
Kernelization of matrix updates, when and how?

Manfred K. Warmuth1 ?, Wojciech Kotλowski2 ??, and Shuisheng Zhou3 ? ? ?

1 Department of Computer Science, University of California, Santa Cruz, CA 95064
manfred@cse.ucsc.edu

2 Institute of Computing Science, Poznań University of Technology, Poland
wkotlowski@cs.put.poznan.pl

3 School of Science, Xidian University, Xian, China, 710071
sszhou@mail.xidian.edu.cn

Abstract. We define what it means for a learning algorithm to be ker-
nelizable in the case when the instances are vectors, asymmetric matrices
and symmetric matrices, respectively. We can characterize kernelizability
in terms of an invariance of the algorithm to certain orthogonal trans-
formations. If we assume that the algorithm’s action relies on a linear
prediction, then we can show that in each case the linear parameter vec-
tor must be a certain linear combination of the instances. We give a
number of examples of how to apply our methods. In particular we show
how to kernelize multiplicative updates for symmetric instance matrices.

Keywords: Kernelization, multiplicative updates, rotational invariance.

1 Introduction

The following kernelization trick was popularized by a paper on support vector
machines [?] and has become one of the most successful methods in machine
learning: Any algorithm that reduces to computing dot products between in-
stance vectors x ∈ Rn can be enhanced by a feature map that maps the instances
x to φ(x) ∈ RN as long as there is a kernel function available which efficiently
computes the dot products φ(x)′φ(x̃) between expanded instances. The dimen-
sion N of the expanded instance is typically much larger than the dimension n
of the original instances and even may be infinite. Complicated neural nets are
often beaten by simple linear models which are enhanced with a carefully chosen
problem specific feature map or kernel function. The resulting algorithms only
access the expanded instances φ(x) via the kernel function k(x, x̃) = φ(x)′φ(x̃),
i.e. the components of the feature vectors are never accessed.

In this paper we discuss kernel methods in the matrix domain. We begin by
considering instances that are outer products xy′, where x ∈ Rn and y ∈ Rm

(it is easy to generalize from outer products to asymmetric instance matrices

? The author was supported by NSF grants IIS-0325363 and IIS-0917397
?? This research was done while visiting UCSC supported by the NSF grant IIS-0917397

? ? ? This research was done while visiting UCSC supported by the NNSFC grant61179040

M ∈ Rn×m). As long as algorithms only rely on dot products between pairs
x, x̃ of left instances and dot products between pairs y, ỹ of right instances,
then we can expand the left instances x via a feature map φ(x) and the right y
instances via a second feature map ψ(y). Note that matrix parameters can model
all interactions between components, and therefore can take second order infor-
mation into account. We also consider a case when the instances are symmetric
products of the form xx′, with a single feature map xx′ 7→ φ(x)φ(x)′.

The goal of this paper is to give “if and only if” conditions for kerneliz-
able algorithms. We do this for three cases: vector instances, asymmetric matrix
instances and symmetric matrix instances under the assumption that the algo-
rithm is linear and produces a unique solution. The vector case has been largely
worked out in [?], but we rephrase it here mainly as a reference for comparison.
The matrix cases are the main contribution of the paper. We define an algorithm
to be kernelizable if its output depends on the data only via the kernel matrix
(matrices) which contains the dot products between the instance vectors. We
next give a simple equivalent characterization in each case in terms of certain
geometric invariance properties of the algorithm4. In the vector case, multiplying
the instance by an orthogonal matrix must essentially keep the algorithm un-
changed. In the asymmetric matrix case, the algorithm must produce the same
output if the instance matrices are left and right multiplied by two orthogonal
matrices. The symmetric matrix case gives the invariance under left and right
multiplication by the same orthogonal matrix.

The main point of the paper is to show that in each case, if the output of the
algorithm is a linear function of the input, then the algorithm is kernelizable iff
the linear parameter vector/matrix is a linear combination of the instances and
remains invariant under an appropriate orthogonal transformation. In particular,
in the vector case the parameter vector w must be a linear combination of the
instance vectors, w =

∑
i cixi. When the instances are asymmetric outer prod-

ucts xiy
′
i, then the parameter matrix must have the form W =

∑
i,j ci,j xiy

′
j .

For the symmetric outer products xix
′
i, the symmetric parameter matrix must

have the form W = cI +
∑

i,j ci,j xix
′
j , where I is the identity matrix in Rn

and ci,j = cj,i. The presence of an additional identity term I in the expansion
for symmetric matrices stems from the existence of a unique element that is
invariant under all orthogonal transformations. Such an element does not exist
for asymmetric matrices.

We then prove versions of the Representer Theorem for both asymmetric
and symmetric outer products. This helps us to develop a number of methods
for building kernelizable algorithms from optimization problems. In particular,
we give methods for kernelizing the matrix versions of various “multiplicative”
update algorithms [?,?,?]. This family of algorithms is motivated by using the
quantum relative entropy as a regularization, and methods from online learning
can be used to prove regret bounds that grow logarithmically in the dimensions

4 Although invariance is with respect to orthogonal transformations, we use the term
rotational invariance rather than orthogonal invariance, as the former term is com-
monly used in the literature.

2

of the vectors. The logarithmic dependence lets us use high dimensional feature
spaces. Moreover, we show that if the loss function is negative (i.e., we are maxi-
mizing gains rather than minimizing losses), then the logarithmic dependence on
the dimension can be reduced to the logarithmic dependence on the rank of the
kernel matrix. For outer product instances, this rank is at most the number of
instances T . Multiplicative algorithms learn well when there is a low-rank matrix
that can accurately explain the labels [?]. The kernel method greatly enhances
the applicability of multiplicative algorithms because now we can expand the
instances to outer products of high-dimensional feature vectors and still obtain
efficient algorithms as long as the instance matrices have low total rank.

