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Abstract. We consider the problem of ordinal classification, in which
a value set of the decision attribute (output, dependent variable) is fi-
nite and ordered. This problem shares some characteristics of multi-class
classification and regression, however, in contrast to the former, the or-
der between class labels cannot be neglected, and, in the contrast to the
latter, the scale of the decision attribute is not cardinal. In the paper, fol-
lowing the theoretical framework for ordinal classification, we introduce
two algorithms based on gradient descent approach for learning ensem-
ble of base classifiers being decision rules. The learning is performed by
greedy minimization of so-called threshold loss, using a forward stage-
wise additive modeling. Experimental results are given that demonstrate
the usefulness of the approach.

1 Introduction

In the prediction problem, the aim is to predict the unknown value of an at-
tribute y (called decision attribute, output or dependent variable) of an object
using known joint values of other attributes (called condition attributes, predic-

tors, or independent variables) x = (z1, 22, ...,2y). In the ordinal classification,
it is assumed that y = {ry,...,rx}, with rg, k € K = {1,..., K}, being K
distinct and ordered class labels rg = rx_1 = ... = ry, where > denotes the

ordering relation between labels. Let us assume in the following, without loss
of generality, that r, = k. This problem shares some characteristics of multi-
class classification and regression. A value set of y is finite, but in contrast to
the multi-class classification, the order between class labels cannot be neglected.
The values of y are ordered, but in contrast to regression, the scale of y is not
cardinal. Such a setting of the prediction problem is very common in real appli-
cations. For example, in recommender systems, users are often asked to evaluate
items on five value scale (see Netflix Prize problem [16]). Another example is
the problem of email classification to ordered groups, like: “very important”,
“important”, “normal”, and “later”.

The problem of ordinal classification is often solved by multi-class classi-
fication or regression methods. In recent years, however, some new approaches
tailored for ordinal classification were introduced [13,6,7,18,17, 3,14, 15]. In this
paper, we take first a closer look at the nature of ordinal classification. Later



on, we introduce two novel algorithms based on gradient descent approach for
learning ensemble of base classifiers. The learning is performed by greedy mini-
mization of so-called threshold loss [17] using a forward stagewise additive mod-
eling [12]. As a base classifier, we have chosen single decision rule which is a
logical expression having the form: if [conditions], then [decision]. This choice
is motivated by simplicity and ease in interpretation of decision rule models.
Recently, one can observe a growing interest in decision rule models for classifi-
cation purposes (e.g. such algorithms like SLIPPER [5], LRI [19], RuleFit [11],
ensemble of decision rules [1,2]).

Finally, we report experimental results that demonstrate the usefulness of
the proposed approach for ordinal classification. In particular our approach is
competitive to traditional regression and multi-class classification methods, and
also to existing ordinal classification methods.

2 Statistical Framework for Ordinal Classification

Similarly to classification and regression, the task is to find a function F'(x) that
predicts accurately an ordered label of y. The optimal prediction function (or
Bayes optimal decision) is given by:

F*(x) = arg g}l’g nyL(va(x)) (1)

where the expected value E,x is over joint distribution of all variables P(y,x) for
the data to be predicted. L(y, F((x)) is a loss or cost for predicting F'(x) when the
actual value is y. EyxL(y, F(x)) is called prediction risk or expected loss. Since
P(y,x) is generally unknown, the learning procedure uses only a set of training
examples {y;,x;} to construct F(x) to be the best possible approximation of
F*(x). Usually, it is performed by minimization of empirical risk:

LN
R, = N;L(th(xi))-

Let us remind that the typical loss function in binary classification (for which
y € {—1,1}) is 0-1 loss:

_Jo if y = F(x),
Lofl(lh F(X)) - { 1 if y 7& F(X), (2)
and in regression (for which y € R), it is squared-error loss:
Lse(va(X)) = (y - F(X))z (3)

One of the important properties of the loss function is a form of prediction
function minimizing the expected risk F*(x), sometimes called population min-
imizer [12]. In other words, it is an answer to a question: what does a mini-
mization of expected loss estimate on a population level? Let us remind that the
population minimizers for 0-1 loss and squared-error loss are, respectively:

F*(x) =sgn (Pr(y = 1|x) — 0.5), F*(x) = Ey‘x(y).



