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Abstract. In order to discover interesting patterns and dependencies in
data, an approach based on rough set theory can be used. In particular,
Dominance-based Rough Set Approach (DRSA) has been introduced to
deal with the problem of multicriteria classification. However, in real-life
problems, in the presence of noise, the notions of rough approximations
were found to be excessively restrictive, which led to the proposal of the
Variable Consistency variant of DRSA. In this paper, we introduce a new
approach to variable consistency that is based on maximum likelihood
estimation. For two-class (binary) problems, it leads to the isotonic re-
gression problem. The approach is easily generalized for the multi-class
case. Finally, we show the equivalence of the variable consistency rough
sets to the specific risk-minimizing decision rule in statistical decision
theory.

1 Introduction

In decision analysis, a multicriteria classification problem is considered that con-
sists in assignment of objects to m decision classes Clt, t ∈ T = {1, . . . ,m}. The
classes are preference ordered according to an increasing order of class indices,
i.e. for all r, s ∈ T , such that r > s, the objects from Clr are strictly preferred
to objects from Cls. Objects are evaluated on a set of condition criteria, i.e.
attributes with preference ordered value sets. It is assumed that a better eval-
uation of an object on a criterion, with other evaluations being fixed, should
not worsen its assignment to a decision class. In order to construct a preference
model, one can induce it from a reference (training) set of objects U already
assigned to decision classes. Thus, multicriteria classification problem resem-
bles typical classification problem considered in machine learning [6, 11] under
monotonicity constraints: the expected decision value increases with increasing
values on condition attributes. However, it still may happen that in U , there
exists an object xi not worse than another object xk on all condition attributes,
however, xi is assigned to a worse class than xk; such a situation violates the



monotone nature of data, so we shall call objects xi and xk inconsistent with
respect to dominance principle.
Rough set theory [13] has been adapted to deal with this kind of inconsistency

and the resulting methodology has been called Dominance-based Rough Set Ap-
proach (DRSA) [7, 8]. In DRSA, the classical indiscernibility relation has been
replaced by a dominance relation. Using the rough set approach to the analy-
sis of multicriteria classification problem, we obtain lower and upper (rough)
approximations of unions of decision classes. The difference between upper and
lower approximations shows inconsistent objects with respect to the dominance
principle. It can happen that due to the presence of noise, the data is so inconsis-
tent, that too much information is lost, thus making the DRSA inference model
not accurate. To cope with the problem of excessive inconsistency the variable
consistency model within DRSA has been proposed (VC-DRSA) [9].
In this paper, we look at DRSA from a different point of view, identifying its

connections with statistics and statistical decision theory. Using the maximum
likelihood estimation we introduce a new variable consistency variant of DRSA.
It leads to the statistical problem of isotonic regression [14], which is then solved
by the optimal object reassignment problem [5]. Finally, we explain the approach
as being a solution to the problem of finding a decision minimizing the empirical
risk [1].

Notation. We assume that we are given a set U = {(x1, y1), . . . , (x`, y`)}, con-
sisting of ` training objects, with their decision values (class assignments),
where each yi ∈ T . Each object is described by a set of n condition criteria
Q = {q1, . . . , qn} and by domqi we mean the set of values of attribute qi. For
each i, domqi is ordered by some weak preference relation, here we assume for
simplicity domqi ⊆ R and the order relation is a linear order ≥. We denote the
evaluation of object xi on attribute qj by qj(xi). Later on we will abuse a bit
the notation, identifying each object x with its evaluations on all the condition
criteria, x ≡ (q1(x), . . . qn(x)) and denote X = {x1, . . . , x`}. By class Clt ⊂ X,
we mean a set of objects, such that yi = t, i.e. Clt = {xi ∈ X: yi = t, 1 ≤ i ≤ `}.

2 Classical variable precision rough set approach

The classical rough set approach [13] (which does not take into account any
monotonicity constraints) is based on the assumption that objects having the
same description are indiscernible (similar) with respect to the available infor-
mation [13, 8]. The indiscernibility relation I is defined as:

I = {(xi, xj) ∈ X ×X: qk(xi) = qk(xj) ∀qk ∈ Q} (1)

The equivalence classes of I (denoted I(x) for some object x ∈ X) are called
granules. The lower and upper approximations of class Clt are defined, respec-
tively, by:

Clt = {xi ∈ X: I(xi) ⊆ Clt} Clt =
⋃

xi∈Clt

I(xi) (2)



For application to the real-life data, a less restrictive definition was intro-
duced under the name of variable precision rough set model (VPRS) [16] and
is expressed in the probabilistic terms. Let Pr(Clt|I(x)) be a probability that
an object xi from granule I(x) belongs to the class Clt. The probabilities are
unknown, but are estimated by frequencies Pr(Clt|I(x)) = |Clt∩I(x)|

|I(x)| . Then, the
lower approximation of class Clt is defined as:

Clt =
⋃

I(x):x∈X

{I(x): Pr(Clt|I(x)) ≥ u} (3)

so it is the sum of all granules, for which the probability of class Clt is at least
equal to some threshold u.
It can be shown that frequencies used for estimating probabilities are the

maximum likelihood (ML) estimators under assumption of common class proba-
bility distribution for every object within each granule. The sketch of the deriva-
tion is the following. Let us choose some granule G = I(x). Let nG be the number
of objects in G, and for each class Clt, let nt

G be the number of objects from this
class in G. Then the decision value y has a multinomial distribution when condi-
tioned on granule G. Let us denote those probabilities Pr(y = t|G) by pt

G. Then,
the conditional probability of observing n1

G, . . . nt
G objects in G (conditional like-

lihood) is given by L(p;nG|G) =
∏m

t=1(p
t
G)nt

G , so that the log-likelihood is given
by L(p;nG|G) = lnL(n; p, G) =

∑m
t=1 nt

G ln pt
G. The maximization of L(p;nG|G)

with additional constraint
∑m

t=1 pt
G = 1 leads to the well-known fomula for ML

estimators p̂t
G in multinomial distribution:

p̂t
G =

nt
G

nG
(4)

which are exactly the frequencies used in VPRS. This observation will lead us in
section 4 to the definition of the variable consistency for dominance-based rough
set approach.