Relationship to previous work: One way to ensure kernelizability in the
vector case is to apply the Representer Theorem [?,?]. It states that whenever
the solution minimizes the trade-off between the square Euclidean distance and
a loss function that only depends on the dot products between the weight vector
and feature vector, then the solution is always a linear combination of the feature
vectors. Representer type theorems have recently been generalized to the case
of outer product instances [?,?]. For instance, it is shown in [?] that as long as
the regularization term is increasing in the spectrum of the parameter matrix
and the loss function only depends on the traces of the product of the parameter
matrix and the outer product instances, then algorithms that minimize a trade-
off between the regularization and the loss can be kernelized. However this is
only a necessary condition.

In contrast we give necessary and sufficient conditions for kernelization. Using
our results we are able to prove a simple Representer Theorem that holds under
conditions incomparable with those from [?]: we only assume that the problem
is rotationally invariant and the solution is unique. Our proofs are elementary
and intuitive. We can also handle the case of symmetric outer product instances,
which is the mainstay of multiplicative updates, but was not considered in [?,?].
In [?] it was also shown that the matrix version of the p-norm perceptron can
be kernelized. Again kernelizability is easily implied by our methods.

We show in this paper for an algorithm to be kernelizable, it must not even be
defined as minimizing the trade-off between a regularization and a loss. Instead
we show that kernelizability is characterized by a geometric invariance property.
We also went through the painstaking exercise of translating our proofs to the
case when instance domains are arbitrary Hilbert spaces instead of real vec-
tor spaces. No new insights were gained from this translation and we therefore
present our results in the notationally simpler case of real vector spaces.

The question of whether multiplicative update algorithms are kernelizable
has been a longstanding open problem in machine learning and we resolve this
problem. In previous work [?], regret bounds were proven for matrix versions of
multiplicative algorithms that grow logarithmically with the feature dimension
N . Our work shows that the total rank of the instance matrices (or, equivalently,
the rank of the kernel matrix) is the crucial parameter instead of the feature

3

dimension N . Now the regret bounds are logarithmic in the total rank instead
of the feature dimension N which can be unbounded.

2 Kernalization via rotational invariance

Vector instances: We begin with the case of vector instances x ∈ Rn. Exam-
ples (x, `) are labeled instances where ` is in some fixed label domain. A learning
algorithm A is any mapping from example sequences S = {(xt, `t)}Tt=1 followed
by a next instance x to some fixed output range. Informally, the output of the
algorithm is the “action” that A takes after receiving the S and an unlabeled

instance x. We denote with X̂ the matrix with the T + 1 instances as columns

and call X̂
′
X̂, the augmented kernel matrix, where “augmented” hints at the

fact that we included the unlabeled instance x as the (T + 1)st instance. Note

that [X̂
′
X̂]pq is the dot product x′pxq for 1 ≤ p, q ≤ T + 1.

We define algorithm A for vector instances to be kernelizable if for any two
input sequences S,x and S̃, x̃ with the same labels and the same augmented
kernel matrix, algorithm A maps to the same output, i.e. A(S,x) = A(S̃, x̃).
We next rewrite this characterization using the following elementary lemma:

Lemma 1. Two matrices A,B ∈ Rn×t are orthogonal transformations of each
other (i.e. there is an orthogonal matrix U , such that B = UA) iff the kernel
matrices A′A and B′B are the same.

For any orthogonal matrix U ∈ Rn×n, let US denote the transformed se-
quence {(Uxt, `t)}Tt=1. Note that the labels remain unchanged. The above lemma
implies the following:

Theorem 1. An algorithm A is kernelizable iff for all sequences S, next in-
stance x and orthogonal matrix U , A(S,x) = A(US,Ux).

Proof. The sequences S,x and US,Ux have the same labels and augmented
kernel matrix. Therefore, A kernelizable implies that A(S,x) = A(US,Ux) for
all suitable S, x and U . To prove the contrapositive of the opposite implication
we assume there are two sequences S,x and S̃, x̃ with the same augmented
kernel matrix for which A produces a different output (witnessing that A is not
kernelizable). Then by the above lemma there is an orthogonal matrix U for

which S̃ = US, x̃ = Ux, and therefore A(S,x) 6= A(US,Ux). ut

We now make an additional assumption which assures that the algorithm pre-
dicts with a linear combination of the instances: An algorithm A is linear, if
upon receiving input sequence S and an unlabeled instance x, A first computes
a weight vector w ∈ Rn from the input sequence S and then outputs the dot
product w′x. In short, the algorithm learns a linear function. Clearly the pro-
duced w may be nonlinear in S.

Theorem 2. A linear algorithm A is kernelizable iff for every input sequence
S = {(xt, `t)}Tt=1 the weight vector w is a linear combination of the instances of
S, and the coefficients of the linear combination depend on S only via the kernel
matrix X ′X, where X contains the instances {xt}Tt=1 as columns.

4

This can be proven by essentially repackaging a theorem given in [?]. The
key contribution of this paper is that we will develop analogous theorems for the
case when the instances are matrices.

