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Abstract. In this paper we present our solution to the ECML/PKDD
2007 Challenge Task that concerns prediction of Internet user behaviour
by characterising the nature of their Web page visits. Our solution has
low time and space complexity, scales well with large datasets and, at the
same time, produces high-quality results. Comparison of performance of
our ultimate approach with a suit of other approaches that we examined
exhibits its superiority as well as hardness of the given datasets.

1 Introduction

The contest objective [4] was to predict Internet user behaviour by characterising
the nature of their visits. The visit is defined by categories of visited web pages
and the number of page views in each category. The contest was organised into
3 tasks: predicting the number of Web page categories (1 or greater than 1),
predicting the first 3 visited categories and predicting the number of pages seen
in each of the first 3 categories.
The data was provided by Gemius – a leading Internet market research com-

pany in Poland – and divided into: training set (379485 records) and testing
set (166299 records – twice less than in the training one). Each record con-
tains record number, user id, timestamp. Additionally, in the training set the
records contain the sequence of pairs, each of the form category, #pages. Each
record corresponds to a user session started at timestamp and reflects the cate-
gory and number of pages seen by that user in chronological order (from left to
right). Example: 248 46 1167680792 12,1 8,7 12,3.
In addition, a third, auxiliary dataset was provided which contains 4882, user-

related records contains the following attributes: user id, country, region,
city, system, sysVer, browser, browserVer.
Our exploratory analysis phase is described in section 2. Section 3 describes

our first attempts of building global models. During our work, we have observed
that models constructed separately for each user (user-models) give better results
than the global ones. The reason of this is a specific nature of data and the
formulation of the challenge problems. In order to obtain stable predictions, our
methods are strongly based on statistical decision [8, 1] and learning theory [3,
6], section 4 is devoted to this topic. Final approaches to the challenge problems
are presented in sections 4.1-4.3. The last section makes a short conclusion.



2 Exploratory Data Analysis

Any serious data mining task concerning unknown real datasets should be pre-
ceded by an appropriate exploratory data analysis phase which is regarded as
being crucial to obtain high quality results in the subsequent phases [2]. All the
computations given in this section were performed using the R package [7].
The datasets concern 4882 different users and 20 different Web page cate-

gories. All the users were represented in the training as well as the testing dataset.
The number of records per user in each dataset is summarised in Figure 1.
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dataset Min. 1st Qu. Median Mean 3rd Qu. Max. 200+ records

train 7.00 54.00 72.00 77.73 94.00 497.00 7

test (doubled) 2.00 46.00 64.00 68.13 86.00 430.00 5

Fig. 1. Summary of the statistics for the number of records per user in the training and
testing (doubled) datasets. The typical number of records per user lies between 50 and
90 and does not vary very much but is not high enough (given the number of different
categories, and other attributes) to build detailed user-level probability model.

We discovered (fig. 2) a group of users (having the highest id numbers) which
were “new” to the recording system at the end of the training dataset. Interest-
ingly, the id number growth rate is higher in this group than in the remaining
part but also this rate is constant (see fig. 2, top-left), what means that the
group is homogeneous. The group is distinct among the users, since we believe
that the user numbers must be assigned in some natural (perhaps, chronological)
order. In the testing set all the users recorded are present equally through the
whole recording period.
Having inspected the data, we assumed that the timestamp attribute repre-

sents the number of seconds measured since the beginning of the era.
Timestamp range is the following: training set: 31/12/2006 - 22/01/2007

(about 1 am), testing set: 22/01/2007 - 31/01/2007 (about 1 pm). The testing
set is a chronological continuation of the training set (with less than 1 minute



Fig. 2. The users with the highest id numbers are “newcomers” in the training set.
The testing set does not contain users with analogous property.

break in between). This chronological relationship was taken into account while
selecting our prediction models. It also encouraged to use time-series approach.

We transformed the timestamp attribute to the full date (i.e. year, month,
month-day, week-day, hour, minute, second) to explore the week and 24-hour
periodicity in users’ behaviour, among others (fig. 3).

The difference of histograms (fig. 3, the middle column) of week-day-based
activity is due only to more Mondays and Tuesdays in the testing set and abnor-
mal activity on the Sunday, 31st December 2006, perhaps due to the New Years
Eve greetings traffic, etc. After normalisation, both histograms would be almost
flat. Thus, week-day is not a good discriminant at the global level. In contrast,
the hour attribute seems to bring valuable discriminative information even on
the global level (see fig. 3, left column and the top right histogram).

Much exploratory data analysis effort was devoted to explore the training
dataset in order to choose the proper method of solving task 2 and 3.