Table 1. Commonly used loss functions and their population minimizers

Loss function [Notation] L(y, F(x)) | F(x
Binary classification, y € {—1,1}:

Exponential loss Leyp exp(—y - F(x)) 1log %
Deviance Lgey |log(1+exp(—2-y- F(x))) % log %
Regression, y € R:

Least absolute de-| Lijqq ly — F(x)] median,x (y)
viance

Apart from 0-1 and squared error loss, some other important loss functions are
considered. Their definitions and population minimizers are given in Table 1.

In ordinal classification, one minimizes prediction risk based on the K x K
loss matrix:

Lk (y, F(x)) = [lijl k< (4)
where y, F(x) € K, and i = y,j = F(x). The only constraints that (4) must
satisfy in ordinal classification problem are the following, l;; = 0,Vi, l;x >
l;j;;V k>3 >4, and l; > 1;;,V k < j <i. Observe that for

loss matrix (4) boils down to the 0-1 loss for ordinary multi-class classification
problem. One can also simulate typical regression loss functions, such as least
absolute deviance and squared-error, by taking:

lij = |i = 3, (6)
lij = (i —5)%, (7)

respectively. It is interesting to see, what are the population minimizers of the
loss matrices (5)-(7). Let us observe that we deal here with the multinomial dis-
tribution of y, and let us denote Pr(y = k|x) by pi(x). The population minimizer
is then defined as:

F*(x) = arg glin Zpk(x) - Lix i (k, F(x)). (8)

For loss matrices (5)-(7) we obtain, respectively:

F*(x) = arg rl?eal%(pk(x)’ (9)
F*(x) = median,, (x)(y) = medianx(y), (10)

K
F*(x) = 3 k- pr(x) = Byuly): (1)
k=1



In (11) it is assumed that the range of F(x) is a set of real values.

The interesting corollary from the above is that in order to solve ordinal
classification problem one can use any multi-class classification method that
estimates py(x), k € K. This can be, for example, logistic regression or gradient
boosting machine [9]. A final decision is then computed according to (8) with
respect to chosen loss matrix. For (5)-(7) this can be done by computing mode,
median or average over y with respect to estimated px(x), respectively. For loss
matrix entries defined by (7) one can use any regression method that aims at
estimating Fy|x(y). We refer to such an approach as simple ordinal classifier.

Let us notice that multi-class classification problem is often solved as K
(one class against K — 1 classes) or K x (K — 1) (one class against one class)
binary problems. However, taking into account the order on y, we can solve
the ordinal classification by solving K — 1 binary classification problems. In the
k-th (k=1,..., K — 1) binary problem, objects for which y < k are labeled as
y' = —1 and objects for which y > k are labeled as ' = 1. Such an approach
has been used in [6].

The ordinal classification problem can also be formulated from a value func-
tion perspective. Let us assume that there exists a latent value function that
maps objects to scalar values. The ordered classes correspond to contiguous in-
tervals on a range of this function. In order to define K intervals, one needs
K + 1 thresholds: 0y = —0co < 01 < ... < O0g_1 < 0 = o0o. Thus k-th class
is determined by (fx—_1,0x]. The aim is to find a function F(x) that is possi-
bly close to any monotone transformation of the latent value function and to
estimate thresholds {6 }X . Then, instead of the loss matrix (4) one can use
immediate-threshold or all-threshold loss [17] defined respectively as:

L'm™(y, F(x)) = L(1, F(x) — 0,-1) + L(—1, F(x) — 6,), (12)
y—1 K-—1

LMy, F(x)) =Y L, F(x) = 0k) + > L(-1,F(x) — 6;).  (13)
k=1 k=y

In the above, L(y, f) is one of the standard binary classification loss functions.
When using exponential or deviance loss, (12) and (13) become continuous and
convex functions that are easy to minimize.

