr(W
′xtx

′
t)

= U

(
argmin
W∈W

tr (W (logW − logW t)) + η∂t(W t)tr(W
′xtx

′
t)

)
U ′

= UW t+1(S)U ′,

9In practical applications the choice of B may still depend on the dimension.
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which proves rotational invariance of (4.2). Due to the strictly convex objective function, (4.2) has a

unique solution, and we conclude from Theorem 3.2 that the algorithm can be kernelized (we note that the

standard representer theorems do not cover this case). The main challenge in the update (4.3) is to do the

exp operation, but it can be done by eigendecomposition of logW t − η∂t(W t)xtx
′
t, which by Lemma 4.1

only requires to calculate the kernel matrix.

A new EG algorithm with regret bound logarithmic in the rank of the instances:

A particularly interesting case is when loss(tr(W ′
txtx

′
t), `t) = −tr(W ′

txtx
′
t). In other words, the game

is the gain game with a linear gain function tr(W txtx
′
t). Then, the offline solution to the problem W ∗

is a one-dimensional projector to the subspace that captures the most of the variance of the data, i.e. the

subspace associated with the largest eigenvalue of
∑

t xtx
′
t. Hence, the offline comparator corresponds to

the solution of single-component, centered Principal Component Analysis (PCA)10 [WK08]. The learning

algorithm can then be regarded as an online predictive version of PCA. In this case, the EG update (4.3)

simplifies to W t+1 = Z−1t exp
(
η
∑t

i=1 xix
′
i

)
, and the eigendecomposition can be handled using Corollary

4.2.

By modifying the EG analysis of [WK08, KW07], we can show shown that Reg(S) ≤
√

2L∗ lnn + lnn,

where L∗ is the approximation error, i.e. part of the variance in the data not captured by W ∗, L∗ =

minW∈W

{∑T
t=1(1− tr(W ′xtx

′
t))
}

. Unfortunately, this bound (which essentially appears in [KW07]) is

not satisfactory, as it depends on the feature space dimension n. When the instances xx′ are replaced by

φ(x)φ(x)′ then the lnn term can become unbounded. Below we sketch a new method for replacing lnn by

ln r, where r is the total rank of the instances. So for the first time, we obtain a bound for a Matrix EG

algorithm that does not depend on the feature dimension.

We observe that the best density matrix in hindsight W ∗ projects into the span of the data. If we

knew the span in hindsight, we could disregard the other dimensions and play EG within this subspace,

achieving the bound
√

2L∗ ln r + ln r, where r is the dimension of the subspace, i.e. the rank of the kernel

matrix X ′X. This bound is independent on n, because r ≤ T . Of course, the data span is unknown

to the learner, but we can slightly modify the EG algorithm (let us call the modification EG+) to obtain

the bound
√

2L∗ ln r + ln r + 1 ≤
√

2L∗ lnT + lnT + 1 without any prior knowledge of the span. The

EG+ algorithm is defined by modifying the update (4.3) to W+
t =

(
Z+
t

)−1
exp+

(
η
∑t−1

i=1 xix
′
i

)
, where

Z+
t = tr

(
exp+

(
η
∑t−1

i=1 xix
′
i

))
, and exp+(A) is a function that exponentiate the positive eigenvalues

of A only, and leaves the zero eigenvalues unchanged.11 In other words if A has a compact eigenvalue

decomposition UΣU ′, then, exp+(A) = U exp(Σ)U ′. To prove the regret bound
√

2L∗ ln r + ln r + 1 for

10By capping the eigenvalues to 1
k

(as done in [WK08]) we can generalize this algorithm to k-component PCA where one
seeks a k-dimensional subspace with maximal variance.

11The initial weight matrix W 1 is set arbitrarily.
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EG+, it suffices to show that given a feature space with dimension n, the total loss of EG+ (which does not

know n) is by at most one larger than the total loss of EG (which knows n):

Lemma 4.3. Let W t and W+
t be the matrices produced by the EG and EG+ algorithms, respectively. Then∑T

t=1−tr(W+
t
′
xtx

′
t)−

∑T
t=1−tr(W ′

txtx
′
t) ≤ 1.

