
Tadeusz Kobus

Transactional Replication:
Algorithms and Properties

Doctoral Dissertation

Submitted to the Council
of the Faculty of Computing Science
of Poznań University of Technology

Advisor: Paweł T. Wojciechowski, Ph. D., Dr. Habil.

Poznań · 2016

Tadeusz Kobus

Replikacja Transakcyjna:
Algorytmy i Własności

Rozprawa doktorska

Przedłożono Radzie
Wydziału Informatyki
Politechniki Poznańskiej

Promotor: dr hab. inż. Paweł T. Wojciechowski

Poznań · 2016

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computing Science.

Tadeusz Kobus
Distributed Systems Research Group
Faculty of Computing Science
Institute of Computing Science
Poznań University of Technology
tadeusz.kobus@cs.put.edu.pl

Typeset by the author in LATEX.

Copyright c© 2016 by Tadeusz Kobus

This dissertation and associated materials can be downloaded from:
http://www.cs.put.poznan.pl/tkobus/research/research.html

Institute of Computing Science
Poznań University of Technology
Piotrowo 2, 60–965 Poznań, Poland
http://www.cs.put.poznan.pl

The research presented in this dissertation was partially funded from National Science Centre (NCN) funds
granted by decisions No. DEC-2011/01/N/ST6/06762 and No. DEC-2012/07/B/ST6/01230, from Foun-
dation for Polish Science (FNP) granted by decision No. 103/UD/SKILLS/2014, and from the Polish Min-
istry of Science and Higher Education grant no. POIG.01.03.01-00-008/08. Experimental tests have been
carried on the computing resources provided by Poznań Supercomputing and Networking Center (PSNC).

The use in this dissertation of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

tadeusz.kobus@cs.put.edu.pl
http://www.cs.put.poznan.pl/tkobus/research/research.html
http://www.cs.put.poznan.pl

To my loving parents, Maria and Jacek.

Briefly, you can only find truth with logic
if you have already found truth without it.

G. K. Chesterton

Abstract

Replication is an established method to increase service availability and depend-
ability. It means deployment of a service on multiple machines and coordination
of their actions so that a consistent state is maintained across all the service repli-
cas. In case of a (partial) system failure operational replicas continue to provide
the service.

In this dissertation, we revisit State Machine Replication (SMR) and Deferred
Update Replication (DUR), two basic strongly consistent replication schemes.
We compare the schemes side-by-side and uncover their strong and weak sides.

We study the guarantees provided by SMR and DUR using our new correct-
ness criteria, which we grouped into two families: �-opacity and �-linearizabi-
lity. Our properties are not bound to SMR and DUR only. They allow us to
formalize the behaviour of a wide variety of replicated schemes that do or do
not support transactional semantics, respectively. By establishing a formal rela-
tionship between �-opacity and �-linearizability we can directly compare guar-
antees provided by SMR and DUR, even though only the latter provides true
transactional support.

We also compare SMR and DUR experimentally across a wide range of work-
loads. Our results show that performance-wise, neither scheme is superior. Such
a conclusion may come as a surprise since only the latter scheme is potentially
scalable with an increasing number of processors. We discuss the characteristics
of workloads that are favourable or troublesome for either scheme.

Finally, we combine SMR and DUR into a single, versatile replication scheme
called Hybrid Transactional Replication (HTR). This way we bring together the
best features of SMR and DUR. Not only HTR offers powerful transactional se-
mantics (similarly to DUR) and is free of some limitations regarding the code of
the replicated service itself (unlike both SMR and DUR), but it also works well
across various workloads, often providing much better performance than either
SMR or DUR. All these benefits are provided while maintaining strong correct-
ness guarantees similar to those provided by DUR. By relying on a machine-
learning-based approach, HTR can dynamically adopt to changing conditions.

Acknowledgements

I am truly grateful to my advisor Dr. Paweł T. Wojciechowski, who introduced
me to the world of scientific research, offered his guidance along the way and
helped me to pursue my goals.