There is, however, a problem with interpretation what does minimization of
expected threshold loss estimate. Only in the case when 0-1 loss is chosen as the
basis of (12) and (13), the population minimizer has a nice interpretable form.
For (12), we have:

K
F*(x) = arg min kz::lpk(X) (LG (k, F(x)) = argmaxpe(x),  (14)

and for (13), we have:

K
F*(x) = arg gl(l)g Zpk(x) L (k, F(x)) = median, 4 (y). (15)
k=1



An interesting theoretical result is obtained in [15], where (12) and (13) are used
in derivation of the upper bound of generalization error for any loss matrix (4).

Threshold loss functions were already considered in building classifiers. In [17]
the classifier was learned by conjugate gradient descent. Among different base
loss functions, also deviance was used. In [18,3,15], a generalization of SVM
(support vector machines) was derived. The algorithm based on AdaBoost [8]
was proposed in [15]. In the next section, we present two algorithms based on
forward stagewise additive modeling. The first one is an alternative boosting
formulation for threshold loss functions. The second one is an extension of the
gradient boosting machine [9].

Let us remark at the end of our theoretical considerations that (13) can also
be formulated as a specific case of so-called rank loss [13,7,4]:

Lyank (yl,yz,F(Xﬂ,F(XQ)) = L(Sgn(yl - ZU2)7F(X1) - F(XQ)) (16)

This loss function requires that all objects are compared pairwise. Assuming
that thresholds {#;}5 =" are values of F(x) for some virtual objects/profiles
and all other objects are compared only with these virtual profiles, one obtains
(13). Rank loss was used in [13] to introduce a generalization of SVM for ordinal
classification problems, and in [7], an extension of AdaBoost for ranking problems
was presented. The drawback of this approach is the complexity of empirical risk
minimization defined by rank loss that grows quadratically with the problem size
(number of training examples). For this reason we do not use this approach in
our study.

3 Ensemble of Decision Rules for Ordinal Classification

The introduced algorithms generating an ensemble of ordinal decision rules are
based on forward stagewise additive modeling [12]. The decision rule being the
base classifier is a logical expression having the form: if [conditions|, then
[decision]. If an object satisfies conditions of the rule, then the suggested de-
cision is taken. Otherwise no action is performed. By conditions we mean a
conjunction of expressions of the form z; € S, where S is a value subset of j-th
attribute, j € {1,...,n}. Denoting set of conditions by @ and decision by «, the
decision rule can be equivalently defined as:

o= {g Hxzme) &

where ¢ = (D, @) is a set of parameters. Objects that satisfy @ are denoted by
cov(P) and referred to as cover of conditions @.

The general scheme of the algorithm is presented as Algorithm 1. In this
procedure, F,,(x) is a real function being a linear combination of m decision
rules r(x, ¢), {Gk}{{fl are thresholds and M is a number of rules to be generated.
L% (y;, F(x)) is an all-threshold loss function. The algorithm starts with Fp(x) =
0 and {0;}5~' = 0. In each iteration of the algorithm, function F,,_;(x) is



Algorithm 1: Ensemble of ordinal decision rules

input : set of training examples {y;,x;},
M — number of decision rules to be generated.
output: ensemble of decision rules {rm,(x)}}?,
thresholds {6} 1.
Fo(x) :=0; {fro} 71 :=0;
for m =1 to M do
(¢, {6} = arg minm{ek}{(q) SN LMy, Froo1(xi) + (x4, €));
rm(x,¢) :=7(%,c);
(O 1 " o= {0631
Fin (%) := Frno1(x) + rm(x, €);
end
ensemble = {rm, (x, c)}{w; thresholds = {ekl\/l}{(_1§

augmented by one additional rule r,,(x,c). A single rule is built by sequential
addition of new conditions to @ and computation of «. This is done in view of
minimizing