Proof. Fix iteration t and let St−1 :=
∑t−1

i=1 xix
′
i. If xt is a linear combination of past instances x1, . . . ,xt−1,

then the loss incurred by EG+ is smaller than the loss incurred by EG. Indeed, tr (exp+ (ηSt−1)xtx
′
t) =

tr (exp (ηSt−1)xtx
′
t) (because xt belongs to the subspace associated with non-zero eigenvalues of St−1),

but Z+
t ≤ Zt (because exp+(A) � exp(A) for any positive matrix A). If xt is linearly independent of

x1, . . . ,xt−1, then the loss incurred by EG+ in any trial t > 1 is larger by at most 1
n (and t = 1 can be

handled seperately):

−tr(W+
t
′
xtx

′
t) = −(Z+

t )−1tr
(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1t tr

(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1t tr ((exp (ηSt−1)− I)xtx

′
t)

= −tr(W ′
txtx

′
t) + Z−1t

≤ −tr(W ′
txtx

′
t) + 1/n,

where we used the fact that exp+(A) � exp(A)− I for any positive matrix A, and that:

Zt = tr

(
exp

(
η

t−1∑
i=1

xix
′
i

))
≥ tr(I) = n.

2

Note that the EG+ is as easy to kernelize as the EG, because they differ only in the update of the eigenvalues.

We can also easily handle the case when the instances are positive symmetric matrices of rank at most s.

Since the EG bound does not depend on the sparsity of the instances, we immediately get the same regret

bound
√

2L∗ log r + ln r, where r ≤ Ts.

We finally note that one can also use an additive update (GD) algorithm in the symmetric case, and

obtain the bound
√
T for outer product instances, and

√
Ts for matrix instances. The bounds for the GD

and the EG+ algorithms are not directly comparable: EG+ has an additional log r factor, but GD scales

worse with the rank s of matrix instances. Moreover, the EG+ bound is especially useful for low-noise

conditions, when the approximation error L∗ is small. There is no corresponding bound known for the GD

in this case. We conclude that it is of further study, which of the algorithms performs better for typical

(real-life) instances of PCA problem.

5. Conclusion

We gave necessary and sufficient conditions for kernelizability for the case of vector, asymmetric matrix,

and symmetric matrix instances, under the assumption that the algorithm is linear, produces a unique so-
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lution and satisfies a certain rotational invariance. We also proved simple representer theorems for both

asymmetric and symmetric matrix instances when the solution to the underlying optimization problem is

unique. We concluded with a number of examples of our methods, including the kernelization of multi-

plicative updates. In some sense our approach resembles how the models in Physics are built, where the

equations of motion follow from certain invariance properties of physical laws.

The main open problem is whether our characterization of kernelization based on rotational invariance

can be extended to handle the case of non-unique solutions. A second subtle open problem is the following.

A new family of so called “Forward” algorithms was developed [AW01] whose predictions may depend on

the current unlabeled instance for which the algorithm is to produce a label. In particular, in the case of

linear regression [Vov01, For99], better regret bounds were proven for the Forward algorithm than for the

standard Ridge Regression algorithm. It is easy to generalize the Representer Theorem approach to handle

this case. However it is an open problem whether our characterization of kernelizability based on rotational

invariance can be generalized to algorithms that may predict with linear combinations of the labeled as well

as the last unlabeled instance.
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A. Tensor product instances over Hilbert Spaces

In this part, we generalize our results from finite-dimensional Euclidean space to Hilbert spaces. Through-

out this appendix we assume that Hilbert spaces are always real12 (i.e. they are over the set of reals) and

separable (i.e. they admit a countable orthonormal basis).

In the body of the paper, the instances were outer products xy′, where x ∈ Rn and y ∈ Rm. In the

generalization, the instances are tensor products x⊗ y, where the left instances x lie in some Hilbert space

X and the right instances y in some Hilbert space Y. In the symmetric case, the two Hilbert spaces coincide.

Note that in the original case, the outer product matrix xy′ can be written as x⊗ y as well.

We briefly recall the main definitions regarding Hilbert spaces. More details can be found in any general

book on Hilbert spaces such as [RY08]. Let 〈·, ·〉X and 〈·, ·〉Y denote the inner products in X and Y,

respectively. The tensor product x⊗y can also be interpreted as the following linear operator from Y to X

[ABEV09]:

∀ỹ ∈ Y : (x⊗ y) ỹ := 〈y, ỹ〉Y x. (A.1)

12The results of this appendix easily generalize to complex Hilbert spaces.
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The tensor product X⊗Y between the Hilbert spaces X and Y consists of all linear combinations of instances

of the form x⊗ y.13 The inner product between tensor product instances is defined as:

〈x⊗ y, x̃⊗ ỹ〉X⊗Y := 〈x, x̃〉X 〈y, ỹ〉Y .

