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Abstract. We consider the setting of prediction with expert advice with
an additional assumption that each expert generates its losses i.i.d. ac-
cording to some distribution. We first identify a class of “admissible”
strategies, which we call permutation invariant, and show that every
strategy outside this class will perform not better than some permuta-
tion invariant strategy. We then show that when the losses are binary,
a simple Follow the Leader (FL) algorithm is the minimax strategy for
this game, where minimaxity is simultaneously achieved for the expected
regret, the expected redundancy, and the excess risk. Furthermore, FL
has also the smallest regret, redundancy, and excess risk over all permu-
tation invariant prediction strategies, simultaneously for all distributions
over binary losses. When the losses are continuous in [0, 1], FL remains
minimax only when an additional trick called “loss binarization” is ap-
plied.

1 Introduction

In the game of prediction with expert advice [4,5], the learner sequentially decides
on one of K experts to follow, and suffers loss associated with the chosen expert.
The difference between the learner’s cumulative loss and the cumulative loss of
the best expert is called regret. The goal is to minimize the regret in the worst
case over all possible loss sequences. A prediction strategy which achieves this
goal (i.e., minimizes the worst-case regret) is called minimax. While there is no
known solution to this problem in the general setting, it is possible to derive
minimax algorithms for some special variants of this game: for 0/1 losses on the
binary labels [4,5], for unit losses with fixed loss budget [2], and when K = 2
[9]. Interestingly, all these algorithms share a similar strategy of playing against
a maximin adversary which assigns losses uniformly at random. They also have
the equalization property: all data sequences lead to the same value of the regret.
While this property makes them robust against the worst-case sequence, it also
makes them over-conservative, preventing them from exploiting the case, when
the actual data is not adversarially generated1.

? This research was supported by the Polish National Science Centre under grant no.
2013/11/D/ST6/03050.

1 There are various algorithms which combine almost optimal worst-case performance
with good performance on “easy” sequences [12,6,13,10,11]; these algorithms, how-
ever, are not motivated from the minimax principle.



In this paper, we drop the analysis of worst-case performance entirely, and
explore the minimax principle in a more constrained setting, in which the adver-
sary is assumed to be stochastic. In particular, we associate with each expert k a
fixed distribution Pk over loss values, and assume the observed losses of expert k
are generated independently from Pk. The motivation behind our assumption is
the practical usefulness of the stochastic setting: the data encountered in prac-
tice are rarely adversarial and can often be modeled as generated from a fixed
(yet unknown) distribution. That is why we believe it is interesting to deter-
mine the minimax algorithm under this assumption. We immediately face two
difficulties here. First, due to stochastic nature of the adversary, it is no longer
possible to follow standard approaches of minimax analysis, such as backward
induction [4,5] or sequential minimax duality [1,9], and we need to resort to a
different technique. We define the notion of permutation invariance of prediction
strategies. This let us identify a class of “admissible” strategies (which we call
permutation invariant), and show that every strategy outside this class will per-
form not better than some permutation invariant strategy. Secondly, while the
regret is a single, commonly used performance metric in the worst-case setting,
the situation is different in the stochastic case. We know at least three poten-
tially useful metrics in the stochastic setting: the expected regret, the expected
redundancy, and the excess risk [8], and it is not clear, which of them should be
used to define the minimax strategy.

Fortunately, it turns out that there exists a single strategy which is minimax
with respect to all three metrics simultaneously. In the case of binary losses,
which take out values from {0, 1}, this strategy turns out to be the Follow the
Leader (FL) algorithm, which chooses an expert with the smallest cumulative
loss at a given trial (with ties broken randomly). Interestingly, FL is known to
perform poorly in the worst-case, as its worst-case regret will grow linearly with
T [5]. On the contrary, in the stochastic setting with binary losses, FL has the
smallest regret, redundancy, and excess risk over all permutation invariant pre-
diction strategies, simultaneously for all distributions over binary losses! In a
more general case of continuous losses in the range [0, 1], FL is provably sub-
optimal. However, by applying binarization trick to the losses [6], i.e. randomly
setting them to {0, 1} such that the expectation matches the actual loss, and
using FL on the binarized sequence (which results in the binarized FL strategy),
we obtain the minimax strategy in the continuous case.