For each session in the training set the category on the first 3 positions of
the visit path were recorded. Subsequently, the above data was aggregated over

Table 1. Statistics concerning the visit length – i.e. the number of consecutive page
categories visited in each session. The distribution is extremely right-skewed.

1 category 2 categories 3 cat. 3+ cat. Min. 1st Qu. Median Mean 3rd Qu. Max.

72.9% 11.5% 6.3% 9.25% 1 1 1 2.17 2 200



Fig. 3. Periodicity exploratory analysis. For the training set, the shorter bars represent
the sessions in which more than 1 category of pages was visited, the longer bars - the
other cases (task 1 of the challenge). One can observe (the histograms on the left, and
top-right) that hour brings more information that week-day (almost flat bottom-right
conditional histogram), on the global level.

separate users and, for each user, three 20-dimensional distribution vectors over
categories were computed - for the 1st, 2nd and 3rd category on the visit path
(e.g. if a particular user visited only category 12 and 8 on the first position of
their session with equal frequency, the corresponding 1st-category distribution
vector has entries of 0.5 on positions 8 and 12 and values of 0 elsewhere).

Subsequently, those probability distribution vectors served as the basis for
computing entropy (left column on fig. 4), number of non-zero entries (the middle
column) and the probability of the most likely category on the position 1, 2 or
3, for a given user (the right column on the figure).

All those measurements served to convince us that simple, user-level model
for tasks 2 and 3 is a reasonable solution. Namely, the graphs on Figure 4 clearly
show, that for most of users the categories on their 1st, 2nd and 3rd positions
are quite easily predictable. In particular, low entropy, low number of categories
encountered on the positions under examination and generally very high prob-
ability of the most likely category on a given position strongly influenced our
decision of choosing very fast, yet simple prediction method for these tasks. One
can easily observe from the fig. 4 that especially categories on the 1st and 3rd
positions seem to be easily predictable. The phenomenon of the 2nd category
being much harder to predict can be explained as follows. In 74.5% of sessions
of over 2 categories the third category is the same as the 1st category.
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Fig. 4. Analysis focused on assessing feasibility of user-level simple modelling for the
Task 2 and 3. Row number corresponds to the position on visit path. Left column: en-
tropy of 20-dimensional probability distribution over categories – notice its relatively
low values (maximum entropy for 20-dimensional distribution is 4.32193). Middle col-
umn: number of different categories on a given position (notice that it is close to 1).
Right column: data-estimated probability of the most likely category on a given posi-
tion (most of the mass is definitely above the value of 0.5)

3 First Attempts on Global Models

The property which is apparent in the collected dataset is its granularity. The
finer granule concerns a single visit (visit’s granule), while the coarser granule
corresponds to a single user (user’s granule). On the one hand, using visit’s
granules permits the classifier to evaluate each visit separately, possibly giving
different responses in each case, e.g. depending on the position of visit in chrono-
logical order, timestamp, etc. On the other hand, for user’s granules we are able
to do the averaging over all the visits for a given user, thus reducing the variance
and giving more reliable responses.

Simple Global Model. Our first attempt was related to visit’s granules. We con-
sidered the global model, in which we divided the original training set into 2
parts: training 89% and testing 11%. The division reflects the chronological re-



lationship between the original training and testing sets. The first 89% of the
recorded sessions for each user constituted the training subset, and the last 11%
the testing subset. To train the classifiers, we used features such as user data
(country, region, city, system, etc.), week day, hour, part of the day, time
from the last visit, number of visits during the day, number of visits in last 60,
120, etc. minutes, type of a last visit (whether it was a short or long visit), type
of a second last visit, etc. However, obtained results were not satisfactory. The
best result for task 1, which we have obtained using j48 (C4.5 implementation
in Weka [9]), was 75.7% correctly classified visits.

Enhanced Global Model. Due to the poor quality of the results of the simple
global model, we decided to estimate some additional values describing the be-
haviour of the users. In order to achieve it, we prepared an estimation set isolated
from the training set. To reflect the chronological relationship present in data,
the first 70% of the recorded sessions for each user constituted the estimation
subset, the next 19% – the training subset, and the last 11% – the testing subset.
The features calculated on the estimation set were:

– category-based (210 attributes in total): average number of pages seen in
a session, average number of groups seen each session, number of different
categories seen each session, majority category at position 1 through 3 on the
path, average number of pages on each position (1st through 3rd), average
number of pages seen in each category, average number of groups of each
category, distribution of categories encountered on the 1st-3rd position of
the path for each category, average number of pages seen in the 1st-3rd
position for each category.
– visit length-based, obtained by considering only two types of visits (short or
long) and estimating the probability of long visit for each day of week, for
each hour of working day and hour of weekend day. Probability estimates
were smoothed using the kernel estimation method (Gaussian kernel).