Since the elements of X ⊗ Y are linear combinations of tensor product instances, the above dot product

between tensor product instances immediately extents to dot products between arbitrary instances of X ⊗Y.

Using the linearity of the inner product and (A.1), respectively, we have:

〈x⊗ y, x̃⊗ ỹ〉X⊗Y = 〈〈y, ỹ〉Y x, x̃〉X = 〈(x⊗ y)ỹ, x̃〉X . (A.2)

For any linear operator T : X 7→ Y, Tx is shorthand for T (x). Also the linear operator T ∗ : Y 7→ X is the

adjoint operator of T iff 〈Tx,y〉Y = 〈x,T ∗y〉X for every x ∈ X and y ∈ Y. If X = Rn and Y = Rm, then

a linear operator T : X 7→ Y is a matrix in Rm×n and T ∗ is T ′. By (A.1) and (A.2), we can prove that

(xi ⊗ yj)
∗ = yj ⊗ xi. (A.3)

For any linear operators T : X 7→ Y and R : Y 7→ Z, RT denotes the linear operator X 7→ Z which is the

functional composition of R and T . Note that when X = Rn, Y = Rm and Z = Rk, the composition RT

is just the product of two matrices R ∈ Rk×m and T ∈ Rm×n. A linear operator U : X 7→ X is unitary iff

UU∗ = U∗U = I, where I is the identity operator on X (namely Ix = x for very x ∈ X ).

A.1. Asymmetric tensor product instances

We assume the instances are tensor products x ⊗ y, where x ∈ X and y ∈ Y for some Hilbert spaces

X and Y. A learning algorithm A is any mapping from example sequence S = {(xt ⊗ yt, `t)}Tt=1, followed

by a next instance x ⊗ y to some fixed output range. Let KX ∈ RT×T be the kernel matrix for left

instances satisfying (KX)i,j = 〈xi,xj〉X and let KY ∈ RT×T be the kernel matrix for right instances

satisfying (KY )i,j = 〈yi,yj〉Y . We also define the augmented kernel matrices K̂X ∈ R(T+1)×(T+1) and

K̂Y ∈ R(T+1)×(T+1), by including the unlabeled instance x and y, respectively.

Definition A.1. An algorithm A for asymmetric tensor product instances is kernelizable, if for any two

input sequences S,x⊗y and S̃, x̃⊗ỹ with the same labels and the same augmented kernel matrices, algorithm

A maps to the same output, i.e. A(S,x⊗ y) = A(S̃, x̃⊗ ỹ).

Our next step is to define a notion of transformations for the general Hilbert space setting. For any linear

unitary operators U on X and V on Y, respectively, we define a linear operator U ⊗V on X ⊗Y as follows:

(U ⊗ V )(x⊗ y) := Ux⊗ V y.

13In general, not all elements of X ⊗ Y have the form x⊗ y.
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Now (U ⊗ V )∗ = U∗ ⊗ V ∗ because for all x, x̃ ∈ X and y, ỹ ∈ Y,

〈(U ⊗ V )(x⊗ y), x̃⊗ ỹ〉X⊗Y = 〈(Ux⊗ V y), x̃⊗ ỹ〉X⊗Y

= 〈Ux, x̃〉X 〈V y, ỹ〉Y = 〈x,U∗x̃〉X 〈y,V ∗ỹ〉Y

= 〈x⊗ y,U∗x̃⊗ V ∗ỹ〉X⊗Y = 〈x⊗ y, (U∗ ⊗ V ∗)(x̃⊗ ỹ)〉X⊗Y .

Since for all x ∈ X and y ∈ Y,

(U ⊗ V )(U∗ ⊗ V ∗)(x⊗ y) = (U ⊗ V )(U∗x⊗ V ∗y) = UU∗x⊗ V V ∗y = x⊗ y,

it follows that the linear operator U ⊗ V is a unitary operators on X ⊗ Y whenever U ,V are unitary

operators of X ,Y, respectively. However typically not all unitary operators on X ⊗ Y have this form. Note

that in the matrix case, U and V are orthogonal matrices in Rn×n and Rm×m, respectively, and the matrix

U ⊗ V is orthogonal in Rn×n ⊗ Rm×m.