We note that when the excess risk is used as a performance metric, our setup
falls into the framework of statistical decision theory [7,3], and the question we
pose can be reduced to the problem of finding the minimax decision rule for
a properly constructed loss function, which matches the excess risk on expec-
tation. In principle, one could try to solve our problem by using the complete
class theorem and search for the minimax rule within the class of (generalized)
Bayesian decision rules. We initially followed this approach, but it turned out to
be futile, as the class of distributions we are considering are all distributions in
the range [0, 1], and exploring prior distributions over such classes becomes very
difficult. On the other hand, the analysis presented in this paper is relatively



simple, and works not only for the excess risk, but also for the expected regret
and the expected redundancy. To the best of our knowledge, both the results
and the analysis presented here are novel.

The paper is organized as follows. In Section 2 we formally define the problem.
The binary case is solved in Section 3, while Section 4 concerns continuous case.
Section 5, concludes the paper and discusses an open problem.

2 Problem Setting

2.1 Prediction with Expert Advice in the Stochastic Setting

In the game of prediction with expert advice, at each trial t = 1, . . . , T , the
learner predicts with a distribution wt = (wt,1, . . . , wt,K) over K experts. Then,
the loss vector `t = (`t,1, . . . , `t,K) ∈ XK is revealed (where X is either {0, 1} or
[0, 1]), and the learner suffers loss:

wt · `t =

K∑
k=1

wt,k`t,k,

which can be interpreted as the expected loss the learner suffers by following one
of the experts chosen randomly according to wt. Let Lt,k denote the cumulative
loss of expert k at the end of iteration t, Lt,k =

∑
q≤t `q,k. Let `t abbreviate the

sequence of losses `1, . . . , `t. We will also use ω = (w1, . . . ,wT ) to denote the
whole prediction strategy of the learner, having in mind that each distribution
wt is a function of the past t−1 outcomes `t−1. The performance of the strategy
is measured by means of regret :

T∑
t=1

wt · `t −min
k
LT,k,

which is a difference between the algorithm’s cumulative loss and the cumulative
loss of the best expert. In the worst-case (adversarial) formulation of the problem,
no assumption is made on the way the sequence of losses is generated, and hence
the goal is then to find an algorithm which minimizes the worst-case regret over
all possible sequences `T .

In this paper, we drop the analysis of worst-case performance and explore
the minimax principle in the stochastic setting, defined as follows. We assume
there are K distributions P = (P1, . . . , PK) over X , such that for each k, the
losses `t,k, t = 1, . . . , T , are generated i.i.d. from Pk. Note that this implies that
`t,k is independent from `t′,k′ whenever t′ 6= t or k 6= k′. The prediction strategy
is then evaluated by means of expected regret :

Reg(ω,P) = E
[ T∑
t=1

wt(`
t−1) · `t −min

k
LT,k

]
,



Expected regret: Reg(ω,P) = E
[ T∑

t=1

wt(`
t−1) · `t −min

k
LT,k

]

Expected redundancy: Red(ω,P) = E
[ T∑

t=1

wt(`
t−1) · `t

]
−min

k
E [LT,k]

Excess risk: Risk(ω,P) = E
[
wT (`T−1) · `T

]
−min

k
E [`T,k]

Table 1. Performance measures.

where the expectation over the loss sequences `T with respect to distribution
P = (P1, . . . , Pk), and we explicitly indicate the dependency of wt on `t−1.
However, the expected regret is not the only performance metric one can use in
the stochastic setting. Instead of comparing the algorithm’s loss to the loss of
the best expert on the actual outcomes, one can choose the best expected expert
as a comparator, which leads to a metric:

Red(ω,P) = E
[ T∑
t=1

wt(`
t−1) · `t

]
−min

k
E [LT,k] ,

which we call the expected redundancy, as it closely resembles a measure used in
information theory to quantify the excess codelength of a prequential code[8].
Note that from Jensen’s inequality it holds that Red(ω,P) ≥ Reg(ω,P) for any
ω and any P, and the difference Red(ω,P) − Reg(ω,P) is independent of ω
given fixed P. This does not, however, imply that these metrics are equivalent
in the minimax analysis, as the set of distributions P is chosen by the adversary
against strategy ω played by learner, and this choice will in general be different
for the expected regret and the expected redundancy. Finally, the stochastic
setting permits us to evaluate the prediction strategy by means of the individual
rather than cumulative losses. Thus, it is reasonable to define the excess risk of
the prediction strategy at time T :

Risk(ω,P) = E
[
wT (`T−1) · `T

]
−min

k
E [`T,k] ,

a metric traditionally used in statistics to measure the accuracy of statistical
procedures. Contrary to the expected regret and redundancy defined by means
of cumulative losses of the prediction strategy, the excess risk concerns only a
single prediction at a given trial; hence, without loss of generality, we can choose
the last trial T in the definition. For the sake of clarity, we summarize the three
measures in Table 1.