Asymmetric matrix instances: We first consider the case of asymmetric
matrices. In this case the instances are outer products xy′, where x ∈ Rn and
y ∈ Rm. Examples have the form (xy′, `), where ` is from some labeling domain.
A learning algorithm A is again, any mapping from example sequences S =
{(xty

′
t, `t)}Tt=1, followed by a next instance xy′ to some fixed output range.5

Now we have two augmented kernel matrices, X̂
′
X̂ and Ŷ

′
Ŷ , where X̂ contains

the T instances {xt}Tt=1 plus x as columns and Ŷ is defined similarly.
Analogous to the vector case, an algorithm A for asymmetric outer product

instances is kernelizable if for any two input sequences S,xy′ and S̃, x̃ỹ′ with the
same labels and the same augmented kernel matrices, algorithm A maps to the
same output, i.e. A(S,xy′) = A(S̃, x̃ỹ′). In the asymmetric case, we need two
orthogonal matrices. For any orthogonal matrices U ∈ Rn×n, and V ∈ Rm×m,
we let USV ′ denote the transformed sequence {(Uxty

′
tV
′, `t)}Tt=1. By applying

Lemma ?? twice (to the left vectors xt and the right vectors yt), it follows
that algorithm A is kernelizable iff for all sequences S, next instances xy′ and
orthogonal matrices U ,V ,

A(S,xy′) = A(USV ′,Uxy′V ′). (1)

The generalization of the linearity of algorithms to the matrix domain is straight-
forward: An algorithm A is linear if A, upon input S,xy′, first computes a
weight matrix W ∈ Rn×m from the input sequence S and then outputs the
trace tr(W ′xy′). As we shall prove now, the linearity of the algorithm has the
consequence that the algorithm maintains a weight vector that is a linear com-
bination of the instances.

Theorem 3. A linear algorithm A is kernelizable iff for every input sequence
S = {(xty

′
t, `t)}Tt=1 the weight matrix of A can be written as W = XCY ′,

where X contains the instances {xt}Tt=1 as columns, Y contains the {yt}Tt=1 as
columns, and the coefficient matrix C ∈ RT×T depends on S only via the kernel
matrices X ′X and Y ′Y .

Note that the expression W = XCY ′ is just a concise way of expressing the
linear combination of instances

∑T
i=1

∑T
j=1Cij xiy

′
j .

Proof. Let W (S) denote the weight matrix produced by algorithm A from the
sequence S. Since A is kernelizable and outputs the trace tr(W (S)′xy′) we have

tr(W (S)′ xy′) = tr(W (USV ′)′ Uxy′V ′), (2)

5 For conciseness we use outer products xy′ as instances instead of the longer notation
(x,y). Technically this means that the kernel matrices are only determined up to
sign patterns but this is immaterial.

5

for all sequences S, orthogonal matrices U ,V of dimensions n× n and m×m,
and instances xy′, for x ∈ Rn and y ∈ Rm. In Part 1, we first show that (??)
implies that for any S, W (S) = XCY ′ for some C ∈ RT×T . In Part 2, we show
that (??) implies that for any S and orthogonal matrices U ,V of dimensions
n × n and m × m, respectively, W (USV ′) = UXCY ′V ′. This means that
C is invariant under left and right orthogonal transformations U and V of the
example sequence S, and thus by Lemma ?? this is equivalent to stating that
C depends on S only via the kernel matrices X ′X and Y ′Y .

The opposite direction is easy: Since C depends on S only via the kernel
matrices, C is invariant under orthogonal transformation S 7→ USV ′ (which
leaves the kernel matrices unchanged), and thus W (USV ′) = UXCY ′V ′ =
UW (S)V ′. This implies (??) and kernelizability:

tr(W (USV ′)′Uxy′V ′) = tr((UW (S)V ′)′Uxy′V ′) = tr(W (S)′xy′).

Proof of Part 1: Let {x̂i}r1i=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
and {ŷj}

r2
j=1 be an orthonormal basis for Span

(
{yt}Tt=1

)
, where r1 and r2 are

the ranks of the corresponding spaces. Complete these two bases to orthonor-
mal bases for Rm and Rn, respectively, and denote these bases as {x̂i}ni=1 and
{ŷj}mj=1. Since {x̂iŷ

′
j | i = 1 . . . n, j = 1 . . .m} is an orthonormal basis for Rn×m

we can rewrite the matrix W (S) ∈ Rn×m as

W (S) =

n∑
i=1

m∑
j=1

ĉi,jx̂iŷ
′
j .

Choose any index r1 < p ≤ n and any index 1 ≤ q ≤ m, and we now show
that ĉp,q = 0 (the case r2 < q ≤ m and 1 ≤ p ≤ n is proven similarly). We use
the notion of transformation invariance (??). We choose x = x̂p and y = ŷq.

Furthermore, choose U as the Hauseholder reflection matrix I−2x̂px̂
′
p and V =

I. Since x̂p ⊥ xt for any t = 1, . . . , T (because p > r1), Uxt = xt−2x̂p(x̂′pxt) =

xt. Also V yt = Iyt = yt. It thus follows that the transformed sample USV ′
is same as the original sample S, and therefore W (USV ′) = W (S). Thus the
l.h.s. of Equation (??) becomes:

tr(W (S)′xy′)=tr
(

(
∑
i,j

ĉi,jx̂iŷ
′
j)
′x̂pŷ

′
q

)
=
∑
i,j

ĉi,jx̂
′
ix̂pŷ

′
qŷj = ĉp,qx̂

′
px̂pŷ

′
qŷq = ĉp,q.

However since x̂′px̂p = 1, Ux̂p = x̂p − 2x̂px̂
′
px̂p = −x̂p and therefore the r.h.s.

of Equation (??) has the opposite sign:

tr(W (USV)′Uxy′V ′) = −tr(W (S)′x̂pŷ
′
q) = −ĉp,q.