3 Dominance-based Rough Set Approach (DRSA)

Within DRSA [7, 8], we define the dominance relation D as a binary relation
on X in the following way: for any xi, xk ∈ X we say that xi dominates xk,
xiDxk, if on every condition criterion from Q, xi has evaluation not worse than
xk, qj(xi) ≥ qj(xk), for j = 1, . . . , n. The dominance relation D is a partial
pre-order on X, i.e. it is reflexive and transitive. The dominance principle can
be expressed as follows:

xiDxj =⇒ yi ≥ yj (5)

for any xi, xj ∈ X. We say that two objects xi, xj ∈ X are consistent if they
satisfy the dominance principle. We say that object xi is consistent, if it is
consistent with every other object from X.



The rough approximations concern granules resulting from information car-
ried out by the decisions. The decision granules can be expressed by upward and
downward unions of decision classes, respectively:

Cl≥t = {xi ∈ X : yi ≥ t} Cl≤t = {xi ∈ X : yi ≤ t} (6)

The condition granules are dominating and dominated sets defined, respectively,
for each x ∈ X, as:

D+(x) = {xi ∈ X : xiDx} D−(x) = {xi ∈ X : xDxi} (7)

Lower approximations of Cl≥t and Cl≤t are defined as:

Cl≥t = {xi ∈ X : D+(xi) ⊆ Cl≥t } Cl≤t = {xi ∈ X : D−(xi) ⊆ Cl≤t } (8)

Upper approximations of Cl≥t and Cl≤t are defined as:

Cl
≥
t = {xi ∈ X:D−(xi) ∩ Cl≥t 6= ∅} Cl

≤
t = {xi ∈ X:D+(xi) ∩ Cl≤t 6= ∅} (9)

4 Statistical model of variable consistency in DRSA

In this section, we introduce a new model of variable consistency DRSA (VC-
DRSA), by miming the ML estimation shown in section 2. The name variable
consistency instead of variable precision is used in this chapter only to be con-
sistent with the already existing theory [9].
In section 2, although it was not mentioned straightforward, while estimating

the probabilities, we have made the assumption that in a single granule I(x),
each object x ∈ G has the same conditional probability distribution, Pr(y =
t|I(x)) ≡ pt

G. This is due to the property of indiscrenibility of objects within a
granule. In case of DRSA, indiscernibility is replaced by a dominance relation,
so that a different relation between the probabilities must hold. Namely, we
conclude from the dominance principle that:

xiDxj =⇒ pt
i ≥ pt

j ∀t ∈ T, ∀xi, xj ∈ X (10)

where pt
i is a probability (conditioned on xi) of decision value at least t,

Pr(y ≥ t|xi). In other words, if object xi dominates object xj , probability distri-
bution conditioned at point xi stochastically dominates probability distribution
conditioned at xj . Equation (10) will be called stochastic dominance principle.
In this section, we will restrict the analysis to two-class (binary) problem, so

we assume T = {0, 1} (indices start with 0 for simplicity). Notice, that Cl≥0 and
Cl≤1 are trivial, so that only Cl≥1 and Cl≤0 are used and will be denoted simply
by Cl1 and Cl0, respectively. We relax the definition of lower approximations
for T = {0, 1} in the following way (in analogy to the classical variable precision
model):

Clt = {xi ∈ X : pt
i ≥ α}, (11)



where α ∈ (0.5, 1] is a chosen consistency level. Since we do not know probabil-
ities pt

i, we will use instead their ML estimators p̂t
i. The conditional likelihood

function (probability of decision values with X being fixed) is a product of bi-
nomial distributions and is given by

∏`
i=1(p

1
i )

yi(p0
i )

1−yi , or using pi ≡ p1
i (since

p0
i = 1− pi), is given by

∏`
i=1(pi)yi(1− pi)1−yi . The log-likelihood is then

L(p; y|X) =
∑̀
i=1

(yi ln(pi) + (1− yi) ln(1− pi)) (12)

The stochastic dominance principle (10) simplifies to:

xiDxj =⇒ pi ≥ pj ∀xi, xj ∈ X (13)

To obtain probability estimators p̂i, we need to maximize (12) subject to
constraints (13). This is exactly the problem of statistical inference under the
order restriction [14]. Before investigating properties of the problem, we state
the following theorem:

Theorem 1. Object xi ∈ X is consistent with respect to the dominance principle
if and only if p̂i = yi.

Using Theorem 1 we can set p̂i = yi for each consistent object xi ∈ X and
optimize (12) only for inconsistent objects, which usually gives a large reduction
of the problem size (number of variables). In the next section, we show that
solving (12) boils down to the isotonic regression problem.