Given performance measure R, we say that a strategy ω∗ is minimax with
respect to R, if:

sup
P
R(ω∗,P) = inf

ω
sup
P
R(ω,P),

where the supremum is over all K-sets of distributions (P1, . . . , PK) on X , and
the infimum is over all prediction strategies.



2.2 Permutation Invariance

In this section, we identify a class of “admissible” prediction strategies, which we
call permutation invariant. The name comes from the fact that the performance
of these strategies remains invariant under any permutation of the distributions
P = (P1, . . . , PK). We show that that for every prediction strategy, there exists
a corresponding permutation invariant strategy with not worse expected regret,
redundancy and excess risk in the worst-case with respect to all permutations
of P.

We say that a strategy ω is permutation invariant if for any t = 1, . . . , T ,
and any permutation σ ∈ SK , where SK denotes the group of permutations over
{1, . . . ,K}, wt(σ(`t−1)) = σ(wt(`

t−1)), where for any vector v = (v1, . . . , vK),
we denote σ(v) = (vσ(1), . . . , vσ(K)) and σ(`t−1) = σ(`1), . . . , σ(`t−1). In words,
if we σ-permute the indices of all past loss vectors, the resulting weight vector
will be the σ-permutation of the original weight vector. Permutation invariant
strategies are natural, as they only rely on the observed outcomes, not on the
expert indices. The performance of these strategies remains invariant under any
permutation of the distributions from P:

Lemma 1. Let ω be permutation invariant. Then, for any permutation σ ∈ SK ,
Eσ(P)

[
wt(`

t−1) · `t
]

= EP
[
wt(`

t−1) · `t
]
, and moreover R(ω, σ(P)) = R(ω,P),

where R is the expected regret, expected redundancy, or excess risk, and σ(P) =
(Pσ(1), . . . , Pσ(K)).

Proof. We first show that the expected loss of the algorithm at any iteration
t = 1, . . . , T , is the same for both σ(P) and P:

Eσ(P)

[
wt(`

t−1) · `t
]

= EP
[
wt(σ(`t−1)) · σ(`t)

]
= EP

[
σ(wt(`

t−1)) · σ(`t)
]

= EP
[
wt(`

t−1) · `t
]
,

where the first equality is due to the fact, that permuting the distributions is
equivalent to permuting the coordinates of the losses (which are random variables
with respect to these distributions), the second equality exploits the permuta-
tion invariance of ω, while the third inequality uses a simple fact that the dot
product is invariant under permuting both arguments. Therefore, the “loss of the
algorithm” part of any of the three measures (regret, redundancy, risk) remains
the same. To show that the “loss of the best expert” part of each measure is the
same, note that for any t = 1, . . . , T , k = 1, . . . ,K, Eσ(P) [`t,k] = EP

[
`t,σ(k)

]
,

which implies:

min
k

Eσ(P) [`T,k] = min
k

EP
[
`T,σ(k)

]
= min

k
EP [`T,k] ,

min
k

Eσ(P) [LT,k] = min
k

EP
[
LT,σ(k)

]
= min

k
EP [LT,k] ,

Eσ(P)

[
min
k
LT,k

]
= EP

[
min
k
LT,σ(k)

]
= EP

[
min
k
LT,k

]
,

so that the “loss of the best expert” parts of all measures are also the same for
both σ(P) and P. ut



We now show that permutation invariant strategies are “admissible” in the
following sense:

Theorem 1. For any strategy ω, there exists permutation invariant strategy ω̃,
such that for any set of distributions P,

R(ω̃,P) = max
σ∈SK

R(ω̃, σ(P)) ≤ max
σ∈SK

R(ω, σ(P)),

where R is either the expected regret, the expected redundancy or the excess risk.
In particular, this implies that: supP R(ω̃,P) ≤ supP R(ω,P).

Proof. This first equality in the theorem immediately follows from Lemma 1.
Define ω̃ = (w̃1, . . . , w̃T ) as:

w̃t(`
t−1) =

1

K!

∑
τ∈SK

τ−1
(
wt(τ(`t−1))

)
.

Note that ω̃ is a valid prediction strategy, since w̃t is a function of `t−1 and a
distribution over K experts (w̃t is a convex combination of K! distributions, so
it is a distribution itself). Moreover, ω̃ is permutation invariant:

w̃t(σ(`t−1)) =
1

K!