We now define the unitary transformations of an example sequence S w.r.t. the linear unitary operator

U ⊗ V as follows:

(U ⊗ V )S := {(Uxt ⊗ V yt, `t)}Tt=1.

It is clear that

〈Uxi,Uxj〉X = 〈xi,U
∗Uxj〉X = 〈xi,xj〉X and 〈V yi,V yj〉Y = 〈yi,V

∗V yj〉Y = 〈yi,yj〉Y .

Therefore, as in Lemma 2.2, two sequences of examples S and S̃ are unitary transformations of each other

iff the kernel matrices associated with the left instances of both sequences and the right instances of both

sequences are the same, i.e. KX = K̃X and KY = K̃Y . Consequently, we get the following alternate

definition of kernelizability:

Corollary A.2. An algorithm A for asymmetric tensor product instances is kernelizable iff for all sequences

S, next instances x⊗ y, linear unitary operators U and V ,

A (S,x⊗ y) = A ((U ⊗ V )S,Ux⊗ V y) .

The generalization of the definition of linearity of an algorithm is straightforward:

Definition A.3. An algorithm A for asymmetric tensor product instances is linear, if upon receiving input

S,x ⊗ y, the algorithm first computes a tensor W ∈ X ⊗ Y (or a linear operator W : Y 7→ X ) from the

input sequence S, and then outputs the inner product 〈W ,x⊗ y〉X⊗Y = 〈Wy,x〉X .

We now give a characterization of the kernerlizability for such linear algorithms:

24



Theorem A.4. A linear algorithm A for asymmetric outer product instances is kernelizable if and only

if for every input sequence S = {(xt ⊗ yt, `t)}Tt=1 the linear operator produced by A can be written as

W (S) =
∑T

i=1

∑T
j=1 Ci,jxi ⊗ yj and the coefficient matrix C ∈ RT×T depends on S only via the kernel

matrices KX and KY .

Proof. Let W (S) denote the operator produced by algorithm A from the sequence S. Since A outputs the

dot product, A(S,x⊗ y) = 〈W (S),x⊗ y〉X⊗Y , it follows from Corollary A.2 that A is kernelizable iff:

〈W (S),x⊗ y〉X⊗Y = 〈W ((U ⊗ V )S),Ux⊗ V y〉X⊗Y (A.4)

for all sequences S and unitary operator U and V , and instances x⊗ y, for x ∈ X and y ∈ Y.

The proof of the “if” part is easy: Since the coefficient matrix C depends on S only via the kernel

matrices KX and KY , this matrix C is invariant under unitary transformation S 7→ (U ⊗ V )S (which

leaves the kernel matrices unchanged), and thus

W ((U ⊗ V )S) =

T∑
i=1

T∑
j=1

Cij(Uxi)⊗ (V yj).

for the same matrix C. This implies (A.4) and kernelizability:

〈W ((U ⊗ V )S), (Ux)⊗ (V y)〉X⊗Y =

〈∑
i,j

Ci,j(Uxi)⊗ (V yj), (Ux)⊗ (V y)

〉
X⊗Y

=
∑
i,j

Ci,j〈(Uxi)⊗ (V yj), (Ux)⊗ (V y)〉X⊗Y

=
∑
i,j

Ci,j〈Uxi,Ux〉X 〈V yj ,V y〉Y

=
∑
i,j

Ci,j〈xi,U
∗Ux〉X 〈yj ,V

∗V y〉Y

=
∑
i,j

Ci,j〈xi,x〉X 〈yj ,y〉Y =
∑
i,j

Ci,j〈xi ⊗ yj ,x⊗ y〉X⊗Y

=

〈∑
i,j

Ci,jxi ⊗ yj ,x⊗ y

〉
X⊗Y

= 〈W (S),x⊗ y〉X⊗Y .

The proof of the “only if” part is divided into two parts. In Part 1, we first show that (A.4) implies that for

any S, W (S) =
∑T

i=1

∑T
j=1 Cijxi⊗yj for some coefficient matrix C. In Part 2, we show that (A.4) implies

that for any S and unitary operators U and V , we also have W ((U⊗V )S) =
∑T

i=1

∑T
j=1 Cij(Uxi)⊗(V yj)

with the same C. This means that C is invariant under unitary transformations of the example sequence

S, and thus by a generalization of Lemma 2.2, this is equivalent to stating that C depends on S only via

the kernel matrices KX and KY .