N
= Z Lall(y“ mel(xi) + T(Xi, C)) =

i=1
yi—1 K-1
= ) ( S L Fpoa(xi)+a—0k)+ > L(=1LF(xi)m1 +a— 0k)>
x;€cov(P) \ k=1 k=y;
yi—1 K-1
+ ) <ZL1Fm 1(%:) = O) + > L( 1F(x2)m1—9k)> (18)
x;€cov(P) k=1 k=y;

with respect to @, a and {6x}F~'. A single rule is built until L,, cannot be
decreased.
Ordinal classification decision is computed according to:

Zk I (Z T (X, ) € [9k_1,ok)> : (19)

m=1

where I(a) is an indicator function, i.e. if a is true then I(a) = 1, otherwise
I(a) = 0. Some other approaches are also possible. For example, in experiments
we have used a procedure that assigns intermediate values between class labels
in order to minimize squared error.

In the following two subsections, we give details of two introduced algorithms.

3.1 Ordinal Decision Rules based on Exponential Boosting
(ORDER-E)

The algorithm described in this subsection can be treated as generalization of
AdaBoost [8] with decision rules as base classifiers. In each iteration of the



algorithm, a strictly convex function (18) defined using the exponential loss Ly,
is minimized with respect to parameters @, o and {Qk}{(_l. In iteration m, it
is easy to compute the following auxiliary values that depend only on F,_1(x)
and &:

Akm = Z I(yz > k)e_ m—1 (i) Bim = Z I(yz < k)eFm*l(xi)

x; Ecov(P) x; Ecov(P)
Cim = Z I(yz > k)e_mel(xi) Dy, = Z I(yl < k)eFm*l(xi)
x;¢cov(P) x; Ecov(P)

These values are then used in computation of the parameters. The optimal values
for thresholds {#),}5~* are obtained by setting the derivative to zero:

0L, 1 By, - exp(a) + Dy,

=00, =<1
00, k 2 o8 Ay exp(fa) +Ck,

(20)

where parameter « is still to be determined. Putting (20) into (18), we obtain
the formula for L,,:

K—1
L,=2 Z \/(Bk -exp(a) + D) (A - exp(—a) + Cg). (21)
k=1

which now depends only on single parameter o. The optimal value of o can be
obtained by solving

—0 (22

OL,, EPUN Kz_:l By, - Cy - exp(a) — Ay, - Dy, - exp(—a)
=V

da (B, - exp(a) + Dy)(Ay, - exp(—a) + Ci)

There is, however, no simple and fast exact solution to (22). That is why we
approximate a by a single Newton-Raphson step:

0Ly (Lwm)
a = Qg 174 Da 78204

(23)

=g

computed around zero, i.e. ap = 0. Summarizing, a set of conditions @ is cho-
sen which minimizes (21) with a given by (23). One can notice the absence of
thresholds in the formula for L,, (21). Indeed, thresholds are necessary only for
further classification and can be determined once, at the end of induction proce-
dure. However, L, (21) is not additive anymore, i.e. it is not the sum of losses
of objects due to implicit dependence between objects through the (hidden)
thresholds values.

Another boosting scheme for ordinal classification has been proposed in [14].
Similar loss function has been used, although expressed in terms of margins
(therefore called “left-right margins” and “all-margins” instead of “immediate-
thresholds” and “all-thresholds”). The difference is that in [14] optimization over
parameters is performed sequentially. First, a base learner is fitted with a = 1.



Then, the optimal value of « is obtained, using thresholds values from previous
iterations. Finally, the thresholds are updated. In section 4, we compared this
boosting strategy with our methods, showing that such a sequential optimization
does not work well with decision rule as a base learner.