∑
τ∈SK

τ−1
(
wt(τσ(`t−1))

)
=

1

K!

∑
τ∈SK

(τσ−1)−1
(
wt(τ(`t−1))

)
=

1

K!

∑
τ∈SK

στ−1
(
wt(τ(`t−1))

)
= σ(w̃t(`

t−1)),

where the second equality is from replacing the summation index τ 7→ τσ. Now,
note that the expected loss of w̃t is:

EP
[
w̃t(`

t−1) · `t
]

=
1

K!

∑
τ∈SK

EP
[
τ−1

(
wt(τ(`t−1))

)
· `t
]

=
1

K!

∑
τ∈SK

EP
[
wt(τ(`t−1)) · τ(`t)

]
=

1

K!

∑
τ∈SK

Eτ−1(P)

[
wt(`

t−1) · `t
]

=
1

K!

∑
σ∈SK

Eσ(P)

[
wt(`

t−1) · `t
]
.

Since the “loss of the best expert” parts of all three measures are invariant under
any permutation of P (see the proof of Lemma 1), we have:

R(ω̃,P) =
1

K!

∑
σ∈SK

R(ω, σ(P)) ≤ max
σ∈SK

R(ω, σ(P)). (1)



This implies that:

sup
P
R(ω̃,P) ≤ sup

P
max
σ∈SK

R(ω, σ(P)) = sup
P
R(ω,P).

ut

Theorem 1 states that strategies which are not permutation-invariant do not give
any advantage over permutation-invariant strategies even when the set of distri-
butions P is fixed (and even possibly known to the learner), but the adversary
can permute the distributions to make the learner incur the most loss. We also
note that one can easily show a slightly stronger version of Theorem 1: if strategy
ω is not permutation invariant, and it holds that R(ω,P) 6= R(ω, τ(P)) for some
set of distributions and permutation τ , then R(ω̃,P) < maxσ∈SK

R(ω, σ(P)).
This follows from the fact that the inequality in (1) becomes sharp.

2.3 Follow the Leader Strategy

Given loss sequence `t−1, letN = | argminj=1,...,K Lt−1,j | be the size of the leader

set at the beginning of trial t. We define the Follow the Leader (FL) strategy wfl
t

such that wfl
t,k = 1

N if k ∈ argminj Lt−1,j and wfl
t,k = 0 otherwise. In other words,

FL predicts with the current leader, breaking ties uniformly at random. It is
straightforward to show that such defined FL strategy is permutation invariant.

3 Binary Losses

In this section, we set X = {0, 1}, so that all losses are binary. In this case,
each Pk is a Bernoulli distribution. Take any permutation invariant strategy
ω. It follows from Lemma 1 that for any P, and any permutation σ ∈ SK ,
EP
[
wt(`

t−1) · `t
]

= Eσ(P)

[
wt(`

t−1) · `t
]
. Averaging this equality over all per-

mutations σ ∈ SK gives:

EP
[
wt(`

t−1) · `t
]

=
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1) · `t
]

︸ ︷︷ ︸
=: losst(wt,P)

, (2)

where we defined losst(wt,P) to be permutation-averaged expected loss at trial
t. We now show the main result of this paper, a surprisingly strong property
of FL strategy, which states that FL minimizes losst(wt,P) simultaneously over
all K-sets of distributions. Hence, FL is not only optimal in the worst case, but
is actually optimal for permutation-averaged expected loss for any P, even if P
is known to the learner! The consequence of this fact (by (2)) is that FL has
the smallest expected loss among all permutation invariant strategies for any P
(again, even if P is known to the learner).



Theorem 2. Let ωfl = (wfl
1 , . . . ,w

fl
T ) be the FL strategy. Then, for any K-

set of distributions P = (P1, . . . , PK) over binary losses, for any strategy ω =
(w1, . . . ,wT ), and any t = 1, . . . , T :

losst(w
fl
t ,P) ≤ losst(wt,P).

Proof. For any distribution Pk over binary losses, let pk := Pk(`t,k = 1) =
EPk

[`t,k]. We have:

losst(wt,P)=
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1) · `t
]

(3)

=
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1)
]
· Eσ(P) [`t]

=
1

K!

∑
σ

∑
`t−1

(
K∏
k=1

p
Lt−1,k

σ(k) (1−pσ(k))
t−1−Lt−1,k

)(
K∑
k=1

wt,k(`t−1)pσ(k)

)

=
1

K!

