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Ordinal classification consists in predicting a label ta-
ken from a finite and ordered set for an object described
by some attributes.

This problem shares some characteristics of multi-class
classification and regression, but:

• the order between class labels cannot be neglected,

• the scale of the decision attribute is not cardinal.



Recommender system predicting a rating of a movie for a gi-
ven user.



Email filtering to ordered groups like: important, normal, later,
or spam.



Nature of ordinal classification:

• Classification with ordered class labels?

• Degenerate ranking problem?
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Denotation:

• K – number of classes

• y – actual label

• ŷ – predicted label

• x – attributes

• f(x) – prediction (ranking or utility) function

• L(·) – loss function

• J·K – Boolean test



Ordinal Classification – Probability Estimation:

• Prediction risk is defined by a loss matrix:

L(y, ŷ) = (ly,ŷ)K×K

with v-shaped rows and zeros on diagonal.

L(y, ŷ) =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0





Ordinal Classification – Probability Estimation:

• Bayes decision for the loss matrix L(y, ŷ) is given by:

ŷ∗ = argmin
ŷ

K∑
k=1

Pr(y = k|x)L(k, ŷ).

• To solve the problem, we need to estimate conditional
probabilities Pr(y = k|x) – a lot of algorithms . . .

• We can decompose the problem to K − 1 binary problems by
utilizing the order of labels y: the result then are estimates of
Pr(y > k|x), k = 1, . . . ,K − 1.

• To satisfy monotonicity of Pr(y > k|x), k = 1, . . . ,K − 1,
we use isotonic regression.

• Other possibilities allowed . . .



Ordinal Classification – Probability Estimation:

• Given Pr(y = k|x), k = 1, . . . ,K, the optimal prediction is:

ŷ∗ =



argmaxk Pr(y = k|x), for lyŷ = Jy 6= ŷK,

median(y|x), for lyŷ = |y − ŷ|,

E(y|x), for lyŷ = (y − ŷ)2.

• Absolute-error loss seems to be the most natural since its
Bayes decision is median that does not depend on scale of
labels.

• Any function of the probability distribution can be used for
object ranking.



Ordinal Classification – Degenerate Ranking:

• Prediction risk is defined by a rank loss computed over pairs
of objects:

L (y◦•, f(x◦), f(x•)) = Jy◦•(f(x◦)− f(x•)) ¬ 0K,

where
y◦• = sgn(y◦ − y•),

and f(x) is a ranking (or utility) function.

yi1 > yi2 > yi3 > . . . > yiN−1 > yiN

f(xi1) > f(xi3) > f(xi2) > . . . > f(xiN−1) > f(xiN )



Ordinal Classification – Degenerate Ranking:

• This approach ranks the objects.

• To assign class labels, one has to compute thresholds on a
range of the ranking function with respect to a given loss
matrix.

• Rank loss minimization is strictly connected with
maximization of AUC criterion used in binary classification.

• Minimization of rank loss on training set has quadratic
complexity with respect to number of object, however, in the
case of K ordered classes, the algorithm can work in linear
time.



Ordinal Classification – Threshold Loss:

• Prediction risk is defined by threshold loss:

L(y, f(x),θ) =
K−1∑
k=1

Jyk(f(x)− θk)  0K,

where θ = (θ0, . . . , θK) are consecutive thresholds to be
computed simultaneously with f(x), and

yk = 1, if y > k, and yk = −1, otherwise y ¬ k.

f((x))
−5 −4 −3 −2 −1 0 1 2 3 4 5

θθ0 == −− ∞∞ ... θθ1 == −−3.5 θθ2 == −−1.2 ... θθk−−1 == 1.2 θθk−−2 == 3.8 ... θθK == ∞∞



Ordinal Classification – Threshold Loss:

• This approach shares characteristics of the previous two.

• Comparison of an object to thresholds instead to all other
training objects – lower complexity, but linear algorithms
exist for rank loss minimization in ordinal classification
settings.

• Joint solution for all K − 1 binary problems – no need of
isotonization of conditional probabilities, but the result is a
single value.

• Weighted threshold loss can approximate any loss matrix.



1 Three Approaches to Ordinal Classification

2 Boosting-like Approach

3 Ordinal Matrix Factorization

4 Conclusions



Boosting-like Algorithms for Three Approaches:

• Prediction function is an ensemble of decision rules:

f(x) = α0 +
M∑
m=1

rm(x).

• We used boosting approach to learn f(x): in each iteration,
a single rule is generated by concentrating on examples which
were hardest to classify correctly by previous rules with
respect to a given loss function.



Boosting-like Algorithms for Three Approaches:

• Ordinal ENDER – decomposes the problem into a
sequence of binary problems for estimating Pr(y > k|x);
uses isotonic regression for isotonization of the estimates;
final prediction is median over computed class distribution.

• RankRules – minimizes (exponential) rank loss;
parameterized to minimize absolute-error.

• ORDER – minimizes (exponential) threshold loss;
parameterized to minimize absolute-error.

• ENDER-Abs – reference algorithm constructing ensemble of
decision rules by direct minimization of absolute-error.

All the algorithms work in linear time with respect to number of
training example (plus log-linear time for sorting used once in
preprocessing phase).



Experimental Results:

• Comparison of Ordinal ENDER, RankRules, RankRules and
ENDER AE.

• 19 benchmark sets taken from Luis Torgo repository –
transformed from regression to ordinal classification settings.

• Average ranks are computed with repect to mean absolute
error obtained on each data set.

• Critical difference in average ranks is CD = 1.076.

4 3 2 1

CD = 1.076

ENDER−Abs

Ordinal ENDER

ORDER

RankRules



Experimental Results:

• There is almost no quantitative difference in performance
and time consumption: RankRules is slightly slower.

• Qualitative differences: Ordinal ENDER is related to
probability estimation, but RankRules to AUC maximization.

• Ensemble of decision rules are competitive to: RankBoost
AE, ORBoost-All, SVM-IMC.
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Ordinal Matrix Factorization:

• Given sparse matrix Y of observed values build a model
based on matrix factorization:

Y ' Ŷ = UVT

where U is an I ×M and VT is a M × J matrix.

• The prediction is then defined by:

ŷij =
M∑
m=1

uimvjm.

• Example: I is the number of users, J is the number of
movies in the movie recommender system, and M is number
of features describing users and movies.

• For learning we use gradient descent applied alternately to
U and V matrices with respect to a given loss function.



Ordinal Matrix Factorization for Three Approaches:

• Decomposition schema for probability estimation.

• Minimization of rank loss.

• Minimization of threshold loss.

• Hypothesis: all the approaches perform similarly.

• For all three approaches linear algorithms exists: minimization
of (exponential) rank loss, however, is the most demanding.

• No satisfactory results yet :(

• Work in progress . . .
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Conclusions:

• Nature of ordinal classification?

• Three approaches to ordinal classification.

• Boosting-like algorithm: rather qualitative than quantitative
differences between these approaches.

• Ordinal Matrix factorization: in progress . . .
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