5 Isotonic regression

For the purpose of this paper we consider the simplified version of the isotonic
regression problem (IRP) [14]. Let X = {x1, . . . , x`} be a finite set with some
pre-order relation D ⊆ X × X. Suppose also that y:X → R is some function
on X, where y(xi) is shortly denoted yi. A function y∗:X → R is an isotonic
regression of y if it is the optimal solution to the problem:

minimize
∑̀
i=1

(yi − pi)2

subject to xiDxj =⇒ pi ≥ pj ∀1 ≤ i, j ≤ ` (14)

so that it minimizes the squared error in the class of all isotonic functions p
(where we denoted p(xi) as pi in (14)). In our case, the ordering relation D is
the dominance relation, the set X and values of function y on X, i.e. {y1, . . . , y`}
will have the same meaning as before. Although squared error in (14) seems to be
arbitrarily chosen, it can be shown that minimizing many other error functions
leads to the same function y∗ as in the case of (14). Suppose that Φ is a convex
function, finite on an interval I, containing the range of function y on X, i.e.
y(X) ⊆ I and Φ has value +∞ elsewhere. Let φ be a nondecreasing function on



I such that, for each u ∈ I, φ(u) is a subgradient of Φ. For each u, v ∈ I define
the function ∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v). Then the following theorem
holds:

Theorem 2. [14] Let y∗ be an isotonic regression of y on X, i.e. y∗ solves (14).
Then it holds:∑

xi∈X

∆Φ(yi, f(xi)) ≥
∑

xi∈X

∆Φ(yi, y
∗(xi)) +

∑
xi∈X

∆Φ(y∗(xi), f(xi)) (15)

for any isotonic function f with the range in I, so that y∗ minimizes∑
xi∈X

∆Φ(yi, f(xi)) (16)

in the class of all isotonic functions f with range in I. The minimizing function
is unique if Φ is strictly convex.

It was shown in [14] that by using the function:

Φ(u) =
{

u lnu + (1− u) ln(1− u) for u ∈ (0, 1)
0 for u ∈ {0, 1} (17)

in Theorem 2, we end up with the problem of maximizing (12) subject to con-
straints (13). Thus, we can find solution to the problem (12) subject to (13) by
solving the IRP (14).
Suppose A is a subset of X and f :X → R is any function. We define

Av(f,A) = 1
|A|

∑
xi∈A f(xi) to be an average of f on a set A. Now suppose

y∗ is the isotonic regression of y. By a level set of y∗, [y∗ = a] we mean the sub-
set of X, on which y∗ has constant value a, i.e. [y∗ = a] = {x ∈ X: y∗(x) = a}.
The following theorem holds:

Theorem 3. [14] Suppose y∗ is the isotonic regression of y. If a is any real
number such that the level set [y∗ = a] is not empty, then a = Av(y, [y∗ = a]).

Theorem 3 states, that for a given x, y∗(x) equal to the average of y over
all the objects having the same value y∗(x). Since there is a finite number of
divisions of X into level sets, we conclude there are only finite number of values
that y∗ can possibly take. In our case, since yi ∈ {0, 1}, all values of y∗ must be
of the form r

r+s , where r is the number of objects from class Cl1 in the level set,
while s is the number of objects from Cl0.

6 Minimal reassignment problem

In this section we briefly describe the minimal reassignment problem (MRP),
introduced in [5]. We define the reassignment of an object xi ∈ X as changing
its decision value yi. Moreover, by minimal reassignment we mean reassigning the
smallest possible number of objects to make the set X consistent (with respect



to the dominance principle). One can see, that such a reassignment of objects
corresponds to indicating and correcting possible errors in the dataset. To find
minimal reassignment, one can formulate a linear program. Such problems were
already considered in [3] (under the name isotonic separation, in the context of
binary and multi-class classification) and also in [2] (in the context of boolean
regression).
Assume yi ∈ {0, 1}. For each xi ∈ X we introduce a binary variable di which

is to be a new decision value for xi. The request that the new decision values
must be consistent with respect to the dominance principle implies:

xiDxj =⇒ di ≥ dj ∀1 ≤ i, j ≤ ` (18)

Notice, that (18) has the form of the stochastic dominance principle (13). The
reassignment of an object xi takes place if yi 6= di. Therefore, the number of
reassigned objects (which is also the objective function for MRP) is given by∑`

i=1 |yi − di| =
∑`

i=1(yi(1− di) + (1− yi)di), where the last equality is due to
the fact, that both yi, di ∈ {0, 1} for each i. Finally notice that the matrix of
constraints (18) is totally unimodular, so we can relax the integer condition for
di reformulating it as 0 ≤ di ≤ 1, and get a linear program [3, 12]. Moreover,
constraint 0 ≤ di ≤ 1 can be dropped, since if there were any di > 1 (or di < 0)
in any feasible solution, we could decrease their values down to 1 (or increase
up to 0), obtaining a new feasible solution with smaller value of the objective
function. Finally, for the purpose of the paper, we rewrite the problem in the
following form:

minimize
∑̀
i=1

|yi − di|

subject to xiDxj =⇒ di ≥ dj ∀1 ≤ i, j ≤ ` (19)

Comparing (19) with (14), we notice that, although both problems emerged
in different context, they look very similar and the only difference is in the
objective function (L1-norm in MRP instead of L2-norm in IRP). In fact, both
problems are closely connected, which will be shown in the next section.