We conclude that the transformation invariance (??) implies ĉp,q = 0 if p > r1
(and similarly ĉp,q = 0 if q > r2). Since for any p ≤ r1, x̂p is a linear combination
of x1, . . . ,xT , and for any q ≤ r2, ŷq is a linear combination of y1, . . . ,yT , it
follows that

W (S) =

r1∑
i=1

r2∑
j=1

ĉi,jx̂iŷ
′
j =

T∑
i=1

T∑
j=1

Ci,jxiy
′
j ,

6

for some coefficient matrix C ∈ RT×T .
Proof of Part 2: By Part 1, W (S) =

∑r1
i=1

∑r2
j=1 ĉi,jx̂iŷ

′
j . By applying Part 1

to the sequence USV ′ we get W (USV ′) =
∑r1

i=1

∑r2
j=1 d̂i,jUx̂iŷ

′
jV
′ for some

coefficients d̂i,j , because if {x̂i}r1i=1 is an orthonormal basis for X, {Ux̂i}r1i=1 is
an orthonormal basis for UX (and similarly for Y and V Y). To prove the Part

2, it suffices to show that ĉp,q = d̂p,q for any 1 ≤ p ≤ n and 1 ≤ q ≤ m. By (??),

ĉp,q = tr
((∑

i,j

ĉi,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= tr(W (S)′x̂pŷ

′
q) = tr(W (USV ′)′Ux̂pŷqV

′)

= tr
((∑

i,j

d̂i,jUx̂iŷ
′
jV
′
)′
Ux̂pŷ

′
qV
′
)

= tr
((∑

i,j

d̂i,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= d̂p,q.ut

Note that the size of the coefficient matrix C is quadratic in the number of
instances T . Actually r1×r2 non-zero coefficients suffice, where r1, r2 is the rank
of the kernel matrices X,Y , respectively. The reason for the quadratic size is
that transformation invariance for asymmetric matrices involves two orthogonal
matrices U and V . If we viewed the outer products xty

′
t in Rn×m as vectors

in Rnm and assumed rotational invariance with respect to a single orthogonal
matrix of dimension k = nm, then S would have the form

∑
t ct xty

′
t, i.e. only

one coefficient per outer product instance.
There are straightforward generalizations of the above theorem to the case

when the instances are general matrices of a given rank s. Using the SVD de-
composition, the instances then can be written as sums of a fixed number of
outer products. That is, now the instances have the form

Xt
n×s

Y ′t
s×m

=

s∑
q=1

xq
ty

q
t
′
.

In other words the vectors {xq
t}sq=1 and {yq

t}sq=1 are the columns of Xt and
Y t, respectively. The above theorem remains essentially unchanged, but for a
sequence {XtY

′
t}Tt=1 of T instances, the kernel matrix XX ′ is formed by letting

X contain the columns of allXt, which adds up to sT columns in total. Similarly,
Y contains the sT columns of all Y t and both indices in the sums in the proof
of Theorem ?? range from one to sT .

Symmetric matrix instances: Let us now consider the case of symmet-
ric outer product instances. A broad set of applications falls into this frame-
work, including Principal Component Analysis, Fisher Discriminant Function,
or Quantum Information Theory. In this case, the instances are xx′ for x ∈ Rn,
and the learning algorithm A is any mapping from example sequences S =
{(xtx

′
t, `t)}Tt=1 followed by a next instance xx′ to some fixed output range. Con-

trary to asymmetric instances, we now have a single augmented kernel matrix

X̂
′
X̂, which contains the T instances {xt}Tt=1 plus x as columns.
An algorithm A for symmetric outer product instances is kernelizable if for

any two input sequences S,xx′ and S̃, x̃x̃′ with the same labels and the same

7

augmented kernel matrix, algorithmAmaps to the same output, i.e.A(S,xx′) =

A(S̃, x̃x̃′). By applying Lemma ?? it follows that A is kernelizable iff for all S,
xx′ and orthogonal matrices U ,

A(S,xx′) = A(USU ′,Uxx′U ′).

Note that contrary to the asymmetric case, the same matrix U is applied on
both sides. An algorithm A is linear, if upon input S,xx′, A first computes
a symmetric weight matrix W ∈ Rn×n from the input sequence S and then
outputs the trace tr(W ′xx′).6

Theorem 4. A linear algorithm A is kernelizable iff for every input sequence
S = {(xtx

′
t, `t)}Tt=1 the weight matrix of A can be written as W = XCX ′+ cI,

where X contains the instances {xt}Tt=1 as columns, C ∈ RT×T is a symmetric
coefficient matrix, c is a real number, I is the identity matrix in Rn, and C and
c depend on S only via the kernel matrix X ′X.

Proof. We only show the part of the proof which corresponds to “Part 1” of the
proof of Theorem ?? (the rest of the proof follows closely the proof of Theorem
??). Since A is kernelizable, we have

tr(W (S)′ xx′) = tr(W (USU ′)′ Uxx′U ′), (3)

for all S,U ,xx′. We want to show that (??) implies that for any S, W (S) =
XCX ′ + cI for some symmetric C ∈ RT×T and c ∈ R. Let {x̂i}ri=1 be an or-
thonormal basis for Span

(
{xt}Tt=1

)
. Complete this basis to an orthonormal basis

{x̂i}ni=1 for Rn, We decompose W (S) =
∑

i,j ĉi,jx̂ix̂
′
j , and due to symmetry of

W (S), ĉi,j = ĉj,i for all i, j.