3.2 Ordinal Decision Rules based on Gradient Boosting
(ORDER-G)

The second algorithm is an extension of the gradient boosting machine [9]. Here,
the goal is to minimize (18) defined by deviance loss Lge,. @ is determined by
searching for regression rule that fits pseudoresponses 7; being negative gradi-
ents:

o OLg (yi, F(x:))
vi= OF(x;)

(24)

F(x;)=Fp—1(xi)

with {0gm_1}7 ! determined in iteration m — 1. The regression rule is fit by
minimization of the squared-error loss:

Y @ Fnax) =@+ D (- Fuoa(xi)” (25)

x; Ecov(P) x;€cov(P)

The minimum of (25) is reached for

a= Z (Wi — F—1(x4))/ Z 1. (26)

x; €Ecov(P) x; Ecov(P)
The optimal value for « is obtained by setting
0L, _0
da
with @ already determined in previous step. However, since this equation has no

closed-form solution, the value of « is then approximated by a single Newton-
Raphson step, as in (23). Finally, {Hk.m}{( ~! are determined by

OLy
60km -

0.

Once again, since there is no closed-form solution, 6., is approximated by a
single Newton-Raphson step,

OLy [ 02Liy \
Orm = Opm—_1 — D . (329km)

)

Okm="0km—1

with @ and « previously determined.
Notice that the scheme presented here is valid not only for Lge,, but for any
other convex, differentiable loss function used as a base loss function in (18).



4 Experimental Results

We performed two experiments. Our aim was to compare simple ordinal classi-
fiers, ordinal decision rules and approaches introduced in [3, 14]. We also wanted
to check, how the introduced approaches works on Netflix Prize dataset [16].
As a comparison criteria we chose zero-one error (ZOE), mean absolute error
(MEA) and root mean squared error (RMSE). The former two were used in
referred papers. RMSE was chosen because of Netflix Prize rules.

The simple ordinal classifiers were based on logistic regression, LogitBoost [10,
9] with decision stumps, linear regression and additive regression [9]. Implemen-
tations of these methods were taken from Weka package [20]. In the case of
logistic regression and LogitBoost, decisions were computed according to the
analysis given in section 2. In order to minimize, ZOE, MAE and RMSE a fi-
nal decision was computed as a mode, median or average over the distribution
given by these methods, respectively. We used three ordinal rule ensembles. The
first one is based on ORBoost-All scheme introduced in [14]. The other two are
ORDER-E and ORDER-G introduced in this paper. In this case, a final deci-
sion was computed according to (19) in order to minimize ZOE and MAE. For
minimization of RMSE, we have assumed that the ensemble constructs Fy;(x)
which is a monotone transformation of a value function defined on an interval
[1,5] C R. In classification procedure, values of Fjs(x) are mapped to [1,5] C R
by:

K
Flx) = ; <k+ FM(X)Q_k (_1921:1%_1)/2) I(Fa(x) € 01, 01)),

where 6y = 61—2-(02—01) and 0 = 0k _1+2-(0 k-1 —0k —2). These methods were
compared with SVM with explicit constraints and SVM with implicit constraints
introduced in [3] and with ORBoost-LR and ORBoost-All with perceptron and
sigmoid base classifiers introduced in [14].

In the first experiment we used the same datasets and settings as in [3, 14]
in order to compare the algorithms. These datasets were discretized by equal-
frequency bins from some metric regression datasets. We used the same K = 10,
the same “training/test” partition ratio, and also averaged the results over 20
trials. We report in Table 2 the means and standard errors for ZOE and MEA
as it was done in the referred papers. In the last column of the table we put
the best result found in [3,14] for a given dataset. The optimal parameters for
simple ordinal classifiers and ordinal rule ensembles were obtained in 5 trials
without changing all other settings.