7 Connection between IRP and MRP

To show the connection between IRP and MRP we consider the latter to be in
more general form, allowing the cost of reassignment to be different for different
classes. The weighted minimal reassignment problem (WMRP) is given by

minimize
∑̀
i=1

wyi
|yi − di|

subject to xiDxj =⇒ di ≥ dj ∀1 ≤ i, j ≤ ` (20)

where wyi
are arbitrary, positive weights associated with decision classes. The

following results hold:



Theorem 4. Suppose p̂ = {p̂1, . . . , p̂`} is an optimal solution to IRP (14).
Choose some value α ∈ [0, 1] and define two functions:

l(p) =
{

0 if p ≤ α
1 if p > α

(21)

and

u(p) =
{

0 if p < α
1 if p ≥ α

(22)

Then the solution d̂l = {d̂l
1, . . . , d̂

l
`} such that d̂l

i = l(p̂i) for each i ∈ {1, . . . , `},
and the solution d̂u = {d̂u

1 , . . . , d̂u
` } such that d̂u

i = u(p̂i) for each i ∈ {1, . . . , `},
are the optimal solutions to WMRP (20) with weights:

w0 = p

w1 = 1− p (23)

Moreover, if d̂ = {d̂1, . . . , d̂`} is an optimal integer solution to WMRP with
weights (23), it must hold d̂l

i ≤ d̂i ≤ d̂u
i , for all i ∈ {1, . . . , `}. In particular, if

d̂l ≡ d̂u, the solution to the WMRP is unique.

Theorem 4 clearly states, that if the optimal value for a variable p̂i in IRP
(14) is greater (or smaller) than α, then the optimal value for the corresponding
variable d̂i in the WMRP (20) with weights (23) is 1 (or 0). In particular, for
α = 1

2 we have w0 = w1 = 1, so we obtain MRP (19). It also follows from
Theorem 4, that if α cannot be taken by any p̂i in the optimal solution p̂ to
the IRP (14), the optimal solution to the WMRP (20) is unique. It follows from
Theorem 3 (and discussion after it), that p̂ can take only finite number of values,
which must be of the form r

r+s , where r < `1 and s < `1 are integer (`0 and
`1 are numbers of objects from class, respectively, 0 and 1). Since it is preferred
to have a unique solution to the reassignment problem, from now on, we always
assume that α was chosen not to be of the form r

r+s (in practice it can easily be
done by choosing α to be some simple fraction, e.g. 2/3 and adding some small
number ε). We call such value of α to be proper.
It is worth noticing that WMRP is easier to solve than IRP. It is linear, so

that one can use linear programming, it can also be transformed to the network
flow problem [3] and solved in O(n3). In the next section, we show, that to obtain
lower and upper approximations for the VC-DRSA, it is enough to solve IRP
and solves two reassignment problems instead.

8 Summary of the statistical model for DRSA

We begin with reminding the definitions of lower approximations of classes (for
two-class problem) for consistency level α:

Clt = {xi ∈ X : pt
i ≥ α} (24)



for t ∈ {0, 1}. The probabilities pt are estimated using the ML approach and
from the previous analysis it follows that the set of estimators p̂ is the optimal
solution to the IRP.
As it was stated in the previous section we choose α to be proper, so that

the definition (24) can be equivalently stated as:

Cl1 = {xi ∈ X : p̂i > α}
Cl0 = {xi ∈ X : 1− p̂i > α} = {xi ∈ X : p̂i < 1− α} (25)

where we replaced the probabilities by their ML estimators. It follows from
Theorem 4, that to obtain Cl0 and Cl1 we do not need to solve IRP. Instead we
solve two weighted minimal reassignment problems (20), first one with weights
w0 = α and w1 = 1−α, second one with w0 = 1−α and w1 = α. Then, objects
with new decision value (optimal assignment) d̂i = 1 in the first problem form
Cl1, while objects with new decision value d̂i = 0 in the second problem form Cl0.
It is easy to show that the boundary between classes (defined as X−(Cl1∪Cl0))
is composed of objects, for which new decision values are different in those two
problems.

9 Extension to the multi-class case

Till now, we focused on binary classification problems considered within DRSA.
Here we show, how to solve the general problem with m decision classes.
We proceed as follows. We divide the problem into m−1 binary problems. In

tth binary problem, we estimate the lower approximations of upward union for
class t+1, Cl≥t+1, and the lower approximation of downward union for class t, Cl≤t
using the theory stated in the section 8 for two-class problem with Cl0 = Cl≤t
and Cl1 = Cl≥t+1. Notice, that for the procedure to be consistent, it must hold
if t′ > t than Cl≥t′ ⊆ Cl≥t and Cl≤t ⊆ Cl≤t′ . In other words, the solution has
to satisfy the property of inclusion that is one of the fundamental properties
considered in rough set theory. Fortunately, we have:

Theorem 5. For each t = 1, . . . ,m− 1, let Cl≤t and Cl≥t+1 be the sets obtained
from solving two-class isotonic regression problem with consistency level α for
binary classes Cl0 = Cl≤t and Cl1 = Cl≥t+1. Then, we have:

t′ ≥ t =⇒ Cl≤t ⊆ Cl≤t′ (26)

t′ ≥ t =⇒ Cl≥t′+1 ⊆ Cl≥t+1 (27)

10 Decision-theoretical view

In this section we look at the problem of VPRS and VC-DRSA from the point
of view of statistical decision theory [1, 11]. A decision-theoretic approach has



already been proposed in [15] (for VPRS) and in [10] (for DRSA). The theory
presented here for VPRS is slightly different than in [15], while the decision-
theoretic view for DRSA proposed in this section is completely novel.
Suppose, we seek for a function (classifier) f(x) which, for a given input vector

x, predicts value y as well as possible. To assess the goodness of prediction, the
loss function L(f(x), y) is introduced for penalizing the prediction error. Since
x and y are random variables, the overall measure of the classifier f(x) is the
expected loss or risk, which is defined as a functional:

R(f) = E[L(y, f(x))] =
∫

L(y, f(x))dP (y, x) (28)

for some probability measure P (y, x). Since P (y, x) is unknown in almost all the
cases, one usually minimize the empirical risk, which is the value of risk taken
for the points from a training sample U :

Re(f) =
∑̀
i=1

L(yi, f(xi)). (29)

Function f is usually chosen from some restricted family of functions. We now
show that the rough set theory leads to the classification procedures, which are
naturally suited for dealing with problems when the classifiers are allowed to
abstain from giving answer in some cases.
Let us start with VPRS. Assume, that we allow the classifier to give no

answer, which is denoted as f(x) =?. The loss function suitable for the problem
is the following:

Lc(f(x), y) =

0 if f(x) = y
1 if f(x) 6= y
a if f(x) =?