I would like to thank Maciej Kokociński, my friend and research colleague,
who collaborated with me on much of this work, for countless talks and in-
sightful comments, teaching me how to become a better programmer and also
for many good laughs. I also thank Prof. Jerzy Brzeziński, all the members
of the Distributed Systems Research Group, and my fellow graduate students,
Andrzej Stroiński, Dariusz Brzeziński, Dariusz Dwornikowski, Jan Kończak,
Konrad Siek, Krzysztof Ciomek, Maciej Piernik, Mansureh Aghabeig, Paweł
Kobyliński, Piotr Jakubowski, Szymon Francuzik, and Wojciech Wojciechowicz,
for innumerable discussions on things related or not so much related to scientific
research.

Last, but certainly not least, I wish to thank my family and friends. In partic-
ular, I am wholeheartedly thankful to my parents, Maria and Jacek, my siblings,
Ewa and Stanisław, and my dearest companion Kalina, for their unconditional
love and showing me what is most important in life. None of this work would
have been possible without their support.

List of publications

Book chapters:

T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Introduction to trans-
actional replication,” in Transactional Memory. Foundations, Algorithms, Tools,
and Applications (R. Guerraoui and P. Romano, eds.), vol. 8913 of Lecture
Notes in Computer Science, Springer, 2015

Journal papers:

P. T. Wojciechowski, T. Kobus, and M. Kokociński, “State-machine and
deferred-update replication: Analysis and comparison,” IEEE Transactions
on Parallel and Distributed Systems, vol. PP, no. 99, 2016

T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Relaxing real-time or-
der in opacity and linearizability,” Elsevier Journal on Parallel and Distributed
Computing, vol. 100, 2017

T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid transactional
replication: State-machine and deferred-update replication combined,” In
preparation for submission. arXiv:1612.06302 [cs.DC]

Conference papers:

P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven compar-
ison of state-machine-based and deferred-update replication schemes,” in
Proceedings of SRDS ’12: the 31st IEEE International Symposium on Reliable
Distributed Systems, Oct. 2012

T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid replication:
State-machine-based and deferred-update replication schemes combined,”
in Proceedings of ICDCS ’13: the 33rd IEEE International Conference on Dis-
tributed Computing Systems, July 2013

T. Kobus, M. Kokociński, and P. T. Wojciechowski, “The correctness cri-
terion for deferred update replication,” in Program of TRANSACT ’15: the
10th ACM SIGPLAN Workshop on Transactional Computing, June 2015

x

Outside of the main scope of the research, the author participated in the follow-
ing work.

Conference papers:

T. Kobus and P. T. Wojciechowski, “A 90% RESTful group communication
service,” in Proceedings of DCDP ’10: the 1st International Workshop on De-
centralized Coordination of Distributed Processes, June 2010

T. Kobus and P. T. Wojciechowski, “RESTGroups for resilient Web ser-
vices,” in Proceedings of SOFSEM ’12: the 38th International Conference on
Current Trends in Theory and Practice of Computer Science: Software & Web
Engineering Track, Lecture Notes in Computer Science, Jan. 2012

M. Kokociński, T. Kobus, and P. T. Wojciechowski, “Make the leader work:
Executive deferred update replication,” in Proceedings of SRDS ’14: the 33rd
IEEE International Symposium on Reliable Distributed Systems, Oct. 2014

M. Kokociński, T. Kobus, and P. T. Wojciechowski, “Brief announcement:
Eventually consistent linearizability,” in Proceedings of PODC ’15: the 34th
ACM Symposium on Principles of Distributed Computing, July 2015

Patent applications:

P. T. Wojciechowski, T. Kobus, and M. Kokociński, “A fault-tolerant data
processing computer system and method for implementing a distributed
two-tier state machine.” EPO patent application no. EP16461501.5, Jan 12.
2016

P. T. Wojciechowski, T. Kobus, and M. Kokociński, “A fault-tolerant data
processing computer system and method for implementing a distributed
two-tier state machine.” USPTO patent application no. 14/995,211, Jan 14.
2016

Contents

1 Introduction 1
1.1 Context . 1
1.2 Aims and Contributions . 4
1.3 Thesis Outline . 6

2 State of the Art 7
2.1 Replication Schemes . 7
2.2 Correctness Properties for Replicated Systems 9

2.2.1 Correctness Properties for Transactional Systems 9
2.2.2 Correctness Properties for Non-transactional Systems . . . 11
2.2.3 Safety and Liveness Properties 13