We need to show that ĉp,q = 0 if p 6= q and either p > r or q > r, and that
ĉp,p = ĉ for some constant ĉ, for p > r. We show the former first. Due to the
symmetry of W (S), it suffices to show that that ĉp,q = 0 for any q > r and any
p. Choose x = x̂p + x̂q and U as the Hauseholder reflection I − 2x̂qx̂

′
q, so that

Uxt = xt for 1 ≤ t ≤ T , Ux̂p = x̂p, and Ux̂q = −x̂q. Then, the transformed
sample USU ′ is the same as the original sample S, and W (USU ′) = W (S).
Therefore, the l.h.s. and r.h.s. of (??) become

tr(W (S)′xx′)=
∑
i,j

ĉi,j x̂
′
i(x̂p + x̂q)(x̂′p + x̂′q)x̂j = ĉp,p + ĉq,q + ĉp,q + ĉq,p

tr(W (USU)′Uxx′U ′)=
∑
i,j

ĉi,j x̂
′
i(x̂p − x̂q)(x̂′p − x̂

′
q)x̂j = ĉp,p+ĉq,q−ĉp,q−ĉq,p,

which along with ĉp,q = ĉq,p implies ĉp,q = 0.

6 The assumption on the symmetry of W comes without loss of generality: Given any
matrix W , we can always take a symmetrized version W sym = W+W ′

2
, and for any

xx′, it holds tr(W ′
symxx′) = tr(W ′xx′).

8

To show that ĉp,p = ĉ for some constant ĉ, for all p > r, we choose x = x̂p,
and U to be a permutation matrix that swaps the basis vectors x̂p and x̂q for
some q > r, while leaving all other basis vectors unchanged, i.e.:

U = I − x̂px̂
′
p − x̂qx̂

′
q + x̂px̂

′
q + x̂qx̂

′
p.

For this choice of U , UU ′ = I, Ux̂p = x̂q, Ux̂q = x̂p, and Uxt = xt for
all 1 ≤ t ≤ T (because p, q > r). Thus, the transformed sample USU ′ is the
same as the original sample S, so that W (USU ′) = W (S). On the other hand,
Uxx′U ′ = Ux̂px̂

′
pU
′ = x̂qx̂

′
q. The l.h.s. and r.h.s. (??) become

tr(W (S)′xx′) =
∑
i,j

ĉi,j x̂
′
ix̂px̂

′
px̂j = ĉp,p

tr(W (USU)′Uxx′U ′) =
∑
i,j

ĉi,j x̂
′
ix̂qx̂

′
qx̂j = ĉq,q,

which implies ĉp,p = ĉq,q. Since q was an arbitrary index such that q > r, we
conclude that ĉp,p = ĉ for some constant ĉ, for all p > r.

We conclude that the transformation invariance (??) implies that

W (S) =

r∑
i=1

r∑
j=1

ĉi,jx̂ix̂
′
j + ĉ

n∑
i=r+1

x̂ix̂
′
i =

∑
i,j

Ci,jxix
′
j + cI = XCX ′ + cI

for some coefficient matrix C and real number c, where the second equality
follows from the fact that {x̂i}ri=1 is an orthonormal basis for Span

(
{xt}Tt=1

)
,

and {x̂i}ni=1 an orthonormal basis for Rn. W.l.o.g. C is symmetric, because if

Ci,j 6= Cj,i, then changing both to
Ci,j+Cj,i

2 does not change W (S). ut

Comparing Theorem ?? with Theorem ??, an additional term cI entered the
expansion. The term was absent for asymmetric matrices as there is no identity
matrix in this case. The term cI can easily be dealt with when the instances
are expanded via a feature map x 7→ φ(x), as it leads to the expression of the
form tr(cIφ(x)φ(x)′) = c k(x,x). We note that Theorem ?? also generalizes
easily from symmetric outer product instances to symmetric matrix instances
with fixed rank s.

3 Kernelization via a Representer Theorem

The following Representer Theorem for asymmetric outer product instances
was proven in [?]: Given a penalty function Ω(W) =

∑d
i=1 si(σi(W)), where

{σ1, . . . , σd} is the set of singular values of W in decreasing order, and si are
non-decreasing functions satisfying s(0) = 0, then there exists a solution to the
minimization problem

min
W

Ω(W) + η
∑
t

losst(tr(W
′xty

′
t)), (4)

9

which can be written as W =
∑

i,j Ci,jxiy
′
j = XCY ′. Using our results, we are

able to prove a version of the Representer Theorem with different, not directly
comparable assumptions:

Theorem 5. Consider the minimization problem minW L(W ,S), which for all
S has a unique solution and is rotationally invariant, i.e. for any S and any
orthogonal matrices U and V , L(W ,S) = L(UWV ′,USV ′). In this case the
solution W ∗(S) can be written as W ∗(S) = XCY ′ where C depends on S only
via the kernel matrices X ′X, Y ′Y .

Proof. Let algorithm A produce the matrix W (S) := W ∗(S). The algorithm
satisfies our definition of linearity. fIt is also kernelizable, because due to rota-
tional invariance of L and uniqueness of the solution,W ∗(USV ′) = UW ∗(S)V ′

and thus W (USV ′) = UW (S)V ′, so that for any xy′,

tr(W (S)′xy′) = tr(V ′W (USV ′)′Uxy′) = tr(W (USV ′)′UxyV ′).

The theorem now follows from the forward direction of Theorem ??. ut

We also note that with some more effort, it is possible to prove Theorem ??
under the weaker assumption that minW L(W ,S) has a unique solution only
for a particular sequence S, rather than for all sequences S.

