Statistical Framework for Dominance-based Rough Set Approach

Wojciech Kotłowski¹ Krzysztof Dembczyński¹ Salvatore Greco² Roman Słowiński^{1,3}

¹Institute of Computing Science, Poznań University of Technology

²Faculty of Economics, University of Catania

³Institute for System Research, Polish Academy of Sciences

CSM 2007, IIASA, Laxenburg

Outline

1 Introduction

- 2 Dominance-based Rough Set Approach (DRSA)
- 3 Stochastic Variant of DRSA
- 4 Properties of New Approach
- 5 Experimental Results

6 Summary

Mutlicriteria classification problem

- The problem of classifying objects to *m* decision classes {1,...,m}, which are preference ordered.
- Objects described by *n* condition criteria (attributes with preference-ordered domains).
- Monotone relationship between evaluations of object on condition criteria and its decision value (class): a better evaluation of object on a criterion with other evaluations being fixed should not worsen its decision value.
- The model is obtained from the *training* set of objects.

Notation

object	q_1	q_2	•••	q_n	\boldsymbol{y}
x_1	$q_1(x_1)$	$q_2(x_1)$		$q_n(x_1)$	y_1
x_2	$q_1(x_2)$	$q_2(x_2)$		$q_n(x_2)$	y_2
x_ℓ	$q_1(x_\ell)$	$q_2(x_\ell)$		$q_n(x_\ell)$	y_ℓ

- A training set {(x₁, y₁), ..., (x_ℓ, y_ℓ)} of ℓ objects x_i with their decision values (class indices) y_i.
- Each object x_i described by n condition criteria $Q = \{q_1, \ldots, q_n\}$, where $q_i(x_j)$ is the value of object x_j on criterion q_i .
- Each decision value $y_i \in T = \{1, \ldots, m\}$ (*m* classes).

Dominance relation

Definition

For each $x_i, x_j \in X$, x_i dominates x_j if x_i has better or equal evaluations on all the condition criteria: $\forall_{q_k \in Q} q_k(x_i) \ge q_k(x_j)$

Dominance principle

Definition

If x_i dominates x_j then x_i is preferred to x_j : $x_iDx_j \rightarrow y_i \ge y_j$. Objects violating dominance principle are *inconsistent*.

Dominance-based Rough Set Approach (DRSA)

- Handling inconsistencies by the notion of *lower* approximations and *boundary regions* of classes.
- A generalized decision δ(x_i) = [l_i, u_i] is assigned to each object such that:

$$l_i = \min_{\substack{x_j \in X : x_j D x_i}} \{y_j\}$$
$$u_i = \max_{\substack{x_j \in X : x_i D x_j}} \{y_j\}$$

It is the interval of decision values to which an object may belong due to the inconsistencies with respect to the dominance principle – the measure of the degree of imprecision.

Generalized decisions - example

Generalized decisions - example

Properties of generalized decision

• Define the order relation \succeq on the intervals:

$$[l_i, u_i] \succeq [l_j, u_j] \iff l_i \ge l_j \land u_i \ge u_j$$

- Generalized decisions are consistent with dominance principle in the sense that if object x_i dominates x_j then $\delta(x_i) \succeq \delta(x_j)$.
- For each $x_i \in X$, we have $l_i \leq y_i \leq u_i$ and $l_i = y_i = u_i$ iff x_i is consistent (surely belong to one class).
- Generalized decision is a sort of confidence interval obtained using only monotonicity constraints.

Generalized decisions - example

Problems with generalized decision

 q_1

The new methodology

Motivation

- Objects which make many other objects inconsistent probably have wrong class assignments.
- Idea: assign to each object decision intervals with possible error correction.
- The procedure will be stated as a problem of minimization a specific loss function on the dataset (Empirical Risk Minimization).