2.3 Distributed Transactional Memory Systems 13
2.4 Other Related Work . 14

2.4.1 Transactional Semantics . 14
2.4.2 Protocol Switching . 14
2.4.3 Machine Learning Techniques 15

3 System model 17
3.1 Server Processes . 17
3.2 Inter-processes Communication . 18
3.3 Fault Tolerance . 18
3.4 Client Processes . 19
3.5 Requests and Transactions . 19

4 New Correctness Properties for Replication Schemes 21
4.1 Intuition Behind �-Opacity and �-Linearizability 21
4.2 Base Definitions . 24
4.3 The �-Opacity Family of Properties 26

4.3.1 Formal Definition . 26
4.3.2 Discussion . 29

xii Contents

4.4 The �-Linearizability Family of Properties 31
4.4.1 Formal Definition . 32
4.4.2 Discussion . 34

4.5 Relationship Between �-Opacity and �-Linearizability 38

5 Basic Replication Schemes 41
5.1 State Machine Replication . 42

5.1.1 Specification . 42
5.1.2 Characteristics . 42
5.1.3 Correctness . 43

5.2 State Machine Replication with Locks 43
5.2.1 Specification . 43
5.2.2 Characteristics . 45
5.2.3 Correctness . 45

5.3 Deferred Update Replication . 47
5.3.1 Specification . 47
5.3.2 Characteristics . 49
5.3.3 Correctness . 51
5.3.4 The Multiversioning Optimization 52

5.4 Evaluation . 55
5.4.1 Software and Environment 56
5.4.2 Benchmarks . 56
5.4.3 Benchmark Results . 58
5.4.4 Evaluation Summary . 65

5.5 Comparison . 67

6 Hybrid Transactional Replication 69
6.1 Transaction Oracle . 69
6.2 Specification . 70
6.3 Characteristics . 71

6.3.1 Expressiveness . 74
6.3.2 Irrevocable Operations . 74
6.3.3 Performance . 75

6.4 Correctness . 75
6.5 Tuning the Oracle . 78
6.6 Machine-Learning-based Oracle . 79

6.6.1 Requirements and Assumptions 79
6.6.2 Approach inspired by Multi-armed Bandit Problem 80
6.6.3 Implementation Details . 82

6.7 Evaluation . 82
6.7.1 Software and Environment 83
6.7.2 Benchmarks . 83
6.7.3 Benchmark Results . 84
6.7.4 Evaluation Summary . 89

7 Conclusions 91

Contents xiii

Streszczenie 93

Bibliography 107

A Proofs Regarding Traits of �-Opacity and �-Linearizability 117
A.1 �-Opacity is a Safety Property . 117
A.2 �-Linearizability is a Safety Property 118
A.3 �-Linearizability is Non-blocking and Satisfies Locality 118
A.4 Commit-real-time Linearizability is Equivalent to Real-time Lin-

earizability . 120
A.5 Relationship Between �-Opacity and �-Linearizability 124

B Proofs of algorithm correctness 131
B.1 Correctness of State Machine Replication 131
B.2 Correctness of State Machine Replication with Locks 135
B.3 Correctness of Deferred Update Replication 143
B.4 Correctness of Hybrid Transactional Replication 151

1
Introduction

Along with the emergence of cloud computing, where services in the cloud must
be accessed by a large number of users in parallel, there was an explosion of
interest in various approaches to distributed replication. Distributed replication
can improve service availability and reliability by storing data closer to the users
and processing many client requests in parallel. In this approach, a service is
deployed on several interconnected machines called replicas, each of which may
fail independently. The replicas are coordinated, so that each one maintains a
consistent state view despite any failures of communication links or crashes of
some other replicas. Each replica can only access its local memory (or storage)
and the coordination is ensured via a distributed memory (or storage) system
that provides consistent access to replicated data.