The problem (??) is rotationally invariant (because Ω is a function of the
singular values only), so the Theorem ?? applies as long as the solution is unique.
Note that [?] specify different conditions: no uniqueness assumption is needed,
rather some structure of the penalty function is imposed. Therefore our con-
ditions are not directly comparable with theirs. Our proof of the Representer
Theorem is however much simpler than the proof in [?]. Also, our conditions
apply to a much wider class of algorithms, which does not need be defined as
solution to the optimization problem above. Moreover, using our approach it
is straightforward to generalize the Representer Theorem to the optimization
problem with constraints, as long as the constraints are rotationally invariant
and the solution is unique. Finally, we easily get the version of the Representer
Theorem for the case of symmetric outer products, which has not be considered
elsewhere:

Theorem 6. Consider the problem minsym.W L(W ,S), which for all S has a
unique solution and is rotationally invariant, i.e. for any S and any orthogonal
matrix U , L(W ,S) = L(UWU ′,USU ′). In this case the solution W ∗(S) can
be written as W ∗(S) = XCX ′ + cI, where C and c depend on S only via the
kernel matrix X ′X.

4 Example applications

We provide a few examples of how the arguments given in this paper can shed
light on the kernelization of algorithms for particular learning problems. We
focus on the online setting, i.e. when the instances are revealed sequentially to
the learner. We also give algorithms only for the matrix case (both asymmetric

10

and symmetric), as the vector case has been much exploited in the last decades,
mostly in connection to support vector machines.

The algorithms of this section require the use of the singular value decompo-
sition of the matrix XCV ′, or the eigenvalue decomposition (in the symmetric
case) of the symmetric matrix XCX ′. As discussed in the introduction, the di-
mensions n and m of the left instances xi and the right instances yi, respectively,
are typically much larger than the number of instances T . Thus the dimension of
the matrixXCY ′ ∈ Rn×m (orXCX ′ ∈ Rn×n) is too large. The key is to obtain
its decomposition in terms of the smaller kernel matrices X ′X,Y ′Y ∈ RT×T :

Lemma 2. For any left instance set X ∈ Rn×T , right instance set Y ∈ Rm×T

and square matrix C ∈ RT×T , if UΣV ′ is a compact SVD of
√
X ′XC

√
Y ′Y ,

where Σ = diag(σ1, · · · , σr), then the compact SVD of XCY ′ is ŨΣṼ with

Ũ = XC
√
Y ′Y V Σ−1 and Ṽ = Y C ′

√
X ′XUΣ−1. Similarly, for any

X ∈ Rn×T and symmetric matrix C ∈ RT×T , if UΣU ′ is a compact eigende-
composition of

√
X ′XC

√
X ′X, where Σ = diag(σ1, · · · , σr), then the compact

eigendecomposition of XCX ′ is ŨΣŨ
′

with Ũ=XC
√
X ′XUΣ−1.

The proof (omitted) consists of checking the orthogonality of Ũ and Ṽ and
showing that XCY ′ = ŨΣṼ . For symmetric instances, a particularly simple
case is obtained when C = I:

Corollary 1. For any X ∈ Rn×T , if UΣU ′ is a compact eigendecomposition

of X ′X, then XX ′ has the compact eigendecomposition ŨΣŨ
′
, where Ũ =

XUΣ−1/2.

This known fact was key to the kernelization of PCA and Fisher Linear Discrim-
inant Functions [?,?].

Asymmetric case and additive updates: Consider the following online
learning problem: The data {(xty

′
t, `t)}Tt=1 is revealed to the learner sequen-

tially. The learner predicts at trial t with a matrix W t ∈ W from some convex
setW, and suffers a convex loss denoted as loss(tr(W ′

txty
′
t), `t). The goal of the

learner is to have total loss in trials t = 1, . . . , T not much higher then the total
loss of the best matrix W ∗ ∈ W chosen in hindsight, i.e. to have small regret

Reg(S) =
∑
t

loss(tr(W ′
txty

′
t), `t)− min

W∈W

∑
t

loss(tr(W ′xty
′
t), `t).

Assume that W = {W : ‖W ‖ ≤ B}, where ‖W ‖ is a rotationally invariant
norm, i.e. depends on W only via its singular values. A typical choice, used
e.g. in collaborative filtering, would be the trace norm ‖W ‖1. Let us also as-
sume for simplicity that ‖xt‖2 ≤ 1 and ‖yt‖2 ≤ 1 for all t, where ‖ · ‖2 is the
Euclidean norm. A popular approach to solve the minimization problem is the
online gradient descent (GD) [?]: Let ∂t(W) denote the subgradient ∂ˆ̀

t
loss(ˆ̀

t, `t)

at ˆ̀
t = tr(W ′xty

′
t). The GD step can be derived as the solution to the following

optimization problem:

W t+1 = argmin
W∈W

‖W −W t‖2F + η∂t(W t) tr(W ′xty
′
t), (5)

11

where ‖ · ‖F is the Frobenious norm. Solving (??) leads to the additive update:

W t+1 = proj (W t − η∂t(W t)xty
′
t) ,

where the projection operation is defined as proj(W) = argmin‖W̃ ‖≤B ‖W −
W̃ ‖2F . Since the norm ‖ · ‖ is rotationally invariant, the projection becomes a
projection on the singular values {σ1, . . . , σmin{n,m}} of W . In particular, for
‖ · ‖ being the trace norm, the projection leads to σi 7→ (σi − τ)+, where τ
is the smallest value for which

∑
i(σi − τ)+ ≤ B. When W 1 = 0, one can

show by a simple induction that the problem (??) is rotationally invariant for
all t. Due to the strictly convex objective function, (??) has a unique solution,
and we conclude from Theorem ?? that W t is in the span of the data, i.e.
has the form XCY ′. Thus the algorithm can be kernelized by calculating the
SVD of the matrices XCY ′ i.t.o. of the kernel matrices using Lemma ??. Also
the output tr(XCY ′xy′) = x′XCY ′y only relies on the kernel matrices. For
the trace norm, it can be shown using a standard analysis of GD, that given
|∂t(W)| ≤ G, Reg(S) ≤ BG

√
T , and is independent of the dimension of the

feature space7 [?].