(30)

There is a penalty a for giving no answer. To be consistent with the classical
rough set theory, we assume, that any function must be constant within each
granule, i.e. for each G = I(x) for some x ∈ X, we have:

xi, xj ∈ G =⇒ f(xi) = f(xj) ∀xi, xj ∈ X (31)

which is in fact the principle of indiscernibility. We now state:

Theorem 6. The function f∗ minimizing the empirical risk (29) with loss func-
tion (30) between all functions satisfying (31) is equivalent to the VPRS in the
sense, that f∗(G) = t if and only if granule G belongs to the lower approximation
of class t with the precision threshold u = 1− a, otherwise f∗(G) =?.

Concluding, the VPRS can be derived by considering the class of functions
constant in each granule and choosing the function f∗, which minimizes the
empirical risk (29) for loss function (56) with parameter a = 1 − u. As we
see, classical rough set theory suits well for considering the problems when the
classification procedure is allowed not to give predictions for some x.



We now turn back to DRSA. Assume, that to each point x, the classifier f
assigns the interval of classes, denoted [l(x), u(x)]. The lower and upper ends of
each interval are supposed to be consistent with the dominance principle:

xiDxj =⇒ l(xi) ≥ l(xj) ∀xi, xj ∈ X

xiDxj =⇒ u(xi) ≥ u(xj) ∀xi, xj ∈ X (32)

The loss function L(f(x), y) is composed of two terms. First term is a penalty
for the size of the interval (degree of imprecision) and equals to a(u(x)− l(x)).
Second term measures the accuracy of the classification and is zero, if y ∈
[l(x), u(x)], otherwise f(x) suffers additional loss equal to distance of y from
the closer interval range:

L(f(x), y) = a(u(x)− l(x)) + I(y /∈ [l(x), u(x)])min{|y− l(x)|, |y− u(x)|} (33)

where I(·) is an indicator function. We now state:

Theorem 7. The function f∗ minimizing the empirical risk (29) with loss func-
tion (33) between all interval functions satisfying (32) is equivalent to the sta-
tistical VC-DRSA with consistency level α = 1 − a in the sense, that for each
x ∈ X, x ∈ Cl≥t or x ∈ Cl≤t if and only if t ∈ f∗(x).

Concluding, the statistical VC-DRSA, can be derived by considering the
class of interval functions, for which the lower and upper ends of interval are
isotonic (consistent with the dominance principle) and choosing the function f∗,
which minimizes the empirical risk (29) with loss function (33) with parameter
a = 1− α.

11 Conclusions

The paper introduced a new variable consistency theory for Dominance-based
Rough Set Approach. Starting from the general remarks about the estimation of
probabilities in the classical rough set approach (which appears to be maximum
likelihood estimation), we used the same statistical procedure for DRSA, which
led us to the isotonic regression problem. The connection between isotonic re-
gression and minimal reassignment solutions was considered and it was shown
that in the case of the new variable consistency model, it is enough to solve min-
imal reassignment problem (which is linear), instead of the isotonic regression
problem (quadratic). The approach has also been extended to the multi-class
case by solving m − 1 binary subproblems for the class unions. The proposed
theory has an advantage of basing on well investigated maximum likelihood esti-
mation method – its formulation is clear and simple, it unites seemingly different
approaches for classical and dominance-based case.
Finally notice that a connection was established between statistical decision

theory and rough set approach. It follows from the analysis that rough set theory
can serve as a tools for constructing classifiers, which can abstain from assigning



a new object to a class in case of doubt (in classical case) or give imprecise
prediction in the form of interval of decision values (in DRSA case). However,
rough set theory itself has a rather small generalization capacity, due to its
nonparametric character, which was shown in section 10. The plans for further
research are to investigate some restricted classes of functions which would allow
to apply rough set theory directly for classification.
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Appendix: Proofs of the Theorems

Theorem 1. Object xi ∈ X is consistent with respect to the dominance principle
if and only if p̂i = yi

Proof. We consider the case yi = 1 (the case yi = 0 is analogous). If xi is con-
sistent, then there is no other object xj , such that xjDxi and yj = 0 (otherwise,
it would violate dominance principle and consistency of xi as well). Thus, for
every xj , such that xjDxi, yj = 1 and yj is also consistent (otherwise, due to
transitivity of dominance, xi wouldn’t be consistent). Thus, we can set p̂j = 1 for
xj and p̂i = 1 for xi, and these are the values that maximize the log-likelihood
(12) for those objects while satisfying the constraints (13)
Now, suppose p̂i = 1 and assume the contrary that xi is not consistent, i.e.

there exists xj , xjDxi, but yj = 0. Then, due to the monotonicity constraints
(13), p̂j ≥ p̂i = 1, so p̂j = 1, and the log-likelihood (12) equals to minus infinity,
which is surely not the optimal solution to the maximization problem (since at
least one feasible solution p̂ ≡ 1

