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Ordinal classification consists in predicting a label ta-
ken from a finite and ordered set for an object described
by some attributes.

This problem shares some characteristics of multi-class
classification and regression, but:

e the order between class labels cannot be neglected,

e the scale of the decision attribute is not cardinal.



Recommender system predicting a rating of a movie for a gi-
ven user.
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Nature of ordinal classification:

e Classification with ordered class labels?

e Degenerate ranking problem?



Three Approaches to Ordinal Classification



Denotation:

e K — number of classes

y — actual label

1 — predicted label

x — attributes

f(x) — prediction (ranking or utility) function

L(-) — loss function
[-] — Boolean test



Ordinal Classification — Probability Estimation:
e Prediction risk is defined by a loss matrix:
L(y,9) = (ly@)KxK

with v-shaped rows and zeros on diagonal.
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Ordinal Classification — Probability Estimation:

e Bayes decision for the loss matrix L(y, ) is given by:

K
" = argmin ) Pr(y = klx)L(k, §).
Yop=1

e To solve the problem, we need to estimate conditional
probabilities Pr(y = k|x) — a lot of algorithms . ..

e We can decompose the problem to K — 1 binary problems by
utilizing the order of labels y: the result then are estimates of
Pr(y > k|x), k=1,...,K — L.

e To satisfy monotonicity of Pr(y > k|x), k=1,..., K — 1,
we use isotonic regression.

e Other possibilities allowed ...



Ordinal Classification — Probability Estimation:
e Given Pr(y = k|x), k =1,..., K, the optimal prediction is:

argmaxy, Pr(y = k[x), for l,; = [y # 9],

~ %

9" = ¢ median(y|x), for 1,5 = |y — 9l

E(ylx), for 1y = (y —9)*.

e Absolute-error loss seems to be the most natural since its

Bayes decision is median that does not depend on scale of
labels.

e Any function of the probability distribution can be used for
object ranking.



Ordinal Classification — Degenerate Ranking:

e Prediction risk is defined by a rank loss computed over pairs
of objects:

L (You, f(Xo), f(%e)) = [yos (f(%0) — f(%4)) <0,

where
Yoo = S80(Yo — Ye);
and f(x) is a ranking (or utility) function.

Yii > Yip > Yis > ---> Yin, > Yin

f(Xil) > f(xig) > f(XiQ) > > f(XiN—l) > f(XiN)



Ordinal Classification — Degenerate Ranking:

e This approach ranks the objects.

e To assign class labels, one has to compute thresholds on a
range of the ranking function with respect to a given loss
matrix.

e Rank loss minimization is strictly connected with
maximization of AUC criterion used in binary classification.

e Minimization of rank loss on training set has quadratic
complexity with respect to number of object, however, in the
case of K ordered classes, the algorithm can work in linear
time.



Ordinal Classification — Threshold Loss:

e Prediction risk is defined by threshold loss:

K-1
k=1

where @ = (0, ..., 0k) are consecutive thresholds to be
computed simultaneously with f(x), and

yr = 1, if y > k, and y, = —1, otherwise y < k.

90=—oo 91=—3.5 92:—1.2 Bk_1=1.2 Bk_2=3.8 9K=oo




Ordinal Classification — Threshold Loss:

e This approach shares characteristics of the previous two.

e Comparison of an object to thresholds instead to all other
training objects — lower complexity, but linear algorithms
exist for rank loss minimization in ordinal classification
settings.

e Joint solution for all K — 1 binary problems — no need of
isotonization of conditional probabilities, but the result is a
single value.

e Weighted threshold loss can approximate any loss matrix.



Boosting-like Approach



Boosting-like Algorithms for Three Approaches:

e Prediction function is an ensemble of decision rules:
M
fX) =a0+ Y rm(x).
m=1

e We used boosting approach to learn f(x): in each iteration,
a single rule is generated by concentrating on examples which
were hardest to classify correctly by previous rules with
respect to a given loss function.



Boosting-like Algorithms for Three Approaches:

¢ Ordinal ENDER - decomposes the problem into a
sequence of binary problems for estimating Pr(y > k|x);
uses isotonic regression for isotonization of the estimates;
final prediction is median over computed class distribution.

¢ RankRules — minimizes (exponential) rank loss;
parameterized to minimize absolute-error.

e ORDER - minimizes (exponential) threshold loss;
parameterized to minimize absolute-error.

e ENDER-Abs — reference algorithm constructing ensemble of
decision rules by direct minimization of absolute-error.

All the algorithms work in linear time with respect to number of
training example (plus log-linear time for sorting used once in
preprocessing phase).



Experimental Results:

Comparison of Ordinal ENDER, RankRules, RankRules and
ENDER AE.

19 benchmark sets taken from Luis Torgo repository —
transformed from regression to ordinal classification settings.

Average ranks are computed with repect to mean absolute
error obtained on each data set.

Critical difference in average ranks is CD = 1.076.

CD =1.076

ENDER-Abs RankRule$
ORDER

iOrdinaI ENDER




Experimental Results:

e There is almost no quantitative difference in performance
and time consumption: RankRules is slightly slower.

¢ Qualitative differences: Ordinal ENDER is related to
probability estimation, but RankRules to AUC maximization.

e Ensemble of decision rules are competitive to: RankBoost
AE, ORBoost-All, SVM-IMC.



Ordinal Matrix Factorization



Ordinal Matrix Factorization:

e Given sparse matrix Y of observed values build a model
based on matrix factorization:

Y~Y=UV"T

where Uis an I x M and VT is a M x J matrix.
e The prediction is then defined by:

M
Qij = Z UimUjim-
m=1
e Example: [ is the number of users, J is the number of
movies in the movie recommender system, and M is number
of features describing users and movies.

e For learning we use gradient descent applied alternately to
U and V matrices with respect to a given loss function.



Ordinal Matrix Factorization for Three Approaches:

e Decomposition schema for probability estimation.
e Minimization of rank loss.

e Minimization of threshold loss.

e Hypothesis: all the approaches perform similarly.

e For all three approaches linear algorithms exists: minimization
of (exponential) rank loss, however, is the most demanding.

¢ No satisfactory results yet :(

e Work in progress ...



Conclusions



Conclusions:

Nature of ordinal classification?

Three approaches to ordinal classification.

Boosting-like algorithm: rather qualitative than quantitative
differences between these approaches.

Ordinal Matrix factorization: in progress ...
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