Notice that all those features represent some average characteristics of each
user so that they are related to user’s granularity level. In addition, user data
(country, region, etc. - 7 attributes in total) were also included in the dataset.
We experimented with taking subsets of the above attributes. We also tried

to take logarithms of some of the above attributes (those which were extremely
right-skewed). In this setting, for the task 1, the best results have been obtained
with j48 algorithm. The result was 76.7% correctly classified visits.

User Models. In the previous approach, the information about users was in-
corporated to the model by isolating the estimation set (including most of the
observations) and calculating some coefficients for each user by averaging over
their visits. In this approach, we decided to use directly user id number (attribute
user id), without extracting any additional information about the users. This
approach has been verified to be the most successful, therefore will be described
in the next three sections (sections 4.1-4.3), separately for each task. Here we
present common features of all the models.



Incorporating user id number as a condition attribute leads to the following
problem: user id has nominal scale without any order between values, so that each
of its values must be treated separately. It is possible to include such attribute in
a general model, but for most of the classifiers, it will be binarised, i.e. changed
into 4882 (number of users) binary attributes. Taking into account the size of
the dataset, this is not a practical solution. Much more practical procedure,
which can simulate conditioning on user id attribute, corresponds to building
a separate model for each user. Such a procedure has been used in all of the
models described later.
In each of the models user id number is used as one of the predictors (con-

dition attributes). However, in none of the models any other attributes of the
user (country, region, etc.) are included. This is due to the fact, that those
attributes functionally depend on user id number, or in other words, user id
number determines values on those attributes. Thus, they do not introduce any
additional information, or in other words, they do not lead to finer granulation.

4 Final Solutions on User Models

All of the solutions described in this section are based on the statistical deci-
sion [8, 1] and learning theory [3, 6]. First, we briefly remind the basic concepts.
In the prediction problem, the aim is to predict the unknown value of an

attribute y (called decision attribute, output or dependent variable) of an ob-
ject using known joint values of other attributes (called condition attributes,
predictors, or independent variables) x = (x1, x2, . . . , xn). The task is to find a
function f(x) that predicts value y as well as possible. To assess the goodness
of prediction, the loss function L(y, f(x)) is introduced for penalising the pre-
diction error. Since x and y are random variables, the overall measure of the
classifier f(x) is the expected loss or risk, which is defined as a functional:

R(f) = E[L(y, f(x))] =

∫

L(y, f(x))dP (y,x) (1)

for some probability measure P (y,x). The optimal (risk-minimising) decision
function is:

f∗ = arg min
f

R(f). (2)

Since P (y,x) is unknown in almost all the cases, one usually minimises the
empirical risk, which is the value of risk taken from the set of training examples
{yi,xi}

N
1
:

Re(f) =
1

N

N
∑

i=1

L(yi, f(xi)). (3)

Function f is usually chosen from some restricted family of functions.
When solving the contest tasks, the problem was to find the best approxi-

mation of the optimal decision function.



4.1 Solution to Task 1

The task is to predict whether a visit has page views of only one category (short
visit), or more categories (long visit). We deal here with two classes, thus it is
a simple binary classification problem for which the most common loss function
is so called 0-1 loss :

L0−1(y, f(x)) =

{

0 if y = f(x),
1 if y 6= f(x).

(4)

Coding short visit by -1 and long visit by 1, the optimal decision function for a
given x is:

f∗(x) = sgn (Pr(y = 1|x) − 0.5) . (5)

Of course, we have no information about the probabilities Pr(y = 1|x), so
they must be estimated from training examples (alternatively, one can estimate
whether the probability is higher or smaller than 0.5).

Shrinkage. Let p̂(x) be an estimator of the probability Pr(y = 1|x) (denoted as
p(x) from this moment on), which is calculated on the dataset. Our objective is
to find the decision function defined as:

f̂∗(x) = sgn (p̂(x) − θ) (6)

where, comparing with (5), we used the estimator p̂(x) instead of real unknown
probability p(x) and threshold θ instead of 0.5. The motivation for the latter is
based on Bayesian inference. Suppose that we impose some prior distribution τ

on parameter p(x). It is easily seen from the data that Eτp, the expected value
of p according to the prior distribution τ , is much less then 0.5, since in 73%
of the cases the visit is short. It is a well known fact from Bayesian decision
theory that the estimated parameters are shrunk towards the center of prior
distribution. We impose such shrinkage by introducing regularised estimate of
the probability defined as: p̃(x) = αp̂(x) + (1 − α)Eτp, where α is chosen to be
independent of x for simplicity. But the condition p̃(x) ≥ 0.5 ⇔ p̂(x) ≥ θ where
θ = 1

α
0.5 + α−1

α
Eτp, and θ > 0.5 as long as Eτp < 0.5. θ was chosen empirically

to maximise the performance on the testing set.
The crucial thing in estimating p(x) is the chosen vector of predictors (con-

dition attributes) x. Depending on the choice, three different models are consid-
ered, described below.