Proof of Part 1: Let {x̂p}r1p=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
and {ŷq}

r2
q=1 be an or-

thonormal basis for Span
(
{yt}Tt=1

)
, where r1 and r2 are the ranks of the corresponding spaces. Since
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x̂p ∈ Span({x1, · · · ,xT }) and ŷq ∈ Span({y1, · · · ,yT }), there exist matrices P ∈ RT×r1 and Q ∈ RT×r2

such that

x̂p =

T∑
i=1

P i,pxi and ŷq =

T∑
j=1

Qj,qyj . (A.5)

Since X and Y are separable, they have countable orthonormal bases. Thus, we can complete {x̂p}r1p=1

and {ŷq}
r2
q=1 to orthonormal bases for X and Y, respectively, and denote those bases as {x̂i}i∈N and {ŷj}j∈N.

Hence {x̂i ⊗ ŷj |i, j ∈ N} is an orthonormal basis for X ⊗ Y, and we can decompose W (S) ∈ X ⊗ Y as

W (S) =
∑
i,j∈N

ĉi,jx̂i ⊗ ŷj .

Choose any index p > r1, and any index q ≥ 1, and we now show that ĉp,q = 0 (the case q > r2 and and

p ≥ 1 is proven similarly). We use our notion of unitary invariance (A.4). We choose the new instance x⊗y

with x = x̂p and y = ŷq. Furthermore, we choose U as the unitary Hauseholder operator H : X 7→ X ,

defined as: Hx := x− 2〈x, x̂p〉X x̂p, and V = I, the identity operator on Y.

It holds that 〈x̂p,xt〉X = 0 for any t = 1, . . . , T , because p > r1 and {x̂i}r1i=1 is the orthonormal basis

for Span
(
{xt}Tt=1

)
. This implies that Uxt = Hxt = xt − 2〈xt, x̂p〉X x̂p = xt, i.e. the left instances are not

affected by U . Also, V yt = Iyt = yt, i.e. the right instances are not affected by V . It thus follows that

the transformed samples in S̃ are same as the original samples in S, and therefore W ((U ⊗V )S) = W (S).

Thus, the l.h.s. of Equation (A.4) becomes:

〈W (S),x⊗ y〉X⊗Y =

〈∑
i,j

ĉi,jx̂i ⊗ ŷj , x̂p ⊗ ŷq

〉
X⊗Y

= ĉp,q.

However, we have Ux̂p = Hx̂p = x̂p − 2〈x̂p, x̂p〉X x̂p = −x̂p and therefore the r.h.s. of Equation (A.4) has

the opposite sign:

〈W ((U ⊗ V )S),Ux⊗ V y〉X⊗Y = 〈W (S),−x̂p ⊗ ŷp〉X⊗Y = −ĉp,q.

We conclude that the unitary invariance (A.4) implies ĉp,q = 0 if p > r1 (and similarly ĉp,q = 0 if q > r2).

It thus follows that

W (S) =

r1∑
p=1

r2∑
q=1

ĉp,qx̂p ⊗ ŷq.

and we now prove Part 1 by plugging (A.5) into the above:

W (S) =
∑
p,q

ĉp,q
∑
i

∑
j

P i,pQj,qxi ⊗ yj =
∑
i,j

∑
p,q

P i,pĉp,qQj,q︸ ︷︷ ︸
Ci,j

xi ⊗ yj .

Proof of Part 2: By Part 1, W (S) =
∑r1

i=1

∑r2
j=1 ĉi,jx̂i ⊗ ŷj . By applying Part 1 to the sequence

(U ⊗ V )S we get W ((U ⊗ V )S) =
∑r1

i=1

∑r2
j=1 d̂i,j(Ux̂i)⊗ (V ŷj) for some coefficients d̂i,j . By (A.4),

ĉp,q = 〈W (S), x̂p ⊗ ŷq〉X⊗Y = 〈W ((U ⊗ V )S), (Ux̂p)⊗ (V ŷq)〉X⊗Y = d̂p,q.
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for any p ∈ {1, . . . , r1} and any q ∈ {1, . . . , r2}. If {x̂i}r1i=1 is an orthonormal basis for Span
(
{xt}Tt=1

)
, then

{Ux̂i}r1i=1 is an orthonormal basis for Span
(
{Uxt}Tt=1

)
(and similarly for Span

(
{yt}Tt=1

)
and Span

(
{V yt}Tt=1

)
).

