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Genetic Programming

Automatic induction of computer programs from
samples

Sample (pair of):
Set of arguments
Desired output value
Program representation
Syntax tree
Linear (like assembiler)
Graph

and more...



Genetic Programming

Output value
1
=+ x% ==+ x?
X X

0 Prefix notation;

(/) (% (+ (/% (*x X)) (*x X))
No explicit memory storage
0 XX
X

Input values



GP typical tasks

Symbolic regression
Classificatfion
Planning and control
Logic circuit synthesis

Evolvable hardware

The NASA ST5 spacecraft
antenna evolved by GP



Genetic operators: subtree

Crossover

parent p,

Is the result predictable?
Yes, but...

Crossover is supposed to produce
offspring between parents

Average in common sense

+ x?% or x — x? between

Are

xX(x—2)
—+x?and x —x(x — 2)2
X



What does between mean

for programse

Point may be between some other points only in a
meftric space

We need a metric d: P X P - [0, +x) defined on
program space P:

d(a,b) =0 a=0>b,
d(a,b) =d(b,a),
d(a,b) < d(a,c) +d(b,c).
But... how to define a metric on pair of programs?

We address this later.



Genetic operators: mutation

parent p

0 mutation point

Mutation is supposed to make an
elementary change to the given solution

Is replacement of whole subtree an
elementary change?

s = + x2 similar to = + x22
x2 =%

No¢ Yese



What does similar mean for

programse

How similaris + to —¢
What about + and /¢
Again:
We need a metric

How to define a metric on instructions?e



Semantics

We induce programs from samples

The samples are sets of numbers (in symbolic regression)
Set of function arguments

The desired output value

Let us use similar representation as semantics
Set of function arguments

The calculated output value

Call it sampled semantics



Semantics: example

Consider functions f(x) = % +x2and g(x) = xi—f + x?2

4

Sample it equidistantly in range [—1,1] using 10 samples

-1,00 0.00 2,33

-0,78 -0,68 1,94
-0,56 -1,49 1,64
-0,33 -2,89 1,44
-0,11 -8,99 1,35
0,11 9.01 1,35
0.33 3,11 1,44
0.56 2,11 1,64
0.78 1,89 1,94

1,00 200 233 .
Again: How (dis)similaris f(x) to g(x)¢ Just chose a metric:

Manhattan: 32,93

Euclidean: 14,48
Chebvshev: 10 {3



Semantics in context of GP

Computed every time a program is evaluated
The fitness function is some kind of distance measure
It is essentially free to obtain
A part of program is also a program, that can be executed

Semantics can be calculated in (almost) every node of the free



Sampled semantics: properties

Advantages
Similar representation to the way, how problem is posed
Many distance metrics (any Minkowski distance L)
Low computational costs (in context of GP)

Extendable to any precision and any number of values (e.q.
complex numbers)

Disadvantages

Does not contain whole information about subject (it's only a
sample)

Problem-dependent (arguments)



Geometric genetic operators

In a metric space

The object may be between some other objects

N4
\

¢

The object may be in a given perimeter of other object

<>0



1 ks .
A recombination operafor Is
O geometric crossover under
the meilfne @i all offspring

are in the demetrc segment
between its parents. %

ALBERTO MORAGLIO, ABSTRACT CONVEX EVOLUTIONARY SEARCH, FOGA'11




Geometric crossover

So, we can calculate (range of) semantics between
semantics of parents s(p;) and s(p,)

<o
L s(p2)

s(p1)

But... how to obtain a program having desired semanticse

If it were easy, we would not need an optimization algorithm



How do we obtain a
program having semantics

iINnfermediate between two
ofther programse

We can build a library of programs
How big should this library bee

Too few programs:

We may be not able to find the desired one
Too many programs:

We could not store the library in memory (slow access)
Infinite number of programs...

Not possible for many real-world problems.



Why do we need the

geometric crossovere

Consider: A

&
&

the Euclidean distance as a fitness/error o
function

fitness landscape spanned over k- O
dimensional space of program semantics Q®

It must be a cone o

The vertex is the global optimum

Programs lie on the edges of cone & .

global
optimum

distance



Why do we need the

geometric crossovere

It is guaranteed that:

An infermediate semantics between any
pair of semantics must be not worse than
the worst of the pair

A sketch of proof:

If the pair lies on a single side of cone

The fitness of intermediate solution must be
between fithess values defined by the pair

If the pair lies on opposite sides of cone global

The fitness of infermediate solution must be opfimum

not worse than fitness of the worst of pair



Locally Geometric Semantic

Crossover (LGX)

Choose a homologous
crossover point (syntactically)

.
Calculate average semantics

between subtrees rooted at
chosen point

Use library to find the closest
procedure to the calculated

e T semantics

Place the found procedure at
crossover point in both
parents




“Geomefric mutation 1S
defined geometrically
requiring that offspring are in

a d-ball of a certain radius
centered in the parent. K

ALBERTO MORAGLIO, ABSTRACT CONVEX EVOLUTIONARY SEARCH, FOGA'11




Locally Geometric Semantic

Mutation (LGM)