Model I: Simple Classification. The only predictor is user id number, so that
x ≡ j, where j is the number of user. For each user j, the fraction of the long
visits was taken to be a probability estimator p̂(j). This estimator is constant in
all observations for a given user. Therefore, it is characterised by a very small
variance, but also a significant bias. The time complexity of the algorithm is
linear with the number of visits. The memory complexity is linear with the
number of users (not including the memory occupied by dataset).



Model II: Trend prediction. Data for each user were regarded as short time series
with values 0 (short visit) or 1 (long visit). The abscissa values (predictors) were
timestamps of the observations (normalised, in order to avoid some numerical
difficulties due to large numbers). For each user, a polynomial trend was fitted
to the time series and was used as a probability estimator. The fitting procedure
was regularised least squares (ridge regression). The amount of regularisation was
chosen empirically, to maximise the performance of the procedure on the testing
set. It appears that models with very strong regularisation (more smoothing)
are preferred due to their small variance.
For a given user, the time complexity of the method is dominated by the least

squares fitting which is done by Cholesky decomposition and has complexity

O(m3 + nm2

2
), where n is the number of visits for a given user and m is the

degree of fitted polynomial. Since m is fixed, time complexity is linear in the
number of visits, so as the memory complexity.

Model III: Autoregression. The autoregressive model was the most sophisticated
one that we used. For each user a separate linear model is fitted to the user’s
time series, based on the following attributes: normalised timestamp, time from
the last visit, length of the last visit, average length of the last 2, 4 and 8 visits.
Since the predicted value (length of the current visit) depends on the values in
previous moments, such algorithm resembles autoregressive models used in time
series analysis [5], but with regularised least squares fitting procedure.
The classification procedure is more complicated here – all the objects must

be classified chronologically, since the current value depends on the previous
values. This causes the model to be less reliable with predicting the latest obser-
vations. That is why strongly regularised models (more smoothing, less variance)
were preferred.
The complexity of the method, both in time and memory, is the same as for

model II (linear in the number of visits), since least squares are also used as
fitting procedure. However, training the autoregressive model takes more time
due to the greater number of condition attributes.

Results and conclusions. For all our models, we present 3 following estimates:

1. training score – value of the score on the training set. This estimate is thus
over-optimistic, since the score is measured on the data which were used for
fitting the classifier,

2. validation score – the training set was divided into 89% proper training set
and 11% validation set. The classifier was learned on training set and the
score was calculated on validation set. This estimate was used to choose the
best classifier for the contest,

3. solution score – value of the score on the testing set. We were able to calculate
this estimate using the proper solution sent by organisers after finishing the
contest. The classifier was learnt on the whole training set.

The threshold θ was chosen to be equal to 0.55. This value was obtained
by repeatedly fitting the classifier for values between 0.5 and 0.6 and choosing



Table 2. Values of the score (accuracy of classifier) for task 1.

Classifier Score time [sec.]
training validation solution

Majority vote 0.7292 0.7285 0.7331 0.021
Simple classification 0.7733 0.7661 0.7669 0.060
Trend prediction 0.7729 0.7696 0.7690 1.793
Autoregression 0.7781 0.7717 0.7687 7.842

the best results (validation score). The value of the score is (in case of task 1)
the accuracy of the classifier, i.e. the fraction of correctly classified observations.
The results are presented in Table 2. A “majority vote” classifier is also included
which always assigns values from the larger class (short visit in this case –
results of this classifier coincide of course with values presented in Table 1). We
also present computational time for each classifier (calculated on the notebook
with 512MB RAM and 2.13GHz Athlon processor), which includes training and
classification of the testing set, but which does not include reading both files
(training and testing) from disk into memory (it took additional 6.409 seconds).

Notice that although regression results were sent for the contest (the highest
validation score), the best results on the testing set were achieved by the trend
prediction approach (the highest solution score). All the models were relatively
fast, especially majority vote and simple classification. Also all the models, apart
from majority vote, have very similar results (almost no change in the score
value). This suggests that any other condition attributes based on timestamp or
previous visit length are hardly informative. This would also suggest choosing
the simplest (parsimonious) model which is simple classification.