Similarly (A.5), we have

Ux̂p =

T∑
i=1

P i,p(Uxi) and V ŷq =

T∑
j=1

Qj,q(V yj). (A.6)

Then

W (S) =
∑
i,j

∑
p,q

P i,pĉp,qQj,q︸ ︷︷ ︸
Ci,j

xi ⊗ yj

follows immediately by plugging (A.6) into the equality

W ((U ⊗ V )S) =

r1∑
i=1

r2∑
j=1

d̂i,j(Ux̂i)⊗ (V ŷj) =

r1∑
i=1

r2∑
j=1

ĉi,j(Ux̂i)⊗ (V ŷj).

This completes the proof. 2

A.2. Symmetric tensor product instances

We assume the instances are tensor products x⊗x, where x ∈ X for some Hilbert spaces X . A learning

algorithm A is any mapping from example sequence S = {(xt⊗xt, `t)}Tt=1, followed by a next instance x⊗x

to some fixed output range. Let K ∈ RT×T be the kernel matrix for instances satisfying (K)i,j = 〈xi,xj〉X .

We also define the augmented kernel matrix K̂ ∈ R(T+1)×(T+1) by including the unlabeled instance x.

Definition A.5. An algorithm A for symmetric tensor product instances is kernelizable, if for any two

input sequences S,x⊗x and S̃, x̃⊗ x̃ with the same labels and the same augmented kernel matrix, algorithm

A maps to the same output, i.e. A(S,x⊗ x) = A(S̃, x̃⊗ x̃).

For any linear unitary operator U : X 7→ X , we let (U ⊗ U) S := {(Uxt ⊗ Uxt, `t)}Tt=1 denote the

unitary transformation of sequence S. Similarly as in Lemma 2.2, we can prove that two sequences of

examples S and S̃ are unitary transformations of each other iff the kernel matrices associated with both

sequences are the same, i.e. K = K̃. As a consequence of this fact, we get the following alternate definition

of kernelizability:

Corollary A.6. An algorithm A for symmetric tensor product instances is kernelizable iff for all sequences

S, next instances x⊗ x and linear unitary operator U ,

A (S,x⊗ x) = A ((U ⊗ V )S,Ux⊗Ux) .

The generalization of the linearity of algorithm is straightforward:
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Definition A.7. An algorithm A for symmetric tensor product instances is linear if A, upon input S,x⊗x,

first computes a symmetric tensor W ∈ X ⊗ X (or a linear self-adjoint14 operator W : X 7→ X ) from the

input sequence S, and then outputs the inner product 〈W ,x⊗ x〉X⊗X .15

We now give a characterization of the kernerlizability for linear algorithms:

Theorem A.8. A linear algorithm A is kernelizable if and only if for every input sequence S = {(xt ⊗

xt, `t)}Tt=1 the linear operator produced by A can be written as W (S) =
∑T

i=1

∑T
j=1 Ci,jxi⊗xj + cI, where

C ∈ RT×T is a symmetric coefficient matrix, c is a real number, I is the identity operator on X , and C

and c depend on S only via the kernel matrix K.

Proof. By ( A.6), A is kernelizable if and only if

〈W (S),x⊗ x〉X⊗X = 〈W ((U ⊗U)S),Ux⊗Ux〉X⊗X , (A.7)

for all S,U ,x⊗x. The proof of the “if” part is easy and very similar to that of Theorem A.4: Since C and c

depend on S only via the kernel matrix, C and c are invariant under unitary transformation S 7→ (U⊗U)S,

and thus W ((U ⊗U)S) =
∑T

i=1

∑T
j=1 Cij(Uxi)⊗ (Uxj) + cI. This implies (A.7) and kernelizability:

〈W ((U ⊗U)S),Ux⊗Ux〉X⊗X =

〈∑
i,j

Ci,j(Uxi)⊗ (Uxj) + cI, (Ux)⊗ (Ux)

〉
X⊗X

=
∑
i,j

Ci,j〈Uxi ⊗Uxj ,Ux⊗Ux〉X⊗X + c〈I,Ux⊗Ux〉X⊗X

=
∑
i,j

Ci,j〈Uxi,Ux〉X 〈Uxj ,Ux〉X + c〈I(Ux),Ux〉X

=
∑
i,j

Ci,j〈xi,U
∗Ux〉X 〈xj ,U

∗Ux〉X + c〈Ux,Ux〉X

=
∑
i,j

Ci,j〈xi,x〉X 〈xj ,x〉X + c〈Ix,x〉X

=
∑
i,j

Ci,j〈xi ⊗ xj ,x⊗ x〉X⊗Y + c〈I,x⊗ x〉X⊗X

=

〈∑
i,j

Ci,jxi ⊗ yj + cI,x⊗ x

〉
X⊗X

= 〈W (S),x⊗ x〉X⊗X .