∑
`t−1

K∑
k=1

wt,k(`t−1)

(∑
σ

K∏
j=1

p
Lt−1,j

σ(j) (1−pσ(j))
t−1−Lt−1,jpσ(k)

)
︸ ︷︷ ︸

=: losst(wt,P|`t−1)

,

where in the second equality we used the fact that wt depends on `t−1 and does
not depend on `t. Fix `t−1 and consider the term losst(wt,P|`t−1). This term
is linear in wt, hence it is minimized by wt = ek for some k = 1, . . . ,K, where
ek is the k-th standard basis vector with 1 on the k-th coordinate, and zeros
on the remaining coordinates. We will drop the trial index and use a shorthand
notation Lj = Lt−1,j , for j = 1, . . . ,K, and L = (L1, . . . , LK). In this notation,
we rewrite losst(wt,P|`t−1) as:

losst(wt,P|`t−1) =

K∑
k=1

wt,k(`t−1)

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k)

 . (4)

We will show that for any P, and any `t−1 (and hence, any L), losst(wt,P|`t−1)
is minimized by setting wt = ek∗ for any k∗ ∈ argminj Lj . In other words, we
will show that for any P, L, any k∗ ∈ argminj Lj , and any k = 1, . . . ,K,

losst(ek∗ ,P|`t−1) ≤ losst(ek,P|`t−1).

or equivalently, using (4), that for any P, L, k∗ ∈ argminj Lj , and k = 1, . . . ,K,

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k∗) ≤

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k). (5)



We proceed by induction on K. Take K = 2 and note that when k∗ = k,
there is nothing to prove, as both sides of (5) are identical. Therefore, without
loss of generality, assume k∗ = 1 and k = 2, which implies L1 ≤ L2. Then, (5)
reduces to:

pL1
1 pL2

2 (1− p1)t−1−L1(1− p2)t−1−L2p1

+ pL1
2 pL2

1 (1− p2)t−1−L1(1− p1)t−1−L2p2

≤ pL1
1 pL2

2 (1− p1)t−1−L1(1− p2)t−1−L2p2

+ pL1
2 pL2

1 (1− p2)t−1−L1(1− p1)t−1−L2p1,

After rearranging the terms, it amounts to show that:

(p1p2)L1

(
(1− p1)(1− p2)

)t−1−L2

(p1 − p2)

×
(

(p2(1− p1))L2−L1 − (p1(1− p2))L2−L1

)
≤ 0.

But this will hold if:

(p1 − p2)
(

(p2(1− p1))L2−L1 − (p1(1− p2))L2−L1

)
≤ 0. (6)

If L1 = L2, (6) clearly holds; therefore assume L1 < L2. We prove the validity
of (6) by noticing that:

p2(1− p1) > p1(1− p2) ⇐⇒ p2 > p1,

which means that the two factors of the product on the left-hand side of (6) have
the opposite sign (when p1 6= p2) or are zero at the same time (when p1 = p2).
Hence, we proved (6), which implies (5) when k∗ = 1 and k = 2. The opposite
case k∗ = 2, k = 1 with L2 ≤ L1 can be shown with exactly the same line of
arguments by simply exchanging the indices 1 and 2.

Now, we assume (5) holds for K−1 ≥ 2 experts and any P = (P1, . . . , PK−1),
any L = (L1, . . . , LK−1), any k∗ ∈ argminj=1,...,K−1 Lj , and any k = 1, . . . ,K−
1, and we show that it also holds for K experts. Take any k∗ ∈ argminj=1,...,K Lj ,
and any k = 1, . . . ,K. Without loss of generality, assume that k∗ 6= 1 and k 6= 1
(it is always possible find expert different than k∗ and k, because there are K ≥ 3
experts). We expand the sum over permutations on the left-hand side of (5) with
respect to the value of σ(1):

K∑
s=1

pL1
s (1− ps)t−1−L1

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k∗),

and we also expand the sum on the right-hand side of (5) in the same way. To
prove (5), it suffices to show that every term in the sum over s on the left-hand
side is not greater than the corresponding term in the sum on the right-hand



side, i.e. to show that for any s = 1, . . . ,K,

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1−pσ(j))
t−1−Ljpσ(k∗) ≤

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1−pσ(j))
t−1−Ljpσ(k).

(7)
We now argue that this inequality follows directly from the inductive assumption
by dropping L1 and Ps, and applying (5) to such a (K − 1)-expert case. More
precisely, note that the sum on both sides of (7) goes over all permutations on
indices (1, . . . , s − 1, s + 1, . . . ,K) and since k, k∗ 6= 1, k∗ ∈ argminj=2,...,K Lj
and k ≥ 2. Hence, applying (5) to K − 1 expert case with K − 1 distributions
(P1, P2, . . . , Ps−1, Ps+1, . . . , PK) (or any permutation thereof), andK−1 integers
(L2, . . . , LK) immediately implies (7).