In comparison to the global models presented in section 3, the simple classi-
fication is only slightly worse than the best result obtained by enhanced global
model, while trend prediction and autoregression seem to be better. The user
models are simpler (less attributes taken into account), more stable, easier in
parameterisation, and for these reasons, much more faster.

4.2 Solution to Task 2

The second task concerns predicting a list of the 3 most probable categories (i.e.
the 3 first page categories on the visit path) during a given visit of a given user.
A specific score function was defined by the organisers in order to quantitatively
measure the goodness of prediction. Assume that y = (y1, . . . , ym) is a sequence
ofm visited categories. Moreover let f(x) = (f1(x), f2(x), f3(x)) be the sequence
of the 3 most probable categories predicted by the classifier based on some
predictor vector x. In case of y as well as f(x), according to the challenge rules,
we assume that when a category appears more than once in the sequence, each
time it is regarded as new, different category. The loss function is defined as



Table 3. Values of the score for task 2 and 3

Task Score time [sec.]
training validation solution

2 5.6830 5.6021 5.5606 30.124
3 6.5041 6.3747 6.3147 30.545

negative score and can be written in the following way:

L(y, f(x)) = −

m
∑

j=1

3
∑

k=1

s(j, k)I(yj = fk(x)) (7)

where
s(j, k) = max{1, min{6 − j, 6 − k}} (8)

is the single score value and I(x) is the indicator function equal to 1 if x is true,
0 otherwise. The risk of the classifier has the following form:

R(f) =

∫

∑

y

L(y, f(x))P (y|x)dP (x) (9)

In order to find the optimal decision for a fixed predictor x, we must minimise
the risk point-wise, i.e. minimise

∑

y L(y, f(x))P (y|x). Since the probabilities
P (y|x) are unknown, we use empirical risk minimisation (3), so that we minimise
the loss function (7) on the dataset. However, one can show, that estimating the
probabilities P (y|x) by frequencies would lead exactly to the same result.
Thus, the optimal decision function is obtained simply by choosing for each x

value f(x) = (f1(x), f2(x), f3(x)), which minimises the empirical risk. However,
one does not need to go through the whole dataset for each combination of values
of f(x). It is enough to calculate three aggregated coefficients for each category
for a given x and then choosing f(x) is independent of the number of visits.
There is still x to be chosen to make the model complete. Motivated by

our exploratory analysis (see section 2) and the results for task 1, we decided to
use parsimonious model taking into account only one predictor - user id number.
Thus, the classifier is constant on every visit of the same user, so that corresponds
to user’s granulation described in section 3. Such model has the advantage of
being stable and having small variance. The results obtained using the model
are presented in Table 3. They indicate that the model, despite its simplicity,
has fairly good accuracy.
The time complexity of the method is linear with the number of visits. The

memory complexity is (not including the dataset itself) linear with the number
of users.

4.3 Solution to Task 3

The third task was an extension of the second task. Apart from giving a list
of the most probable categories in a visit, it concerns giving a range of number



of page views in each category. Assume that y = ((y1, t1), . . . , (ym, tm)) is a
sequence of m visited pairs (category, #pages range) and

f(x) = ((f c
1
(x), f t

1
(x)), (f c

2
(x), f t

2
(x)), (f c

3
(x), f t

3
(x)))

is a sequence of 3 most probable pairs (category, #pages range) predicted by
the classifier based on some predictor vector x. Then, the loss function is:

L(y, f(x)) = −

m
∑

j=1

3
∑

k=1

s(j, k)I(yj = f c
k(x)) + I(tj = f t

k(x)) (10)

Similarly as in the case of task 2, we minimised the empirical risk (3) to
obtain the decision function. Again, only one predictor x was chosen – user id
number. The results are shown in Table 3. The time and memory complexity of
the method is the same as for task 2.

5 Conclusion

After an intensive exploratory data analysis phase we examined a few approaches
to the contest tasks and chose the solution that is simple, but effective and
theoretically well-founded. We found this choice optimal in the context of the
limited time. All of our algorithms scale well with large data and have linear
time complexity, which is the smallest possible complexity for such problems,
since reading the dataset is already linear in its size. The memory complexity
never exceeds linear rate and grows linearly with the number of users, not visits.
We believe that there is still some improvement of the result possible and

plan to explore it in a subsequent work. We plan to further experiment with our
attributes and clustering users in order to obtain larger granules which in turn
make it possible to compute estimates for models with richer structure.
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