Second experiment was performed on Netflix Prize dataset [16]. We chose
10 first movies from the list of Netflix movies, which have been evaluated by at
least 10 000 and at most 30 000 users. Three types of error (ZOE, MEA and
RMSE) were calculated. We compared here only simple ordinal classifiers with
ORDER-E and ORDER-G. Classifiers were learned on Netflix-training dataset
and tested on Netflix-probe dataset (all evaluations from probe dataset were
removed from training dataset). Ratings on 100 movies, selected in the same



Table 2. Experimental results on datasets used in [3,14]. The same data preprocess-
ing is used that enables comparison of the results. In the last column, the best re-
sults obtained by YSVM with explicit constraints (3], SVM with implicit constraints
[3], ¥ ORBoost-LR [14], and ¥ ORBoost-All [14] are reported. Two types of error are
considered (zero-one and mean-absolute). Best results are marked in bold among all

compared methods and among methods introduced in this paper.

Zero-one error (ZOE)
Dataset |Logistic LogitBoost ORBoost-All [ORDER-E ORDER-G Best result
Regression with DS with Rules from [3, 14]
Pyrim. |0.75440.017(0.77340.018 [0.852+0.011 |0.754+0.019{0.779+0.018 [[0.719+0.0667
CPU 0.64840.009 [0.58740.012 [0.72240.011 |0.594+0.014 |0.562+0.009[(0.60540.0107
Boston [0.615+0.007 [0.58140.007 |0.65340.008 |0.560+0.006 |0.581+0.007 [|0.549+0.007°
Abal. [0.67840.002(0.69440.002 [0.7614+0.003 [0.710£0.002 [0.712+0.002 [[0.7164-0.002>
Bank |0.679+0.001[0.693+0.001 |0.85240.002 [0.754+0.001 |0.759+0.001 [[0.744+0.005"
Comp. [0.489+0.001 |0.494+0.001 [0.593+0.002 [0.476+0.002|0.4794+0.001 0.462+0.0017
Calif. [0.665+0.001 [0.606+0.001[0.77340.002 [0.631£0.001 |0.609+0.001 [|0.605+0.001°
Census [0.70740.001 |0.665+0.001[0.793+0.001 |0.691+0.001 |0.687+0.001 [[0.69440.001°
Mean absolute error (MAE)
Dataset |Logistic LogitBoost ORBoost-All [ORDER-E ORDER-G Best result
Regression with DS with Rules from [3, 14]
Pyrim. [1.6654+0.056 |1.7544+0.050 |1.858+0.074 [1.306+0.041[1.356-+0.063 |[1.294+0.046>
CPU 0.93440.021 [0.90540.025 [1.164+0.026 |0.878+0.027 |0.843+0.022[0.88940.0197
Boston [0.90340.013 [0.9084+0.017 [1.068+0.017 [0.813+0.010{0.828+0.014 |[0.747+0.0117
Abal. [1.20240.003[1.27240.003 [1.52040.008 [1.257+0.002 [1.281+0.004 |[1.36140.003
Bank [1.445+0.003[1.5684+0.003 [2.18340.005 |1.605+0.005 |1.611+0.004 [[1.393+0.0022
Comp. [0.62840.002 [0.61940.002 [0.93040.005 |0.583+0.002[0.588+0.002 [[0.5964-0.002>
Calif. [1.130£0.004 [0.95740.001 |1.646%0.007 [0.955+0.003 |0.89740.002([0.94240.002%
Census [1.43240.003 [1.17240.002 [1.66940.006 |[1.152+0.002[1.166+0.002 [[1.19840.0027

way for each movie, were used as condition attributes. For each method, we
tuned its parameters to optimize its performance, using 10% of training set
as a validation set; to avoid favouring methods with more parameters, for each
algorithm we performed the same number of tuning trials. The results are shown
in Table 3.

The results from both experiments indicate that ensembles of ordinal decision
rules are competitive to other methods used in the experiment:

— From the first experiment, one can conclude that ORBoost strategy does
not work well with decision rule as a base learner, and that simple ordi-
nal classifiers and ordinal decision rules perform comparably to approaches
introduced in [3, 14].