2 with a finite objective value exists).�

Theorem 4. Suppose p̂ = {p̂1, . . . , p̂`} is an optimal solution to the problem of
isotonic regression (14). Choose some value α ∈ [0, 1] and define two functions:

l(p) =
{

0 if p ≤ α
1 if p > α

(34)

and

u(p) =
{

0 if p < α
1 if p ≥ α

(35)

Then the solution d̂l = {d̂l
1, . . . , d̂

l
`} such that d̂l

i = l(p̂i) for each i ∈ {1, . . . , `},
and the solution d̂u = {d̂u

1 , . . . , d̂u
` } such that d̂u

i = u(p̂i) for each i ∈ {1, . . . , `},
are the optimal solutions to the problem of weighted minimal reassignment (20)
with weights:

w0 = α

w1 = 1− α (36)

Moreover, if d̂ = {d̂1, . . . , d̂`} is an optimal integer solution to the problem of
weighted minimal reassignment with weights (36), it must hold d̂l

i ≤ d̂i ≤ d̂u
i , for

all i ∈ {1, . . . , `}. In particular, if d̂l ≡ d̂u, then the solution is unique.

Proof. Let us define a function Φ(u) on the interval I = [0, 1] in the following
way:

Φ(u) =
{

α(u− α) for x ≥ α
(1− α)(α− u) for x < α

(37)

It is easy to check, that Φ(u) is a convex function, but not a strictly convex
function. Φ has derivative φ(u) = α−1 for u ∈ [0, α) and φ(u) = α for u ∈ (α, 1].



At point u = α, Φ(u) is not differentiable, but each value in the range [α− 1, α]
is a subgradient of Φ(u).
First, suppose we set φ(α) = α− 1. We remind, that:

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v) (38)

Now, assume u ∈ {0, 1}. To calculate ∆Φ(u, v), we need to consider four cases,
depending what are the values of u and v:

1. u = 0, v > α; then Φ(u) = α(1 − α), Φ(v) = α(v − α), φ(v) = α, so that
∆Φ(u, v) = α.

2. u = 0, v ≤ α; then Φ(u) = α(1−α), Φ(v) = (1−α)(α− v), φ(v) = α− 1, so
that ∆Φ(u, v) = 0.

3. u = 1, v > α; then Φ(u) = α(1 − α), Φ(v) = α(v − α), φ(v) = α, so that
∆Φ(u, v) = 0.

4. u = 1, v ≤ α; then Φ(u) = α(1− α), Φ(v) = (1− α)(α− v), φ(v) = α− 1 so
that ∆Φ(u, v) = 1− α.

Using definition (34) of function l, we can comprehensively write those results
as:

∆Φ(u, v) = wu|l(v)− u| (39)

for u ∈ {0, 1}, where wu are given by (36). Thus, according to Theorem 2, p̂ is
the optimal solution to the problem:

minimize
∑̀
i=1

wyi |l(pi)− yi| (40)

subject to xiDxj =⇒ pi ≥ pj ∀1 ≤ i, j ≤ ` (41)

Notice, that d̂l = l(p̂) is also the optimal solution to the problem (40)-(41),
because l is a nondecreasing function, so if p̂ satisfies constraints (41), then so
does d̂l. Moreover, l(l(x)) = l(x), so the value of the objective function (40) is
the same for both p̂ and d̂l. But d̂l is integer and, for integer solutions, problems
(40)-(41) and (20) are the same, so d̂l is a solution to the problem (20) with the
lowest objective value among all the integer solutions to this problem. But, from
the analysis of the unimodularity of constraints matrix of (20) we know that
if d̂l is the solution to (20) with the lowest objective value among the integer
solutions, it is also the optimal solution, since there exists an optimal solution
to (20), which is integer.
Now, setting φ(α) = α, we repeat the above analysis, which leads to the

function u instead of l and shows, that also d̂u is the optimal solution to the
problem (20).
We now prove the second part of the theorem. Assume v ∈ {0, 1} and fix again

φ(α) = α − 1. To calculate ∆Φ(u, v), we consider again four cases, depending
what are the values of u and v:



1. u > α, v = 0; then Φ(u) = α(u− α), Φ(v) = α(1− α), φ(v) = α− 1, so that
∆Φ(u, v) = u− α > 0.

2. u ≥ α, v = 1; then Φ(u) = α(u − α), Φ(v) = α(1 − α), φ(v) = α, so that
∆Φ(u, v) = 0.

3. u ≤ α, v = 0; then Φ(u) = (1 − α)(α − u), Φ(v) = α(1 − α), φ(v) = α − 1,
so that ∆Φ(u, v) = 0.

4. u < α, v = 1; then Φ(u) = (1 − α)(α − u), Φ(v) = α(1 − α), φ(v) = α, so
that ∆Φ(u, v) = α− u > 0.

From Theorem 2 it follows that:

∑̀
i=1

∆Φ(yi, f(xi)) ≥
∑̀
i=1

∆Φ(yi, p̂i) +
∑̀
i=1

∆Φ(p̂i, f(xi)) (42)

for any isotonic function f in the range [0, 1]. Notice that if the last term in (42)
is nonzero, then f cannot be optimal to the problem (40)-(41) (since then p̂ has
strictly lower cost than f).
Suppose now that d̂ is an optimal integer solution to the minimal reassign-

ment problem (20). But then it is also the solution to the problem (40)-(41) with
the lowest objective value between all the integer solutions (since both problems
are exactly the same for integer solutions). Since d̂l is optimal solution to the
problem (40)-(41) and is integer (so that there exist integer solution which is
optimal), d̂ is also optimal solution to this problem. Then, however, the last
term in (42) must be zero, so for each i ∈ {1, . . . , `} it must hold ∆Φ(p̂i, d̂i) = 0
(since all those terms are nonnegative). As d̂ is integer, it is clear from the above
analysis of ∆Φ(u, v) for v being integer, that it may only happen, if the following
conditions hold:

p̂i > α =⇒ d̂i = 1 (43)

p̂i < α =⇒ d̂i = 0 (44)

for all i ∈ {1, . . . , `}. From the definitions of d̂l and d̂u it follows, that for p̂i = α

it holds that d̂l
i = 0 and d̂u

i = 1, for p̂i > α it holds d̂l
i = d̂u

i = 1 and for p̂i < α

it holds d̂l
i = d̂u

i = 0. From this and from (43)-(44) we conclude that:

d̂l
i ≤ d̂i ≤ d̂u

i (45)

for all i ∈ {1, . . . , `}, for any optimal integer solution d̂ to problem (20). �

Lemma 1. Let p̂ be the optimal solution to the isotonic regression problem (14)
for decision values y. Suppose, we introduce a new vector of decision values y′,
such that y′i ≥ yi for all i ∈ {1, . . . , `}. Then, p̂′, the isotonic regression of
y′ (optimal solution to the isotonic regression problem for values y′), has the
following property: p̂′i ≥ p̂i, for all i ∈ {1, . . . , `}.



Proof. Assume the contrary, let p̂′ be the isotonic regression of y′, and there
exists i, such that p̂′i < p̂i. Define two other solutions, p̂+ and p̂− in the following
way:

p̂+
i = max{p̂i, p̂

′
i}, (46)

p̂−i = min{p̂i, p̂
′
i}. (47)

Notice that p̂+ 6= p̂′ and p̂− 6= p̂, since for some i, p̂′i < p̂i. We show that p̂+, p̂−

are feasible solutions, i.e. they satisfy constraints of (14). Suppose xiDxj . Then,
since p̂, p̂′ are feasible, it follows that p̂i ≥ p̂j and p̂′i ≥ p̂′j . But from definition
of p̂+

i we have, that p̂+
i ≥ p̂i and p̂+

i ≥ p̂′i, so it also holds that p̂+
i ≥ p̂j and

p̂+
i ≥ p̂′j . Then, p̂

+
i ≥ max{p̂j , p̂

′
j} = p̂+

j .
Similarly, from the definition of p̂−j we have, that p̂−j ≤ p̂j and p̂−j ≤ p̂′j , so

it also holds that p̂−j ≤ p̂i and p̂−j ≤ p̂′i. But then p̂−j ≤ min{p̂i, p̂
′
i} = p̂−i . Thus,

both p̂+, p̂− are feasible.
Let us denote the objective function of (14) as F (y, p) =

∑`
i=1(yi − pi)2.

Then, we have:

F (y′, p̂+)− F (y′, p̂′) =
∑̀
i=1

(
p̂+2

i − p̂′2i − 2y′ip̂
+
i − 2y′ip̂

′
i

)
=

=
∑̀
i=1

(
(p̂+

i − p̂′i)(p̂
+
i + p̂′i)− 2y′i(p̂

+
i − p̂′i)

)
(48)

Since it holds that p̂+
i − p̂′i ≥ 0 and y′i ≥ yi, we have:

∑̀
i=1

2y′i(p̂
+
i − p̂′i) ≥

∑̀
i=1

2yi(p̂+
i − p̂′i) (49)

Finally, it holds that p̂+
i + p̂−i = p̂′i + p̂i, so that:

p̂+
i − p̂′i = p̂i − p̂−i (50)

and
p̂+

i + p̂′i = 2(p̂′i − p̂−i ) + (p̂i + p̂−i ). (51)

Putting (49)-(51) into (48), we finally obtain:

F (y′, p̂+)− F (y′, p̂′) ≤
∑̀
i=1

(
2(p̂i − p̂−i )(p̂′i + p̂−i ) + (p̂i − p̂−i )(p̂i + p̂−i )− 2yi(p̂i − p̂−i )

)
=

∑̀
i=1

(
2(p̂i − p̂−i )(p̂′i + p̂−i ) + p̂2

i − 2yip̂i − p̂−2
i + 2yip̂

−
i

)



=
∑̀
i=1

2(p̂i − p̂−i )(p̂′i + p̂−i ) + F (y, p̂)− F (y, p̂−)

<
∑̀
i=1

2(p̂i − p̂−i )(p̂′i + p̂−i ) (52)

since by the assumption p̂ is the isotonic regression of y, so it is the unique
optimal solution for decision values y and p̂ 6= p̂−. In the last sum, however, for
each i, either p̂i = p̂−i or p̂′i = p̂−i , so the sum vanishes. Thus, we have:

F (y′, p̂+)− F (y′, p̂′) < 0 (53)

which is a contradiction, since p̂′ is the isotonic regression of y′, it is the unique
optimal solution for decision values y′. �.

Theorem 5. For each t = 1, . . . ,m− 1, let Cl≤t and Cl≥t+1 be the sets obtained
from solving two-class isotonic regression problem with consistency level α for
binary classes Cl0 = Cl≤t and Cl1 = Cl≥t+1. Then, we have:

t′ ≥ t =⇒ Cl≤t ⊆ Cl≤t′ (54)

t′ ≥ t =⇒ Cl≥t′+1 ⊆ Cl≥t+1 (55)

Proof. Suppose we have solved the problem for some t. Denote yi = 1 if xi ∈
Cl≥t+1 and yi = 0 if xi ∈ Cl≤t . Suppose we have also solved the problem for
some t′ ≥ t. Denote y′i = 1 if xi ∈ Cl≥t′+1 and y′i = 0 if xi ∈ Cl≤t′ . Clearly, from
the definition of Cl≤t , Cl≥t it follows that yi ≥ y′i for each i ∈ {1, . . . , `}. Then,
according to Lemma 1, if xi ∈ Cl≤t (so that p̂i < α), then also xi ∈ Cl≤t′ (since
then p̂′i ≤ p̂i < α). Analogously, if xi ∈ Cl≥t′+1, then also xi ∈ Cl≥t+1. This proves
the theorem. �

Theorem 6. The function f∗ minimizing the empirical risk (29) with loss func-
tion (30) between all functions satisfying (31) is equivalent to the VPRS for clas-
sical rough set theory in the sense, that f∗(G) = t if and only if granule G belongs
to the lower approximation of class t with the precision threshold u = 1−a, oth-
erwise f∗(G) =?.