Thus, we proved (5) which states that losst(wt,P|`t−1) is minimized by any

leader k∗ ∈ argminj Lj , where Lj =
∑t−1
q=1 `q,j . This means losst(wt,P|`t−1)

is also minimized by the FL strategy wfl
t , which distributes its mass uniformly

over all leaders. Since FL minimizes losst(wt,P|`t−1) for any `t−1, by (3) it also
minimizes losst(wt,P).

ut

Note that the proof did not require uniform tie breaking over leaders, as any
distribution over leaders would work as well. Uniform distribution, however,
makes the FL strategy permutation invariant.

The consequence of Theorem 2 is the following corollary which states the
minimaxity of FL strategy for binary losses:

Corollary 1. Let ωfl = (wfl
1 , . . . ,w

fl
T ) be the FL strategy. Then, for any P over

binary losses, and any permutation invariant strategy ω:

R(ωfl,P) ≤ R(ω,P).

where R is the expected regret, expected redundancy, or excess risk. This implies:

sup
P
R(ωfl,P) = inf

ω
sup
P
R(ω,P),

where the supremum is over all distributions on binary losses, and the infimum
over all (not necessarily permutation invariant) strategies.

Proof. The second statement immediately follows from the first statement and
Theorem 1. For the first statement, note that the “loss of the best expert” part
of each measure only depends on P. Hence, we only need to show that for any
t = 1, . . . , T ,

EP
[
wfl
t · `t

]
≤ EP [wt · `t] .

Since wfl
t and wt are permutation invariant, Lemma 1 shows that EP

[
wfl
t · `t

]
=

losst(w
fl
t ,P), and similarly, EP [wt · `t] = losst(wt,P). Application of Theorem

2 finishes the proof.



4 Continuous Losses

In this section, we consider the general case X = [0, 1] of continuous loss vectors.
We give a modification of FL and prove its minimaxity. We later justify the
modification by arguing that the plain FL strategy is not minimax for continuous
losses.

4.1 Binarized FL

The modification of FL is based on the procedure we call binarization. A similar
trick has already been used in [6] to deal with non-integer losses in a different
context. We define a binarization of any loss value `t,k ∈ [0, 1] as a Bernoulli
random variable bt,k which takes out value 1 with probability `t,k and value 0
with probability 1− `t,k. In other words, we replace each non-binary loss `t,k by
a random binary outcome bt,k, such that E[bt,k] = `t,k. Note that if `t,k ∈ {0, 1},
then bt,k = `t,k, i.e. binarization has no effect on losses which are already binary.
Let us also define bt = (bt,1, . . . , bt,K), where all K Bernoulli random variables
bt,k are independent. Similarly, bt will denote a binary loss sequence b1, . . . , bt,
where the binarization procedure was applied independently (with a new set of
Bernoulli variables) for each trial t. Now, given the loss sequence `t−1, we define
the binarized FL strategy ωbfl by:

wbfl
t (`t−1) = Ebt−1

[
wfl
t (bt−1)

]
,

where wfl
t (bt−1) is the standard FL strategy applied to binarized losses bt−1,

and the expectation is over internal randomization of the algorithm (binarization
variables).

Note that if the set of distributions P has support only on {0, 1}, then wbfl
t ≡

wfl
t . On the other hand, these two strategies may differ significantly for non-

binary losses. However, we will show that for any K-set of distributions P (with
support in [0, 1]), wbfl

t will behave in the same way as wfl
t would behave on some

particular K-set of distributions over binary losses. To this end, we introduce
binarization of a K-set of distributions P, defined as Pbin = (P bin

1 , . . . , P bin
K ),

where P bin
k is a distribution with support {0, 1} such that:

EPbin
k

[`t,k] = P bin
k (`t,k = 1) = EPk

[`t,k].

In other words, P bin
k is a Bernoulli distribution which has the same expectation as

the original distribution (over continuous losses) Pk. We now show the following
results:

Lemma 2. For any K-set of distributions P = (P1, . . . , PK) with support on
X = [0, 1],

E`t∼P
[
wbfl
t (`t−1) · `t

]
= E`t∼Pbin

[
wfl
t (`t−1) · `t

]
.



