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Salvatore Greco2 Roman S lowiński1,3
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Mutlicriteria classification problem

The problem of classifying objects to m decision classes
{1, . . . ,m}, which are preference ordered.

Objects described by n condition criteria (attributes with
preference-ordered domains).

Monotone relationship between evaluations of object on
condition criteria and its decision value (class): a better
evaluation of object on a criterion with other evaluations
being fixed should not worsen its decision value.

The model is obtained from the training set of objects.
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Notation

object q1 q2 . . . qn y

x1 q1(x1) q2(x1) . . . qn(x1) y1

x2 q1(x2) q2(x2) . . . qn(x2) y2

. . . . . . . . . . . . . . . . . .

x` q1(x`) q2(x`) . . . qn(x`) y`

A training set {(x1, y1), . . . , (x`, y`)} of ` objects xi with their
decision values (class indices) yi.

Each object xi described by n condition criteria
Q = {q1, . . . , qn}, where qi(xj) is the value of object xj on
criterion qi.

Each decision value yi ∈ T = {1, . . . ,m} (m classes).
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Dominance relation

Definition
For each xi, xj ∈ X, xi dominates xj if xi has better or equal
evaluations on all the condition criteria: ∀qk∈Q qk(xi) ≥ qk(xj)

q1
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Dominance principle

Definition
If xi dominates xj then xi is preferred to xj : xiDxj → yi ≥ yj .
Objects violating dominance principle are inconsistent.

q1

q 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●
1

2

1

2

1

2

3

3

3

2

1

3

6 / 21



Dominance-based Rough Set Approach
(DRSA)

Handling inconsistencies by the notion of lower
approximations and boundary regions of classes.

A generalized decision δ(xi) = [li, ui] is assigned to each
object such that:

li = min
xj∈X : xjDxi

{yj}

ui = max
xj∈X : xiDxj

{yj}

It is the interval of decision values to which an object may
belong due to the inconsistencies with respect to the
dominance principle – the measure of the degree of
imprecision.
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Generalized decisions – example
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Generalized decisions – example
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Properties of generalized decision

Define the order relation � on the intervals:

[li, ui] � [lj , uj ] ⇐⇒ li ≥ lj ∧ ui ≥ uj

Generalized decisions are consistent with dominance principle
in the sense that if object xi dominates xj then δ(xi) � δ(xj).

For each xi ∈ X, we have li ≤ yi ≤ ui and li = yi = ui iff xi

is consistent (surely belong to one class).

Generalized decision is a sort of confidence interval obtained
using only monotonicity constraints.
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Generalized decisions – example

q1

q 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●
1

2

1

2

1

2

3

3

3

2

1

3 [1,1]

 [1,2]

 [1,2]

 [2,2]

 [1,1]

 [1,2]

 [1,3]

 [1,3]

 [3,3]

 [1,2]

 [1,3]

 [3,3]

10 / 21



Problems with generalized decision
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The new methodology

Motivation

Objects which make many other objects inconsistent probably
have wrong class assignments.

Idea: assign to each object decision intervals with possible
error correction.

The procedure will be stated as a problem of minimization a
specific loss function on the dataset (Empirical Risk
Minimization).
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Loss function

Suppose we assign to object (xi, yi) a decision interval
δ(xi) = [li, ui]
The loss function L(yi, δ(xi)) consist of two parts:

penalty for imprecision, proportional to the interval size:
α(ui − li),
penalty for misclassification: 0 if yi ∈ δ(xi) or distance to the
interval: min{|yi − li|, |yi − ui|}.

Example (8 classes)

L(y, δ(x)) = 3 + 2α
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Stochastic DRSA

Problem statement

Minimize:

∑̀
i=1

L(yi, δ(xi))

such that xiDxj → δ(xi) ≥ δ(xj)

Properties

solved by linear programming

due to unimodularity of constraints matrix, integer constraints
can be dropped

possible strong reduction of problem size
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Analysis of the solution

as α → 0 we obtain classical DRSA generalized decision,

when α ≥ 0.5 all decision intervals shrink to one point – only
error corrections,

when α ∈ (0, 0.5) a trade-off between interval size and
correcting the class assignments,

for almost each α ∈ (0, 0.5) unique solution.
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Stochastic DRSA – example

α = 0
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Stochastic DRSA – example

α = 1/5
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Stochastic DRSA – example

α = 1/3
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Stochastic DRSA – example

α = 1/2
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α = 1/2
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Stochastic dominance

Assume objects (x, y) are generated independently according to
some unknown probability distribution P (x, y)

Stochastic dominance principle
If object xi dominates object xj , class distribution conditioned at
xi stochastically dominates class distribution conditioned at xj :

xiDxj → P (y ≥ k|xi) ≥ P (y ≥ k|xj) ∀k = 1 . . .m
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Statistical properties of stochastic DRSA

Under stochastic dominance principle (and some mild distribution
assumptions):

For a given α, as training set size grows (in the limit ` →∞),
we obtain confidence intervals around the median such that l
is α quantile, and u is 1− α quantile of P (y|x),

For two-class problem the procedure gives results identical to
maximum likelihood estimate (isotonic regression).

For α = 0.5, as ` →∞, the procedure converges to the best
possible classifier, i.e. minimizing the risk (so called Bayesian
classifier).
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Experimental Results

Seven datasets for which the monotone relationships between
decision and condition attributes are observed: Wisconsin
breast cancer, Ljubljana breast cancer, Windsor
housing, Boston housing, Den Bosch housing, cpu,
bankruptcy risk.

Three typical classifiers (SVM, j48, AdaBoost) and one
monotone classifier (ensemble decision rules, ENDER) learned
on data with and without using stochastic DRSA approach
(α = 0.5).

The measure of accuracy for ordinal classification: mean
absolute error (MAE).

Random split into training (66%) and testing (33%) sets,
repeated 1000 times.
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Results

dataset SVM j48 Adaboost ENDER

housing 0.2029 0.1754 0.1539 0.1418
Den Bosch 0.2065 0.1658 0.1382 0.1241

CPU 0.6517 0.1593 0.5874 0.0981
— — — 0.0923

breast cancer 0.0313 0.0497 0.0486 0.0337
Wisconsin 0.0305 0.0494 0.0449 0.0357
bankruptcy 0.2196 0.2254 0.3838 0.1921

risk — — — 0.1805
breast cancer 0.2944 0.2718 0.2669 0.2859
Ljubljana 0.2487 0.2712 0.2453 0.2530
housing 0.5290 0.3951 0.6599 0.3043
Boston 0.5168 0.3698 0.6574 0.2993
housing 0.6752 0.6517 0.7691 0.5741
Windsor 0.6511 0.5957 0.7854 0.5174
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Summary

In rough set theory:

An extension of DRSA based on stochastic model, robust to
noise in the data.

Explanation of DRSA in terms of statistics.

In machine learning:

Nonparametric method of confidence interval estimation in
the presence of monotonicity constraints.

Method of error correction based on domain knowledge
(monotonicity).
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