Here we use the property (A.2) for the third and the sixth equality.

14Operator W : X 7→ X is self-adjoint if for any x ∈ X , 〈Wx,x〉X = 〈x,Wx〉X . This assumption on W comes without

loss of generality: Given any operator W , we can always take a symmetrized version W sym = W+W ∗

2
, and for any x⊗ x, it

holds 〈W sym,x⊗ x〉X⊗X = 〈W ,x⊗ x〉X⊗X = 〈Wx,x〉X = 〈W ∗x,x〉X .
15We could equivalently define the output of the algorithm as 〈x,Wx〉X . However, we use 〈W ,x ⊗ x〉X⊗X to be more in

line with the asymmetric instance case.
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The proof of the “only if” part is divided into two parts, as in Theorem A.4. In Part 1, we show

that (A.7) implies that for any S, W (S) =
∑T

i=1

∑T
j=1 Cijxi ⊗ xj + cI for some symmetric C ∈ RT×T

and c ∈ R. Then, in Part 2, we show that (2.3) implies that for any S and any unitary operator U ,

W ((U ⊗U)S) =
∑T

i=1

∑T
j=1 Cij(Uxi)⊗ (Uxj)+ cI. This means that C and c are invariant under unitary

transformations of the example sequence S, and thus by a generalization of Lemma 2.2 this is equivalent to

stating that C and c depend on S only via the kernel matrix K.

Proof of Part 1: Let {x̂p}rp=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
. Since x̂p ∈ Span

(
{xt}Tt=1

)
,

there exists matrix P ∈ RT×r such that

x̂p =

T∑
i=1

P i,pxi. (A.8)

Complete this basis to an orthonormal basis {x̂i}i∈N for X (note that X is separable, and hence has a

countable basis). We decompose W (S) =
∑

i,j ĉi,jx̂i ⊗ x̂j , and since W (S) is self-adjoint, ĉi,j = ĉj,i for all

i, j.

We need to show that (a) ĉp,q = 0 if p 6= q and either p > r or q > r, and that (b) ĉp,p = ĉ for some

constant ĉ, for p > r. We show (a) first. Due to the symmetry of W (S), it suffices to show that that ĉp,q = 0

for any q > r and any p ≥ 1, p 6= q. Choose x = x̂p + x̂q and U as the Hauseholder reflection operator H

defined as Hx := x−2〈x, x̂q〉X x̂q. Then, for any 1 ≤ t ≤ T , we have Uxt = Hxt = xt−2〈xt,xq〉X x̂q = xt

(because q > r and thus x̂q lies outside Span
(
{xt}Tt=1

)
). Thus, the transformed sample (U⊗U)S is the same

as the original sample S, and W ((U ⊗U)S) = W (S). On the other hand, Ux̂p = x̂p−2〈x̂p, x̂q〉X x̂q = x̂p,

and Ux̂q = x̂q − 2〈x̂q, x̂q〉X x̂q = −x̂q. Therefore, the l.h.s. and r.h.s. of (A.7) become

〈W (S),x⊗ x〉X⊗X = ĉp,p + ĉq,q + ĉp,q + ĉq,p,

〈W ((U ⊗U)S),Ux⊗Ux〉X⊗X = ĉp,p + ĉq,q − ĉp,q − ĉq,p,

which along with ĉp,q = ĉq,p implies ĉp,q = 0.

To show (b), we choose x = x̂p (we remind that p > r), and U to be a permutation operator that swaps

the basis vectors x̂p and x̂q for some q > r, while leaving all other basis vectors unchanged, i.e.:

Ux = x− 〈x, x̂p〉X x̂p − 〈x, x̂q〉X x̂q + 〈x, x̂q〉X x̂p + 〈x, x̂p〉X x̂q

or U = I − x̂p ⊗ x̂p − x̂q ⊗ x̂q + x̂p ⊗ x̂q + x̂q ⊗ x̂p.

For this choice of U , we have U∗ = U by (A.3) and Ux̂p = U∗x̂p = x̂q, Ux̂q = U∗x̂q = x̂p. Then we can

verify that UU∗x = U∗Ux = x for any x ∈ X , namely U is an unitary operator. Since Uxt = xt for all

1 ≤ t ≤ T (because p, q > r), the transformed sample (U ⊗ U)S is the same as the original sample S, so

that W ((U ⊗U)S) = W (S). On the other hand, (Ux) ⊗ (Ux) = (Ux̂p) ⊗ (Ux̂p) = x̂q ⊗ x̂q. The l.h.s.

and r.h.s. (A.7) become

〈W (S),x⊗ x〉X⊗X = ĉp,p and 〈W ((U ⊗U)S),Ux⊗Ux〉X⊗X = ĉq,q, respectively,
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which implies ĉp,p = ĉq,q. Since q was an arbitrary index such that q > r, we conclude that ĉp,p = ĉ for some

constant ĉ, for all p > r.

We conclude that the transformation invariance (A.7) implies that

W (S) =

r∑
p=1

r∑
q=1

ĉp,qx̂p ⊗ x̂q + ĉ
∑
p>r

x̂p ⊗ x̂p =

r∑
p=1

r∑
q=1

(ĉp,q − ĉδpq)x̂p ⊗ x̂q + ĉ
∑
i∈N

x̂i ⊗ x̂i

and we now prove Part 1 by plugging (A.8) into the above:

W (S) =
∑
p,q

(ĉp,q − ĉδpq)
∑
i,j

P i,pP j,qxi ⊗ xj + ĉ
∑
i∈N

x̂i ⊗ x̂i

=
∑
i,j

(∑
p,q

P i,p(ĉp,q − ĉδpq)P j,q

)
︸ ︷︷ ︸

Ci,j

xi ⊗ xj + ĉ︸︷︷︸
c

∑
i∈N

x̂i ⊗ x̂i︸ ︷︷ ︸
I

.

where
∑

i∈N x̂i ⊗ x̂i is just the identity operator I because for any x =
∑

i∈N〈x̂i, x〉x̂i ∈ X ,(∑
i∈N

x̂i ⊗ x̂i

)
x =

∑
i∈N

(x̂i ⊗ x̂i)x =
∑
i∈N
〈x̂i,x〉x̂i = x.

Without loss of generality, C is symmetric, because if Ci,j 6= Cj,i, then changing both to
Ci,j+Cj,i

2 does

not change W (S). Indeed,

∑
i,j

Ci,j + Cj,i

2
xi ⊗ xj + cI =

1

2

∑
i,j

Ci,jxi ⊗ xj + cI

+
1

2

∑
i,j

Ci,jxj ⊗ xi + cI


=

1

2
W +

1

2
W ∗ = W .

Proof of Part 2: By Part 1, W (S) =
∑r

i=1

∑r
j=1 ĉi,j x̂i⊗x̂j+ĉ

∑
i>r x̂i⊗x̂i. Moreover, by applying Part 1

to the sequence (U⊗U)S we get W ((U⊗U)S) =
∑r

i=1

∑r
j=1 d̂i,j(Ux̂i)⊗(Ux̂j)+d̂

∑
i>r(Ux̂i)⊗(Ux̂i) for

some coefficients d̂i,j and d̂, because if {x̂i}ri=1 is an orthonormal basis for Span
(
{xt}Tt=1

)
, then {Ux̂i}ri=1

is an orthonormal basis for Span
(
{Uxt}Tt=1

)
, and if {x̂i}i∈N is an orthonormal basis for X , then so is

{Ux̂i}i∈N. To finish the proof, it suffices to show that ĉp,q = d̂p,q for any p, q ∈ {1, . . . , r}, and that ĉ = d̂.

Then Part 2 follows immediately by plugging Ux̂p =
∑T

i=1 P i,p(Uxi) into the above equality. By (A.7),

for any 1 ≤ p, q ≤ r,

ĉp,q = 〈W (S),xp ⊗ xq〉X⊗X = 〈W ((U ⊗U)S),Uxp ⊗Uxq〉X⊗X = d̂p,q.

Similarly, for any p > r,

ĉ = 〈W (S),xp ⊗ xp〉X⊗X = 〈W ((U ⊗U)S),Uxp ⊗Uxp〉X⊗X = d̂.

2
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