Similar to LGX
Randomly choose mutation point

Choose a procedure from library according to the Poisson
distribution (with given A1)

Replace the subtree rooted at mutation point with the chosen
procedure

Ratfionale:

The change cannot be too little

The change cannot be too big



Competition

Semantic-Aware Crossover (SAC)
Semantic Similarity-based Crossover (SSC)
Semantic-Aware Mutation (SAM)

Semantic Similarity-based Mutation (SSM)



Control methods

Tree Swapping Crossover (GPX)
One Point Crossover (GPH)
Nonhomologous Geometric Crossover (NHX)

Random Crossover (RX)



The experiment

Instruction set

Population size

Initial max tree depth
Max tree depth
Selection

Trials per experiment
Termination condition
Crossover probability
Mutation probability
Reproduction probability
Max tree depth in library
Neighborhood size
Semantic sensitivity
Lower bound semantic sensitivity

Upper bound semantic sensitivity

{+,-*,/.sin,cos,exp,log,x}

1024

6

17

Tournament selection

100 independent runs

250 generations and aft least 200s of total time
0.9

0.0 0.0 0.1
0.1 0.1 0.0
(3,4} - _
8 _ _
- 0.5 =
- 0.0001 -
- 0.4 -



Benchmark problems

%6 — 2x% + x2 UL1, 1,200 R[-1, 1, 20]
x” —2x0 +x° —x* +x3 - 2x% + x U[-1, 1, 20] R[-1, 1, 20]
X+ x8+x7 + x>+ xt+ a3+ x4 x U[-1, 1, 20] R[-1, 1, 20]
+1)3/(x2—x+1) U[1,1,20]  R[-1, 1, 20]
(x> =3x3+1)/(x? +1) U[-1, 1, 20] R[-1, 1, 20]
(x® 4+ x> /(x* +x3+x2+x+1) U[-1, 1, 20] R[-1, 1, 20]
sin(x?) cos(x) — 1 U[-1, 1, 20] R[-1, 1, 20]
sin(x) + sin(x + x2) U[-1, 1, 20] R[-1, 1, 20]
log(x +1) + (x2 + 1) U[O, 2, 20] R[O, 2, 20]

0.3xsin(2mx) UI-1, 1, 20] R[-T, 1, 20]
x3e™* cos(x) sin(x)(sin?(x) cos(x) — 1) U[O, 10, 20] R[O, 10, 20]

log (x +/x2 + 1) U[0, 100, 20] R[O, 100, 20]

Ula, b, c] = ¢ values chosen uniformly from range [a, D]
R[a, b, c] = ¢ values chosen randomly with uniform distribution from range [a, D]
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Success rate (%)

50

41

85

100
?1

91

24

31

/3
/8
12

/1

34

22

63

56

53

75

48



Statistical significance

Friedman'’s test for multiple achievements of a series
of subjects on the average of best-of-run fithess

p = 2.589 X 1078

Post-hoc analysis (symmetry test)

0.310 0.899 0.899 1.000 0.487

1.000

0.149  0.000 0.980 0.804 0.958 0.958 0.125 0.000
0.010 0.000 0.997 0.582 0.236 0.486 0.486 0.008 0.000
0.840 0.002 1.000 1.000 0.804 0.006
0.987 0.017 1.000 1.000 1.000 0.980 0.039
0.004 0.010

0.004 1.000 0.011

0.351 0.872 0.871 0.535

Probability of erroneously judging the method in row as outranking the method in column. Lower values = stronger confidence. a = 0.05



Outranking graph
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Generalization abillities

Errors committed on fest set by the best-of-run individuals as of 250 generation.

0.024
0.207

0.130
0.261
0.316
0.05¢9
0.025
0.033
0.044
0.134
0.492
0.000

0.086
0.914

0.639
0.809
0.767
0.341
0.118
0.210
0.305
0.362
0.881
0.004

0.002
0.096

0.104
0.159
0.092
0.090
0.000
0.004
0.008
0.092
1.363
0.003

0.091
0.214

0.217
0.181
0.091
0.144
0.013
0.033
0.005
0.108
13.27
0.592

1013
0.197
0.150
0.145
0.245
0.225
0.003
0.004
0.007
0.106
1.838
0.005

0.044
0.390

0.226
0.185
0.357
0.139
0.040
0.041
0.007
1.381
1013

0.064

0.029
0.220

1013

0.124
10°

0.238
0.030
0.019
0.043
0.103
1.675
0.159

0.106
1013

0.828
40.32
1013

0.661
1013

0.129
10.90
67.36
30.24
4.160

0.092
0.366

0.199
0.238
0.451
1013

0.046
0.026
0.056
1013

54.42
0.011

0.106
0.776

0.577
0.515
0.958
0.179
0.092
1013

0.085
0.335
1013

0.192



Future work

Comparative analysis of performance of LGM
Analysis of propagation of geometric changes done by LGX
Geometric and semantically-based initialization of population

Move the concept of semantically geometric operators outside
GP:

Local search heuristics



Eutgre current work:

propagation of geometric changes

Percent of geometric changes propagated to higher level nodes in free (46080 samples).
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