Symmetric case and multiplicative updates: In the symmetric case, the
data sequence becomes {(xtx

′
t, `t)}Tt=1. Let us assume for simplicity that ‖xt‖2 =

1 for all t. The learner predicts at trial t with the symmetric matrix W t ∈ W,
and suffers loss loss(tr(W ′

txtx
′
t), `t). We focus on the interesting case when W

is a set of positive-semidefinite matrices with unit trace (density matrices), a
generalization of the probability simplex to symmetric matrices. A choice of
the algorithm is the Matrix Exponentiated Gradient [?], defined as a trade-off
between minimization of the quantum relative entropy and the negative gradient
of the loss:

W t+1 = argmin
W∈W

tr (W (logW − logW t)) + η∂t(W t) tr(W ′xtx
′
t), (6)

which leads to to the following multiplicative update [?]:

W t+1 =
exp (logW t − η∂t(W t)xtx

′
t)

Zt
, (7)

where Zt = tr (exp (logW t − η∂t(W t)xtx
′
t)) is the normalization factor. When

W 1 = I/n, a simple inductive argument proves rotational invariance of (??) for
all t. Due to the strictly convex objective function, (??) has a unique solution,
and we conclude from Theorem ?? that the algorithm can be kernelized (we
note that the standard representer theorems do not cover this case). The main
challenge in the update (??) is to do the exp operation, but it can be done by
eigendecomposition of logW t−η∂t(W t)xtx

′
t, which by Lemma ?? only requires

to calculate the kernel matrix.

7 In practical applications the choice of B may still depend on the dimension.

12

A particularly interesting case is when loss(tr(W ′
txtx

′
t), `t) = −tr(W ′

txtx
′
t).

In other words, the game is the gain game with a linear gain function tr(W txtx
′
t).

Then, the offline solution to the problem W ∗ is a one-dimensional projector to
the subspace that captures the most of the variance of the data, i.e. the subspace
associated with the largest eigenvalue of

∑
t xtx

′
t. This is exactly the problem

of single-component PCA8 [?]. In this case, the EG update (??) simplifies to

W t+1 = Z−1t exp
(
η
∑t

i=1 xix
′
i

)
, and the eigendecomposition can be handled

using Corollary ??.
By modifying the EG analysis of [?,?], we can show shown that Reg(S) ≤√

2L∗ lnn + lnn, where L∗ is the approximation error, i.e. part of the variance

in the data not captured by W ∗, L∗ = minW∈W

{∑T
t=1(1− tr(W ′xtx

′
t))
}

.

Unfortunately, this bound (which essentially appears in [?]) is not satisfactory,
as it depends on the feature space dimension n. When the instances xx′ are
replaced by φ(x)φ(x)′ then the lnn term can become unbounded. Below we
sketch a new method for replacing lnn by ln r, where are is the total rank of the
instances. So for the first time, we obtain a bound for a Matrix EG algorithm
that does not depend on the feature dimension.

We observe that the best density matrix in hindsight W ∗ projects into
the span of the data. If we knew the span in hindsight, we could disregard
the other dimensions and play EG within this subspace, achieving the bound√

2L∗ ln r + ln r, where r is the dimension of the subspace, i.e. the rank of the
kernel matrix X ′X. This bound is independent on n, as r ≤ T . Of course, the
data span is unknown to the learner, but we can slightly modify the EG algorithm
(let us call the modification EG+) to obtain the bound

√
2L∗ ln r + ln r + 1 ≤√

2L∗ lnT+lnT+1 without any prior knowledge of the span. The EG+ algorithm

is defined by modifying the update (??) toW+
t =

(
Z+
t

)−1
exp+

(
η
∑t−1

i=1 xix
′
i

)
,

where Z+
t = tr

(
exp+

(
η
∑t−1

i=1 xix
′
i

))
, and exp+(A) is a function that expo-

nentiate the positive eigenvalues of A only, and leaves the zero eigenvalues un-
changed.9 In other words if A has a compact eigenvalue decomposition UΣU ′,
then, exp+(A) = U exp(Σ)U ′. To prove the regret bound

√
2L∗ ln r + ln r + 1

for EG+, it suffices to show that given a feature space with dimension n, the
total loss of EG+ (which does not know n) is by at most one larger than the
total loss of EG (which knows n):

Lemma 3. Let W t and W+
t be the matrices produced by the EG and EG+

algorithms, respectively. Then
∑T

t=1−tr(W+
t
′
xtx

′
t)−

∑T
t=1−tr(W ′

txtx
′
t) ≤ 1.

Proof. Fix iteration t and let St−1 :=
∑t−1

i=1 xix
′
i. If xt is a linear combination of

past instances x1, . . . ,xt−1, then the loss incurred by EG+ is smaller than the
loss incurred by EG. Indeed, tr (exp+ (ηSt−1)xtx

′
t) = tr (exp (ηSt−1)xtx

′
t)

(because xt belongs to the subspace associated with non-zero eigenvalues of

8 By capping the eigenvalues to 1
k

(as done in [?]) we can generalize this algorithm to
k-component PCA where one seeks a k-dimensional subspace with maximal variance.

9 The initial weight matrix W 1 is set arbitrarily.

13

St−1), but Z+
t ≤ Zt (because exp+(A) � exp(A) for any positive matrix A).