Proof. Let pk be the expectation of `t,k according to either Pk or P bin
k , pk :=

EPk
[`t,k] = EPbin

k
[`t,k]. Since for any prediction strategy ω, wt depends on `t−1

and does not depend on `t, we have:

EP
[
wbfl
t · `t

]
= EP

[
wbfl
t

]
· EP [`t] = EP

[
wbfl
t

]
· p,

where p = (p1, . . . , pK). Similarly,

EPbin

[
wfl
t · `t

]
= EPbin

[
wfl
t

]
· p.

Hence, we only need to show that EP
[
wbfl
t

]
= EPbin

[
wfl
t

]
. This holds because

wbfl
t “sees” only the binary outcomes resulting from the joint distribution of P

and the distribution of binarization variables:

E`t−1∼P
[
wbfl
t (`t−1)

]
= E`t−1∼P,bt−1

[
wfl
t (bt−1)

]
,

and for any bt,k, the probability (jointly over Pk and the binarization variables)
of bt,k = 1 is the same as probability of `t,k = 1 over the distribution P bin

k :

P (bt,k = 1) =

∫
[0,1]

P (bt,k = 1|`t,k)Pk(`t,k)d`t,k

=

∫
[0,1]

`t,kPk(`t,k)d`t,k = pt = P bin(`t,k = 1). (8)

Hence,
E`t−1∼P,bt−1

[
wfl
t (bt−1)

]
= E`t−1∼Pbin

[
wfl
t (`t)

]
.

ut

Lemma 3. For any K-set of distributions P = (P1, . . . , PK) with support on
X = [0, 1],

R(ωbfl,P) ≤ R(ωfl,Pbin),

where R is either the expected regret, the expected redundancy, or the excess risk.

Proof. Lemma 2 shows that the expected loss of ωbfl on P is the same as the
expected loss of ωfl on Pbin. Hence, to prove the inequality, we only need to
consider the “loss of the best expert” part of each measure. For the expected re-
dundancy, and the expected regret, it directly follows from the definition of Pbin

that for any t, k, EP [`t,k] = EPbin [`t,k], hence mink EP [`T,k] = mink EPbin [`T,k],
and simiarly, mink EP [LT,k] = mink EPbin [LT,k]. Thus, for the expected redun-
dancy and the excess risk, the lemma actually holds with equality.

For the expected regret, we will show that EP [mink LT,k] ≥ EPbin [mink LT,k],

which will finish the proof. Denoting BT,k =
∑T
t=1 bt,k, we have:

E`T∼Pbin [min
k
LT,k] = E`T∼P,bT [min

k
BT,k]

≤ E`T∼P

[
min
k

EbT [BT,k|`T ]

]
= E`T∼P [min

k
LT,k],



where the first equality is from the fact that for any bt,k, the probability (jointly
over Pk and the binarization variables) of bt,k = 1 is the same as probability
of `t,k = 1 over the distribution P bin

k (see (8) in the proof of Lemma 2), while
the inequality follows from Jensen’s inequality applied to the concave function
min(·). ut

Theorem 3. Let ωbfl = (wbfl
1 , . . . ,wbfl

T ) be the binarized FL strategy. Then:

sup
P
R(ωbfl,P) = inf

ω
sup
P
R(ω,P),

where R is the expected regret, expected redundancy, or excess risk, the supremum
is over all K-sets of distributions on [0, 1], and the infimum is over all prediction
strategies.

Proof. Lemma 3 states that for any K-set of distributions P, R(ωbfl,P) ≤
R(ωfl,Pbin). Furthermore, since ωbfl is the same as ωfl when all the losses are
binary, R(ωbfl,Pbin) = R(ωfl,Pbin), and hence R(ωbfl,P) ≤ R(ωbfl,Pbin), i.e.
for every P over continuous losses, there is a corresponding Pbin over binary
losses which incurs at least the same regret/redundancy/risk to ωbfl. Therefore,

sup
P on [0,1]

R(ωbfl,P) = sup
P on {0,1}

R(ωbfl,P) = sup
P on {0,1}

R(ωfl,P).

By the second part of Corollary 1, for any prediction strategy ω:

sup
P on {0,1}

R(ωfl,P) ≤ sup
P on {0,1}

R(ω,P) ≤ sup
P on [0,1]

R(ω,P),

which finishes the proof. ut

Theorem 3 states that the binarized FL strategy is the minimax prediction
strategy when the losses are continuous on [0, 1]. Note that the same arguments
would hold for any other loss range [a, b], where the binarization on losses would
convert continuous losses to the binary losses with values in {a, b}.