The second experiment shows that especially ORDER-E outperforms other
methods in RMSE for most of the movies and in MAE for half of the
movies. However, this method was the slowest between all tested algorithms.
ORDER-G is much more faster than ORDER-E, but it obtained moderate
results.

In both experiments logistic regression and LogitBoost perform well. It is
clear that these algorithms achieved the best results with respect to ZOE.
The reason is that they can be tailored to multi-classification problem with
zero-one loss, while ordinal decision rules cannot.



Table 3. Experimental results on 10 movies from Netflix Prize data set. Three types of
error are considered (zero-one, mean-absolute and root mean squared). For each movie,
best results are marked in bold.

Zero-one error (ZOE)

Movie #|Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression Regression with DS
8 0.761 0.753 0.753 0.714 0.740 0.752
18 0.547 0.540 0.517 0.493 0.557 0.577
58 0.519 0.496 0.490 0.487 0.513 0.496
77 0.596 0.602 0.583 0.580 0.599 0.605
83 0.486 0.486 0.483 0.398 0.462 0.450
97 0.607 0.607 0.591 0.389 0.436 0.544
108 0.610 0.602 0.599 0.593 0.613 0.596
111 0.563 0.561 0.567 0.555 0.572 0.563
118 0.594 0.596 0.532 0.524 0.511 0.551
148 0.602 0.610 0.593 0.536 0.522 0.573
Mean absolute error (MAE)
Movie #|Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression Regression with DS
8 1.133 1.135 1.115 1.087 1.013 1.018
18 0.645 0.651 0.583 0.587 0.603 0.613
58 0.679 0.663 0.566 0.543 0.558 0.560
s 0.831 0.839 0.803 0.781 0.737 0.755
83 0.608 0.614 0.519 0.448 0.500 0.502
97 0.754 0.752 0.701 0.530 0.537 0.654
108 0.777 0.776 0.739 0.739 0.768 0.739
111 0.749 0.766 0.720 0.715 0.693 0.705
118 0.720 0.734 0.626 0.630 0.596 0.658
148 0.747 0.735 0.688 0.626 0.604 0.659
Root mean squared error (RMSE)
Movie #|Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression Regression with DS
8 1.332 1.328 1.317 1.314 1.268 1.299
18 0.828 0.836 0.809 0.856 0.832 0.826
58 0.852 0.847 0.839 0.805 0.808 0.817
77 1.067 1.056 1.056 1.015 0.999 1.043
83 0.775 0.772 0.737 0.740 0.729 0.735
97 0.968 0.970 0.874 0.865 0.835 0.857
108 0.984 0.993 0.969 0.979 0.970 0.989
111 0.985 0.992 0.970 0.971 0.967 0.986
118 0.895 0.928 0.862 0.860 0.836 0.873
148 0.924 0.910 0.900 0.863 0.838 0.893

— It is worth noticing, that regression algorithms resulted in poor accuracy in
many cases.

— We have observed during the experiment that ORDER-E and ORDER-G
are sensitive to parameters setting. We plan to work on some simple method
for parameters selection.

5 Conclusions

From the theoretical analysis, it follows that ordinal classification problem can
be solved by different approaches. In our opinion, there is still a lot to do in or-
der to establish a theoretic framework for ordinal classification. In this paper, we
introduced a decision rule induction algorithm based on forward stagewise addi-
tive modeling that utilizes the notion of threshold loss function. The experiment



indicates that ordinal decision rules are quite promising. They are competitive
to traditional regression and multi-class classification methods, and also to ex-
isting ordinal classification methods. Let us remark that the algorithm can also
be used for other base classifiers like decision trees instead of decision rules. In
this paper, we remained with rules because of their simplicity in interpretation.
It is also interesting that such a simple classifier works so well as a part of the
ensemble.
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