If xt is linearly independent of x1, . . . ,xt−1, then the loss incurred by EG+ in
any trial t > 1 is larger by at most 1

n (and t = 1 can be handled seperately):

−tr(W+
t
′
xtx

′
t) = −(Z+

t)−1tr
(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1t tr

(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1t tr ((exp (ηSt−1)− I)xtx

′
t)

= −tr(W ′
txtx

′
t) + Z−1t

≤ −tr(W ′
txtx

′
t) + 1/n,

where we used the fact that exp+(A) � exp(A)− I for any positive matrix A,

and that Zt = tr
(
exp

(
η
∑t−1

i=1 xix
′
i

))
≥ tr(I) = n. ut

Note that the EG+ is as easy to kernelize as the EG, because they differ only
in the update of the eigenvalues. We can also easily handle the case when the
instances are positive symmetric matrices of rank at most s. Since the EG bound
does not depend on the sparsity of the instances, we immediately get the same
regret bound

√
2L∗ log r + ln r, where r ≤ Ts.

We finally note that one can also use an additive update (GD) algorithm
in the symmetric case, and obtain the bound

√
T for outer product instances,

and
√
Ts for matrix instances. The bounds for the GD and the EG+ algorithms

are not directly comparable: EG+ has an additional log r factor, but GD scales
worse with the rank s of matrix instances. Moreover, the EG+ bound is especially
useful for low-noise conditions, when the approximation error L∗ is small. There
is no corresponding bound known for the GD in this case.

5 Conclusion

We gave necessary and sufficient conditions for kernelizability for the case of vec-
tor, asymmetric matrix, and symmetric matrix instances, under the assumption
that the algorithm is linear, produces a unique solution and satisfies a certain
rotational invariance. We also proved simple representer theorems for both asym-
metric and symmetric matrix instances, and gave a number of examples of our
methods, including the kernelization of multiplicative updates. In some sense our
approach resembles how the models in Physics are built, where the equations of
motion follow from certain invariance properties of physical laws.

We conclude with a subtle open problem. A new family of so called “For-
ward” algorithms was developed [?] whose predictions may depend on the current
unlabeled instance for which the algorithm is to produce a label. In particular
in the case of linear regression [?,?], better regret bounds were proven for the
Forward algorithm than for the standard Ridge Regression algorithm. Therefore
a natural open problem is whether our characterization of kernelizability can
be generalized to algorithms that may predict with linear combinations of the
labeled as well as the last unlabeled instance.

14

References

1. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collabora-
tive filtering: Operator estimation with spectral regularization. Journal of Machine
Learning 10, 803–826 (2009)

2. Argyriou, A., Micchelli, C.A., Pontil, M.: When is there a representer theorem?
vector versus matrix regularizers. Journal of Machine Learning Research 10, 2507–
2529 (2009)

3. Azoury, K., Warmuth, M.K.: Relative loss bounds for on-line density estimation
with the exponential family of distributions. Journal of Machine Learning 43(3),
211–246 (June 2001)

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proc. 5th Annual ACM Workshop on Comput. Learning Theory. pp.
144–152. ACM Press, New York, NY (1992)

5. Cavallanti, G., Cesa-Bianchi, N., Gentile, C.: Linear algorithms for online multitask
classification. In: Proceedings of the 21st Annual Conference on Learning Theory
(COLT 08). pp. 251–262 (July 2008)

6. Forster, J.: On relative loss bounds in generalized linear regression. In: 12th Inter-
national Symposium on Fundamentals of Computation Theory. pp. 269–280 (1999)

7. Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. Journal of Ma-
chine Learning Research 1, 281–309 (2001)

8. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic. 33, 82–95 (1971)

9. Kuzmin, D., Warmuth, M.K.: Online Kernel PCA with entropic matrix updates.
In: Proceedings of the 24rd international conference on Machine learning (ICML
’07). pp. 465–471. ACM International Conference Proceedings Series (June 2007)

10. Mika, S., Ratsch, G., Weston, J., Schölkopf, B., Mullers, K.R.: Fisher discrimi-
nant analysis with kernels. In: Proc. NNSP’99. IEEE Signal Processing Society
Workshop. pp. 41–48 (1999)

11. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In:
Helmbold, D.P., Williamson, B. (eds.) Proceedings of the 14th Annual Conference
on Computational Learning Theory. pp. 416–426. No. 2111 in Lecture Notes in
Computer Science, Springer-Verlag, London, UK (2001)

12. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

13. Srebro, N., Sridharan, K., Tewari, A.: On the universality of online mirror descent.
In: Advances in Neural Information Processing Systems 23 (NIPS ’11). pp. 2645–
2653 (2011)

14. Tsuda, K., Rätsch, G., Warmuth, M.K.: Matrix exponentiated gradient updates for
on-line learning and Bregman projections. Journal of Machine Learning Research
6, 995–1018 (June 2005)

15. Vovk, V.: Competitive on-line statistics. International Statistical Review 69, 213–
248 (2001)

16. Warmuth, M.K.: Winnowing subspaces. In: Proceedings of the 24rd international
conference on Machine learning (ICML ’07). ACM Press (June 2007)

17. Warmuth, M.K., Kuzmin, D.: Randomized PCA algorithms with regret bounds
that are logarithmic in the dimension. Journal of Machine Learning Research 9,
2217–2250 (2008)

18. Warmuth, M.K., Vishwanathan, S.: Leaving the span. In: Proceedings of the 18th
Annual Conference on Learning Theory (COLT ’05). Springer-Verlag, Bertinoro,
Italy (June 2005), journal version in progress

15