4.2 Vanilla FL is Not Minimax for Continuous Losses

We introduced the binarization procedure to show that the resulting binarized
FL strategy is minimax for continuous losses. So far, however, we did not exclude
the possibility that the plain FL strategy (without binarization) could also be
minimax in the continuous setup. In this section, we prove (by counterexample)
that this is not the case, so that the binarization procedure is justified. We will
only consider excess risk for simplicity, but one can use similar arguments to
show a counterexample for the expected regret and the expected redundancy as
well.

The counterexamples proceeds by choosing the simplest non-trivial setup of
K = 2 experts and T = 2 trials. We will first consider the case of binary losses
and determine the minimax excess risk. Take two distributions P1, P2 on binary



losses and denote p1 = P1(`t,1 = 1) and p2 = P2(`t,2 = 1), assuming (without
loss of generality) that p1 ≤ p2. The excess risk of the FL strategy (its expected
loss in the second trial minus the expected loss of the first expert) is given by:

P (`1,1 = 0, `1,2 = 1)p1 + P (`1,2 = 0, `1,1 = 1)p2 + P (`1,1 = `1,2)
p1 + p2

2
− p1,

which can be rewritten as:

p2(1− p1)p1 + p1(1− p2)p2︸ ︷︷ ︸
=2p1p2−p1p2(p1+p2)

+
(
p1p2 + (1− p1)(1− p2)

)p1 + p2

2︸ ︷︷ ︸
=p1p2(p1+p2)−(p1+p2)2+

p1+p2
2

− p1

=
p2 − p1

2
− (p2 − p1)2

2
.

Denoting δ = p2 − p1, the excess risk can be concisely written as δ
2 −

δ2

2 . Maxi-
mizing over δ gives δ∗ = 1

2 and hence the maximum risk of FL on binary losses
is equal to 1

8 .
Now, the crucial point to note is that this is also the minimax risk on con-

tinuous losses. This follows because the binarized FL strategy (which is the
minimax strategy on continuous losses) achieves the maximum risk on binary
losses (for which it is equivalent to the FL strategy), as follows from the proof
of Theorem 3. What remains to be shown is that there exist distributions P1, P2

on continuous losses which force FL to suffer more excess risk than 1
8 . We take

P1 with support on two points {ε, 1}, where ε is a very small positive number,
and p1 = P1(`t,1 = 1). Note that E[`t,1] = p1 + ε(1 − p1). P2 has support on
{0, 1− ε}, and let p2 = P2(`t,2 = 1− ε), which means that E[`t,2] = p2(1− ε). We
also assume E[`t,1] < E[`t,2] i.e. expert 1 is the “better” expert, which translates
to p1 + ε(1 − p1) < p2(1 − ε). The main idea in this counterexample is that by
using ε values, all “ties” are resolved in favor of expert 2, which makes the FL
algorithm suffer more loss. More precisely, this risk of FL is now given by:

p2(1− p1)p1 + p1(1− p2)p2 +
(
p1p2 + (1− p1)(1− p2)

)
p2︸ ︷︷ ︸

ties

− p1 +O(ε).

Choosing, e.g. p1 = 0 and p2 = 0.5, gives 1
4 + O(ε) excess risk, which is more

than 1
8 , given that we take ε sufficiently small.

5 Conclusions and Open Problem

In this paper, we determined the minimax strategy for the stochastic setting
of prediction with expert advice in which each expert generates its losses i.i.d.
according to some distribution. Interestingly, the minimaxity is achieved by a
single strategy, simultaneously for three considered performance measures: the
expected regret, the expected redundancy, and the excess risk. We showed that
when the losses are binary, the Follow the Leader algorithm is the minimax



strategy for this game, and furthermore, it also has the smallest expected regret,
expected redundancy, and excess risk among all permutation invariant predic-
tion strategies for every distribution over the binary losses simultaneously, even
among (permutation invariant) strategies which know the distributions of the
losses. When the losses are continuous in [0, 1], FL remains minimax only when
an additional trick called “loss binarization” is applied, which results in the
binarized FL strategy.

Open problem. The setting considered in this paper concerns distributions over
loss vectors which are i.i.d. between trials and i.i.d. between experts. It would
be interesting to determined the minimax strategy in a more general setting,
when the adversary can choose any joint distribution over loss vectors (still i.i.d.
between trials, but not necessarily i.i.d. between experts). We did some prelim-
inary computational experiment, which showed that that FL is not minimax in
this setting, even when the losses are restricted to be binary.
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