Proof. Since apart from (31) there are no other restrictions for possible functions
f , we can analyze the value of f in each granule independently. Let us choose
then some granule G = I(x) for some x ∈ X. Let us also denote the number of
objects in G as nG, and for each class label t ∈ T , let us denote nt

G as the number
of objects from class t in G. It is clear that the total loss of some function f in
granule G is the following:

Lf(G) =
{

nG − nt
G if f(G) = t

a · nG if f(G) =? (56)



This follows from the fact that if f(G) = t, then for each xi ∈ G such that
yi 6= t, f suffers loss 1. On the other hand, if f(G) =?, for each xi ∈ G, function
f suffers loss a. It is obvious that the best strategy is to choose the majority class
in G or give no answer, depending which loss is greater. The preferred strategy
is choosing the majority class if for some t it holds nG − nt

G ≤ anG or:

a ≥ 1− nt
G

nG
(57)

Otherwise, if no t satisfies this relation, f∗(G) =? is chosen. Comparing this
results with section 2, one can see that the decision f∗(G) = t is chosen if gran-
ule G belongs to the lower approximation of class t with the precision thresh-
old u = 1 − a. Clearly, from (3) with probabilities estimated by (4) the above
equality follows (we assume that u > 1

2 , so granule G may belong to the lower
approximation of one class only). If there is no class for which G is in its lower
approximation, the optimal function f∗ gives no answer.�

Theorem 7. The function f∗ minimizing the empirical risk (29) with loss func-
tion (33) between all interval functions satisfying (32) is equivalent to the vari-
able consistency model for DRSA with consistency level α = 1− a in the sense,
that for each x ∈ X, x ∈ Cl≥t or x ∈ Cl≤t if and only if t ∈ f∗(x).

Proof. We first show, how to find the function minimizing the empirical risk
using the linear programming approach. Let lik, uik ∈ {0, 1}, be binary decision
variables for each i ∈ {1, . . . , `}, k ∈ {2, . . . ,m}. We code the ranges of interval
f(xi) as l(xi) = 1 +

∑m
k=2 lik and u(xi) = 1 +

∑m
k=2 uik. In order to provide the

unique coding for each value of l(xi) and u(xi) and to ensure that u(xi) ≥ l(xi)
the following properties are sufficient:

uik ≥ lik ∀i ∈ {1, . . . , `}, k ∈ {2, . . . ,m} (58)

lik ≥ lik′ ∀i ∈ {1, . . . , `}, k < k′ (59)

uik ≥ uik′ ∀i ∈ {1, . . . , `}, k < k′ (60)

Moreover, for dominance principle (32) to hold, we must also have:

xiDxj =⇒ lik ≥ lik ∀i ∈ {1, . . . , `}, k ∈ {2, . . . ,m} (61)

xiDxj =⇒ uik ≥ uik ∀i ∈ {1, . . . , `}, k ∈ {2, . . . ,m} (62)

It is not hard to verify, that the loss function (33) for object xi can be written
as:

Li = L(f(xi), yi) = a

m∑
k=2

(uik − lik) +
m∑

k=yi+1

lik +
yi∑

k=2

(1− uik) (63)

Denoting yik = I(yi ≥ k), where I(·) is the indicator function, we have:



Li = (1− a)
m∑

k=2

lik(1− yik)− a
m∑

k=2

likyik +

a
m∑

k=2

uik(1− yik)− (1− a)
m∑

k=2

uikyik +
m∑

k=2

yik

=
m∑

k=2

wII
yik
|lik − yik|+

m∑
k=2

wI
yik
|uik − yik|+ C (64)

where C is constant term (which does not depend on lik and uik) and weights has
the form wI

0 = a,wI
1 = 1−a,wII

0 = 1−a,wII
1 = a. But it follows from (64), that

minimizing empirical risk Re =
∑`

i=1 is equivalent to solving the sequence of
m−1 pairs of weighted minimal reassignment, as described in section 9 (solving
multi-class case as m − 1 binary problems) and in section 8 (obtaining lower
approximations by solving pair of weighted minimal reassignment problems)
with the penalty a equal to 1−α, but with additional constraints (58)-(60). We
now show that those constraints are in fact not needed.
Suppose now, we remove constraints (58)-(60). Then we obtain 2(k − 1)

separate problems, since variables {li2}`
i=1, {ui2}`

i=1, . . . , {lim}`
i=1, {uim}`

i=1 are
now independent sets and their optimal values can be obtained separately. This is
exactly the constructing of statistical VC-DRSA in multi-class case as described
before. But it follows from Theorem 5, that constraints (59) and (60) are satisfied
at optimality. Moreover, from Theorem 4 and analysis in section 9 it follows that
also the constraints (58) are satisfied at optimality. Thus, the optimal solution
to problem without constraints (58)-(60) is also the solution to the problem with
constraints (58)-(60).�


