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Krzysztof Dembczyński1, Salvatore Greco2, Wojciech Kot lowski1, and Roman
S lowiński1,3
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to deal with multi-criteria classification problems, where data
may be inconsistent with respect to the dominance principle. In this
paper, we consider different measures of the quality of approximation,
which is the value indicating how much inconsistent the decision table is.
We begin with the classical definition, based on the relative number of
inconsistent objects. Since this measure appears to be too restrictive in
some cases, a new approach based on the concept of generalized decision
is proposed. Finally, motivated by emerging problems in the presence
of noisy data, the third measure based on the object reassignment is
introduced. Properties of these measures are analysed in light of rough
set theory.

1 Introduction

The multi-criteria classification problem consists in assignment of objects from
a set A to pre-defined decision classes Clt, t ∈ T = {1, . . . , n}. It is assumed
that the classes are preference-ordered according to an increasing order of class
indices, i.e. for all r, s ∈ T , such that r > s, the objects from Clr are strictly
preferred to the objects from Cls. The objects are evaluated on a set of condition
criteria (i.e., attributes with preference-ordered domains). It is assumed that
there exists a semantic correlation between evaluation of objects on criteria and
their assignment to decision classes, i.e. a better evaluation of an object on a
criterion with other evaluations being fixed should not worsen its assignment to
a decision class.

In order to support multi-criteria classification, one must construct a pref-
erence model of the Decision Maker (DM). The construction of the preference
model requires some preference information from the DM. One possible way is
to induce the preference model from a set of exemplary decisions (assignments
of objects to decision classes) made on a set of selected objects called reference
objects. The reference objects are those relatively well-known to the DM who



is able to assign them to pre-defined classes. In other words, the preference in-
formation comes from observation of DM’s acts (comprehensive decisions). It is
concordant with a paradigm of artificial intelligence and, in particular, of in-
ductive learning. Moreover, the induced model can be represented in intelligible
way, for example as a set of decision rules.

The reference objects and their evaluations and assignments are often pre-
sented in a decision table S = 〈U,C,D〉, where U ⊆ A is a finite, non-empty set
of reference objects, C is a set of condition criteria, and D is a set of decision
criteria that contain information on assignment of objects to decision classes. D
is often a singleton (D = {d}), where d is shortly called decision. C and D are
disjoint, finite and non-empty sets that jointly constitute a set of all criteria Q.
It is assumed, without loss of generality, that the domain of each criterion q ∈ Q,
denoted by Vq, is numerically coded with an increasing order of preference. The
domains of criteria may correspond to cardinal or ordinal scales, however, we
are exploiting the ordinal information (the weakest) only, whatever is the scale.
The domain of decision d is a finite set (T = {1, . . . , n}) due to a finite num-
ber of decision classes. Evaluations and assignments of objects on any criterion
(q ∈ Q) are defined by an information function f(x, q), f : U × Q → V , where
V =

⋃
q∈Q Vq.

There is, however, a problem with inconsistency often present in the set
of decision examples. Two decision examples are inconsistent with respect to,
so-called, dominance principle, if there exists an object not worse than another
object on all considered criteria, however, it has been assigned to a worse decision
class than the other. To deal with these inconsistencies, it has been proposed
to construct the preference model in the form of a set of decision rules, after
adapting rough set theory [7–9] to preference ordered data. Such an adaptation
has been made by Greco, Matarazzo and S lowiński [4–6]; it consists in substitut-
ing the classical indiscernibility relation by a dominance relation, which permits
taking into account the preference order in domains (scales) of criteria. The
extended rough set approach is called Dominance-based Rough Set Approach
(DRSA) - a complete overview of this methodology is presented in [10].

Using the rough set approach to the analysis of preference information, we
obtain the lower and the upper (rough) approximations of unions of decision
classes. The difference between upper and lower approximations shows inconsis-
tent objects with respect to the dominance principle. The rough approximations
are then used in induction of decision rules representing, respectively, certain
and possible patterns of DM’s preferences. The preference model in the form of
decision rules explains a decision policy of the DM and permits to classify new
objects in line of the DM’s preferences.

The ratio of the cardinality of all consistent objects to the cardinality of all
reference objects is called quality of approximation. This ratio is very restrictive,
because in the extreme case, if there existed one object having better evaluations
on condition criteria than all the other objects from U and if it was assigned to
the worst class being a singleton, this ratio would decrease to 0. In the paper,
we consider two other measures of the quality of approximation. The first, based



on the generalized decision, is more resistant to local inconsistencies, but still
in the extreme case described above, its value would decrease to 0. The second,
motivated by emerging problems in the presence of noisy data, is free of this
disadvantage and is resistant to local inconsistencies. Its definition is based on
the concept of object reassignment. All these measures are monotonically non-
decreasing with the number of condition criteria considered.

The article is organized in the following way. Section 2 describes main ele-
ments of Dominance-based Rough Set Approach. Section 3 describes the classical
ratio of quality of approximation and the ratio based on generalized decision. In
Section 4, the third measure and its properties are presented. The last section
concludes the paper.

2 Dominance-based Rough Set Approach

Within DRSA, the notions of weak preference (or outranking) relation �q and
P -dominance relation DP are defined as follows. For any x, y ∈ U and q ∈ Q,
x �q y means that x is at least as good as (is weakly preferred to) y with
respect to criterion q. With respect to assumptions taken in the previous section,
it is x �q y ⇔ f(x, q) ≥ f(y, q). Moreover, taking into account more than
one criterion, we say that x dominates y with respect to P ⊆ Q (shortly x
P -dominates y), if x �q y for all q ∈ P . The weak preference relation �q is
supposed to be a complete pre-order and, therefore, the P -dominance relation
DP , being the intersection of complete pre-orders �q, q ∈ P , is a partial pre-
order in the set of reference objects. The dominance principle can be expressed
as follows, for x, y ∈ U , and P ⊆ C:

xDP y ⇒ xD{d}y, i.e., (∀q∈P f(x, q) ≥ f(y, q)) ⇒ f(x, d) ≥ f(y, d). (1)

The rough approximations concern granules resulting from information car-
ried out by the decision criterion. The approximation is made using granules
resulting from information carried out by condition criteria. These granules are
called decision and condition granules, respectively. The decision granules can
be expressed by unions of decision classes:

Cl≥t = {y ∈ U : f(y, d) ≥ t} (2)

Cl≤t = {y ∈ U : f(y, d) ≤ t}. (3)

The condition granules are P -dominating and P -dominated sets defined, respec-
tively, as:

D+
P (x) = {y ∈ U : yDP x} (4)

D−
P (x) = {y ∈ U : xDP y}. (5)

Let us remark that both decision and condition granules are cones in decision
and condition spaces, respectively. The origin of a decision cone is a class index
t ∈ T , while the origin of a condition cone is an object x ∈ U . The dominating



cones are open towards increasing preferences, and the dominated cones are open
towards decreasing preferences.

P -lower dominance-based rough approximations of Cl≥t and Cl≤t are defined
for P ⊆ C and t ∈ T , respectively, as follows:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t }, (6)

P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t }. (7)

P -upper dominance-based rough approximations of Cl≥t and Cl≤t are defined for
P ⊆ C and t ∈ T , respectively, as follows:

P (Cl≥t ) = {x ∈ U : D−
P (x) ∩ Cl≥t 6= ∅}, (8)

P (Cl≤t ) = {x ∈ U : D+
P (x) ∩ Cl≤t 6= ∅}, (9)

Consider the following definition of P -generalized decision for object x ∈ U :

δP (x) = 〈lP (x), uP (x)〉, where, (10)

lP (x) = min{f(y, d) : yDP x, y ∈ U}, (11)
uP (x) = max{f(y, d) : xDP y, y ∈ U}. (12)

In other words, the P -generalized decision reflects an interval of decision classes
to which an object may belong due to inconsistencies with the dominance prin-
ciple caused by this object. lP (x) is the lowest decision class, to which belong
an object P -dominating x; uP (x) is the highest decision class, to which belong
an object P -dominated by x. Obviously, lP (x) ≤ uP (x) for every P ⊆ C, x ∈ U
and if lP (x) = uP (x), then object x is consistent with respect to the dominance
principle in the decision table.

Let us remark that the dominance-based rough approximations may be ex-
pressed using P -generalized decision:

P (Cl≥t ) = {x ∈ U : lP (x) ≥ t}, (13)

P (Cl≥t ) = {x ∈ U : uP (x) ≥ t}, (14)

P (Cl≤t ) = {x ∈ U : uP (x) ≤ t}, (15)

P (Cl≤t ) = {x ∈ U : lP (x) ≤ t}. (16)

The lower and the upper rough approximations are then used in induction of
decision rules representing, respectively, certain and possible patterns of DM’s
preferences. These rules are used in classification of new objects. In general, a
new object is covered by several rules indicating rough approximations of upward
and downward unions of decision classes. Intersection of the outputs of the rules
gives an interval of decision classes to which an object is assigned. In many cases
the object is assigned to only one class resulting from the intersection of the
matching rules.



3 Quality of approximation

Let us begin with very restrictive definition of the quality of approximation. The
quality of approximation is defined as a ratio of the number of objects from the
decision table that are consistent with respect to the dominance principle, to the
number of all objects from this decision table. A set of consistent objects can be
defined in the following way, for any P ⊆ C:

{x ∈ U : uP (x) = lP (x)}. (17)

The same may be expressed, equivalently, by:⋃
t∈T {x ∈ U : D−

P (x) ⊆ Cl≤t ∧D+
P (x) ⊆ Cl≥t } =

= U −
(⋃

t∈T Bn≥t
P

)
= U −

(⋃
t∈T Bn≤t

P

)
,

where Bn≥t
P = P (Cl≥t )−P (Cl≥t ), and Bn≤t

P = P (Cl≤t )−P (Cl≤t ), are, so-called,
boundary regions.

The quality of approximation can be defined as:

γ(P ) =
card ({x ∈ U : uP (x) = lP (x)})

card (U)
. (18)

This definition is very restrictive, because in the extreme case, if there existed
one object dominating all the other objects from U while being assigned to the
lowest possible class, and if the lowest possible class was a singleton including this
object, γ(P ) would decrease to 0, even if the other objects from U were perfectly
consistent. It is not true, however, that γ(P ) does not count the relative number
of objects which can be captured by deterministic rules (i.e., induced from the
lower approximations of unions of decision classes), what was pointed by Düntsch
and Gediga in [3]. This is in fact, the relative number of objects that are covered
by these rules in the following way. When deterministic rules induced from lower
approximations of upward and downward unions of decision classes are applied
to an object, then the object is assigned by these rules to an interval of decision
classes to which it may belong. For a consistent object this interval boils down
to a single class. The relative number of these objects is just shown by γ(P ).

It is easy to show that, for any P ⊆ R ⊆ C, there holds:

γ(P ) ≤ γ(R). (19)

In other words, γ(P ) possesses a monotonicity property well-known in rough set
theory.

An improved ratio of the quality of approximation can be based on P -
generalized decision. The quality of approximation based on P -generalized de-
cision is defined as:

η(P ) = 1−
∑

x∈U (uP (x)− lP (x))
(n− 1) · card(U)

, (20)



where n is the number of decision classes, and it is assumed that the domain of
decision criterion is numbercoded and class indices are consecutive.

It is easy to see that η(P ) ∈ [0, 1]. The ratio expresses an average rela-
tive width of P -generalized decisions of reference objects. It is resistant to local
inconsistencies, i.e. inconsistencies appearing between objects with similar eval-
uations and assignments. In fact, this ratio is equivalent to the formulation given
by Düntsch and Gediga [3], however, differently motivated.

Theorem 1. η(P ) is equivalent to the quality of approximation

γOO(P ) =
∑n

t=2 card(P (Cl≥t )) +
∑n−1

t=1 card(P (Cl≤t ))∑n
t=2 card(Cl≥t ) +

∑n−1
t=1 card(Cl≤t )

, (21)

defined in [3].

Proof. Taking into account that U = Cl≥t + Cl≤t−1, t = 2, . . . , n, γOO(P ) may be
expressed as follows:

γOO(P ) =
∑n

t=2(card(P (Cl≥t )) + card(P (Cl≤t−1)))
(n− 1) · card(U)

. (22)

Further, we have:

γOO(P ) =
∑n

t=2 (card({x ∈ U : lP (x) ≥ t}) + card({x ∈ U : uP (x) ≤ t− 1}))
(n− 1) · card(U)

=
∑

x∈U (lP (x)− 1 + n− uP (x))
(n− 1) · card(U)

=
∑

x∈U ((n− 1)− (uP (x)− lP (x)))
(n− 1) · card(U)

=
(n− 1) · card(U)−

∑
x∈U (uP (x)− lP (x))

(n− 1) · card(U)
= 1−

∑
x∈U (uP (x)− lP (x))
(n− 1) · card(U)

�

An interesting interpretation of (22) is that this ratio is also the average of the
quality of approximations for n−1 binary classification problems for consecutive
unions of decision classes (Cl≤1 against Cl≥2 , Cl≤2 against Cl≥3 , . . ., Cl≤n−1 against
Cl≥n ).

It is easy to see that for any P ⊆ R ⊆ C, there holds:

η(P ) ≤ η(R).

4 Quality of Approximation Based on Reassignment of
Objects

The measures of approximation described above were based on the notions of
lower and upper approximations of the unions of classes. The common idea
behind these definitions was the fact that a decision interval for a given object
x ∈ U is calculated taking into account all the other objects from U , dominating
or being dominated by x. The problem is that it is enough to introduce one more



object dominating x, with the class assignment lower than x (alternatively, being
dominated by x, with higher class assignment) to enlarge the decision interval,
thus lowering the measures of approximation.

The key idea of the new measure is the following. The quality of approxi-
mation based on reassignment of objects is the minimal number of objects in U
that must be reassigned to make the reference objects from U consistent, i.e.
satisfying the dominance principle (1). Formally, it is defined as:

ζ(P ) =
m− L

m
(23)

where L is the minimal number of objects from U that have to be reassigned
consistently and m = card(U). It is easy to see that ζ(P ) ∈ [0, 1], but one can
give tighter lower bound: ζ(P ) ≥ mmax

m , where mmax is the number of objects
belonging to the largest class. Notice that ζ(P ) = 1 iff set U is consistent for
P ⊆ C.

To compute L one can formulate a linear programming problem. Similar
problem was considered in [1] in the context of specific binary classification that
has much in common with multi-criteria classification. The method presented in
[1] is called isotonic separation. Here we formulate more general problem, used
for different goal (measuring the quality of approximation), however the idea
behind the algorithm for finding the optimal solution remains similar.

To formulate the problem in a linear form, for each object xi, i ∈ {1, . . . ,m},
we introduce n− 1 binary variables dit, t ∈ {1, . . . , n}, with the following inter-
pretation: dit = 1 iff object xi ∈ Cl≥t . Such interpretation implies the following
conditions:

if t′ > t then dit′ ≤ dit (24)

for all i ∈ {1, . . . m} (otherwise it would be possible that there exists object xi

belonging to the Cl≥t′ , but not belonging to Cl≥t , where t′ > t). Moreover, we give
a new value of decision f∗i to object xi according to the rule: f∗i = maxdit=1{t}
(the highest t, for which we know that xi belongs to Cl≥t ).

Then, for each object xi ∈ U with the initial class assignment fi = f(xi, d),
the cost function can be formulated as below:

L(xi) = (1− di,fi
) + di,fi+1 (25)

Indeed, for t = fi + 1, dit = 1 means wrong assignment (to the class higher than
fi). For t = fi, dit = 0 means also wrong assignment, to the class lower than
fi. Moreover, according to (24), only one of those conditions can appear at the
same time and one of those conditions is necessary for xi to be wrongly assigned.
Thus the value of decision for xi changes iff L(xi) = 1.

According to (1), the following conditions must be satisfied for U to be con-
sistent:

dit ≥ djt ∀i, j: xiDP xj 1 ≤ t ≤ n (26)



Finally we can formulate the problem in terms of integer linear programming:

minimize L =
m∑

i=1

L(xi) =
m∑

i=1

(1− di,fi
+ di,fi+1)) (27)

subject to dit′ ≤ dit 1 ≤ i ≤ m, 1 ≤ t < t′ ≤ n

dit ≥ djt 1 ≤ i, j ≤ m, xiDP xj , 1 ≤ t ≤ n

dit ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ t ≤ n

The matrix of constraints in this case is totally unimodular, because it contains
in each row either two values 1 and -1 or one value 1, and the right hand sides
of the constraints are integer. Thus, we can relax the integer condition:

0 ≤ dit ≤ 1 1 ≤ i ≤ m, 1 ≤ t ≤ n (28)

and get a linear programming problem. This property was previously applied in
isotonic separation method for two class problems [1]. In this paper, the authors
give also a way for further reduction of the problem size. Here we prove a more
general result using the language of DRSA.

Theorem 2. There always exists an optimal solution of (27), f∗i = maxdit=1{t},
for which the following condition holds: lP (xi) ≤ f∗i ≤ uP (xi), 1 ≤ i ≤ m.

Proof. First, notice that all the constraints in (27) are equivalent to introducing
a new (optimal) class assignment variable f∗i = maxdit=1{t} and constraints
f∗i ≥ f∗j for all xi, xj such that xiDP xj .

Now, assume we have an optimal solution f∗i , i ∈ {1, . . . ,m}. Assume also,
that for some I ⊆ {1, . . . ,m}, f∗i < lP (xi), i ∈ I, and for some J ⊆ {1, . . . ,m},
f∗i > uP (xi), j ∈ J , holds. The solution can be modified to obtain new solution
f∗∗i = lP (xi) for i ∈ I, f∗∗i = uP (xi) for i ∈ J and f∗∗i = f∗i , i /∈ I ∪ J , which
will not have higher cost than f∗. We will prove that the new solution f∗∗ is
also feasible (i.e. satisfies all the constraints), therefore, being optimal solution
of the problem (27).

Thus, we must prove that for each xi, xj ∈ U , the following condition holds:

xiDP xj ⇒ f∗∗i ≥ f∗∗j (29)

The proof consist of three parts. First, we consider object xi, where i ∈ I. Then,
we take into account i ∈ J . Finally, we check the consistency for i /∈ I ∪ J .

First, notice that for all i ∈ I, f∗∗i > f∗i , and for all i ∈ J , f∗∗i < f∗i .
Consider i ∈ I. Then, (29) holds for all j ∈ {1, . . . ,m}, since if j ∈ I, then

f∗∗i = lP (xi), f∗∗j = lP (xj), and according to the definition of lP (x) it holds that
lP (xi) ≥ lP (xj) for xiDP xj . If j /∈ I, then f∗∗i > f∗i ≥ f∗j ≥ f∗∗j .

Now, consider i ∈ J . Then, (29) holds for all j ∈ {1, . . . ,m}, since f∗∗i =
uP (xi), f∗∗j ≤ uP (xj), and according to the definition of uP (x), it holds that
uP (xi) ≥ uP (xj) for xiDP xj , so f∗∗i = uP (xi) ≥ uP (xj) ≥ f∗∗j .

Finally, consider i /∈ I ∪ J . Then, (29) holds for all j ∈ {1, . . . ,m}, since if
j ∈ I, then f∗∗i ≥ lP (xi) ≥ lP (xj) = f∗∗j . If j /∈ I, then f∗∗i = f∗i ≥ f∗j = f∗∗j .
Thus, we proved the theorem. �



Table 1. Example of decision table; q1, q2 are criteria, d is decision criterion.

U q1 q2 d U q1 q2 d

x1 23 48 4 x7 16 10 1
x2 44 48 4 x8 20 30 2
x3 45 44 2 x9 6 14 1
x4 26 28 3 x10 9 16 1
x5 30 26 3 x11 5 9 2
x6 24 33 3 x12 15 11 1

Theorem 2 enables a strong reduction of the number of variables. For each
object xi, variables dit can be set to 1 for t ≤ lP (xi), and to 0 for t > uP (xi), since
there exists an optimal solution with such values of the variables. In particular,
if an object x is consistent (i.e. lP (x) = uP (x)), the class assignment for this
object remains the same.

The introduced ratio of the quality of approximation ζ(P ) satisfies also the
monotonicity property, as stated by the following theorem.

Theorem 3. For any P ⊆ R ⊆ C, it holds:

ζ(P ) ≤ ζ(R)

Proof. It results from the fact that for any P ⊆ R ⊆ C and any x, y ∈ U ,
xDRy ⇒ xDP y. Thus, any constraint in the optimization problem (27) for set
R must also appear in the optimization problem for set P , so the feasible region
(set of solutions satisfying all the constraints) for R includes the feasible region
for P . Thus, the minimum of L for R cannot be greater than the minimum of L
for P . �

Finally, we should notice that the measure ζ(P ) is more robust to the noise
than γ(P ) and η(P ). Randomly changing an assignment of an object in the
decision table will not change ζ(P ) by more than 1

m .
In Table 1, there is an example of decision table. If we consider set U1 =

{x1, x2, x3, x4, x5, x6} with classes {Cl2, Cl3, Cl4} then we have γ(P ) = 1
3 , η(P ) =

2
3 , ζ(P ) = 5

6 . However, for the set U2 = {x7, x8, x9, x10, x11, x12} and classes
{Cl1, Cl2} we have γ(P ) = 1

6 , η(P ) = 1
6 , but ζ(P ) = 5

6 . Taking into account the
whole decision table U = U1 ∪ U2, we obtain γ(P ) = 1

4 , η(P ) = 3
4 , ζ(P ) = 5

6 .

5 Conclusions

The paper discusses different measures of the quality of approximation in the
multi-criteria classification problem. There seems to be no one best way of calcu-
lating such a coefficient from the dataset. However, each measure can be charac-
terized by showing its advantages and drawbacks. The classical measure is simple
and intuitively clear, however, for real-life data it might be too restrictive in use.



The second one, based on the generalized decision concept, measures the width
of decision ranges, thus allowing some local inconsistencies with small decrease
of quality of approximation. However, both may boil down to 0 only because
of one object being maximally inconsistent with the rest of reference objects.
The third measure based on the objects reassignment, is more robust to noise,
unfortunately the coefficient cannot be given explicitly, but has to be found in
result of solving an optimization problem. All the proposed measures satisfy the
monotonicity property typical for rough set theory.
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