Loss function

- Suppose we assign to object (x_i,y_i) a decision interval $\delta(x_i) = [l_i,u_i]$
- The loss function $L(y_i, \delta(x_i))$ consist of two parts:
 - \blacksquare penalty for imprecision, proportional to the interval size: $\alpha(u_i-l_i),$
 - penalty for misclassification: 0 if $y_i \in \delta(x_i)$ or distance to the interval: min{ $|y_i l_i|, |y_i u_i|$ }.

Example (8 classes)

 $L(y,\delta(x))=3+2\alpha$

Stochastic DRSA

Problem statement

Minimize:

$$\sum_{i=1}^{\ell} L(y_i, \delta(x_i))$$

such that $x_i D x_j \to \delta(x_i) \ge \delta(x_j)$

Properties

- solved by linear programming
- due to unimodularity of constraints matrix, integer constraints can be dropped
- possible strong reduction of problem size

Analysis of the solution

- \blacksquare as $\alpha \rightarrow 0$ we obtain classical DRSA generalized decision,
- when $\alpha \ge 0.5$ all decision intervals shrink to one point only error corrections,
- when $\alpha \in (0, 0.5)$ a trade-off between interval size and correcting the class assignments,
- for almost each $\alpha \in (0, 0.5)$ unique solution.

q₁

q₁

q₁

Stochastic dominance

Assume objects (x,y) are generated independently according to some unknown probability distribution P(x,y)

Stochastic dominance principle

If object x_i dominates object x_j , class distribution conditioned at x_i stochastically dominates class distribution conditioned at x_j :

$$x_i Dx_j \to P(y \ge k | x_i) \ge P(y \ge k | x_j) \quad \forall k = 1 \dots m$$

Statistical properties of stochastic DRSA

Under stochastic dominance principle (and some mild distribution assumptions):

- For a given α , as training set size grows (in the limit $\ell \to \infty$), we obtain confidence intervals around the median such that l is α quantile, and u is 1α quantile of P(y|x),
- For two-class problem the procedure gives results identical to maximum likelihood estimate (isotonic regression).
- For $\alpha = 0.5$, as $\ell \to \infty$, the procedure converges to the best possible classifier, i.e. minimizing the risk (so called Bayesian classifier).

Experimental Results

- Seven datasets for which the monotone relationships between decision and condition attributes are observed: Wisconsin breast cancer, Ljubljana breast cancer, Windsor housing, Boston housing, Den Bosch housing, cpu, bankruptcy risk.
- Three typical classifiers (SVM, j48, AdaBoost) and one monotone classifier (ensemble decision rules, ENDER) learned on data with and without using stochastic DRSA approach (α = 0.5).
- The measure of accuracy for ordinal classification: mean absolute error (MAE).
- Random split into training (66%) and testing (33%) sets, repeated 1000 times.

Results

dataset	SVM	j48	Adaboost	ENDER
housing	0.2029	0.1754	0.1539	0.1418
Den Bosch	0.2065	0.1658	0.1382	0.1241
CPU	0.6517	0.1593	0.5874	0.0981
				0.0923
breast cancer	0.0313	0.0497	0.0486	0.0337
Wisconsin	0.0305	0.0494	0.0449	0.0357
bankruptcy	0.2196	0.2254	0.3838	0.1921
risk	-			0.1805
breast cancer	0.2944	0.2718	0.2669	0.2859
Ljubljana	0.2487	0.2712	0.2453	0.2530
housing	0.5290	0.3951	0.6599	0.3043
Boston	0.5168	0.3698	0.6574	0.2993
housing	0.6752	0.6517	0.7691	0.5741
Windsor	0.6511	0.5957	0.7854	0.5174

Summary

In rough set theory:

- An extension of DRSA based on stochastic model, robust to noise in the data.
- Explanation of DRSA in terms of statistics.
- In machine learning:
 - Nonparametric method of confidence interval estimation in the presence of monotonicity constraints.
 - Method of error correction based on domain knowledge (monotonicity).