1.1 Context

We consider a particular type of replication called transactional replication, which
assumes that each client request is executed in isolation as an atomic transaction.
It means that operations specified within the request (transaction) are executed
in all-or-nothing semantics and the system is responsible for detecting and re-
solving conflicts between concurrent transactions that access shared data items.
Also the transaction’s code may include constructs such as rollback and retry,
which allow the programmer to better control the execution flow of the transac-
tion (the former revokes all changes performed by the transaction so far and the
latter rolls back the transaction and restarts it, possibly when certain conditions
are met).

Transactional replication of a service or an application is typically achieved
by having the service/application built on top of a (distributed) transactional
framework. By using the transactional framework, the programmer is relieved
from having to manually manage concurrent accesses to shared data items us-

2 1 Introduction

ing, e.g., locks or leases, i.e., mechanisms known to be difficult to use even for
experienced programmers. A transactional framework hides all the complexity
from the programmer and allows him to reason about transactions as if they are
executed sequentially by a single, dependable server. In turn, providing trans-
actional support can greatly ease development of highly available services.

The guarantee that a system gives an illusion of a single server that executes
all requests sequentially is a very strong one. Originally it was the desired prop-
erty of the traditional SQL (Structured Query Language) database systems and
was formalized by the (strict) serializability criterion or simply referred to as the
strongly consistent approach [14].

Serializability was typically achieved by processing all updating transactions
on a single master replica and propagating updates to the other slave replicas.
Usually all replicas contained a full copy of the database. Read-only transac-
tions, which do not change the state of the system, were executed in parallel
on any of the available slave replicas. A crash of the master replica required
a pause in the computation, so that a new master is elected from amongst the
operating replicas. This approach to replication was further enhanced for better
performance and availability by allowing updating transactions to be executed
concurrently on the master replica and then also on different replicas in paral-
lel. Execution of every transaction was coordinated by one of the servers, which
ensured correct execution of the transaction and its subsequent commit, despite
of any machine or link failures. By delaying execution of some operations or
rolling back and restarting some transactions, the coherence protocol (imple-
mented by the replicated system) safeguarded transaction execution, so that no
inconsistencies arise upon concurrent accesses to shared data items by different
transactions. This approach is typically referred to as the Deferred Update Repli-
cation (DUR) scheme [15].

Alternatively, a database could be replicated using the State Machine Replica-
tion (SMR) approach [16] [17] [18]. In this scheme, identical copies of a database
were run on multiple machines and every replica executed every request. This
way the servers advanced their state in the same way, making failure of any of
the replicas essentially invisible to clients. Naturally, all requests had to be de-
terministic and must have been delivered in the same order to all replicas, or
otherwise the state of the replicas would diverge over time. Compared to DUR,
SMR was much simpler. However, it also did not allow for parallel execution of
requests and thus was not scalable (adding more servers, processors or proces-
sor cores did not improve the performance of the system). Note that although
SMR does not provide transactional support, execution of a request by SMR can
be regarded as a rudimentary transaction that is allowed to only commit.

In early 2000s, new NoSQL (Non SQL, Not only SQL) database systems started
to emerge and supersede the traditional SQL ones. NoSQL databases trade
strong consistency and ease of use in search of higher performance. Much higher
throughput and better scalability of these systems (compared to SQL databases)
allowed the globally accessible services running on the Internet to cope with
increasing traffic (see, e.g., [19] [20] [21] [22]). NoSQL databases typically offer

1.1 Context 3

no transactional support and provide only weak (eventual) consistency guarantees
[23]. In turn, clients may encounter some anomalies in the results they observe.
The anomalies can range from completely harmless (observing posts on a so-
cial networking site in a slightly different order than just seconds earlier), to
more problematic ones (a client receives a confirmation of a purchase of a flight
ticket and later it turns out that the ticket is invalid and a different flight needs
to be booked). The observed erroneous behaviour can be further amplified by
machine or link failures. Ensuring correct behaviour of the service means that
programmers have to handle all the corner cases themselves. The lack of clearly
laid out semantics of such systems and a high level of non-determinism, which is
typical for distributed environment, result in high costs of service development
and maintenance.

Clearly, the lack of strong consistency guarantees and transactional support
is problematic for clients as well as for programmers. Owners of large services
running on the Internet constantly look for optimizing costs and improving
user experience. Hence, in recent years one can observe a renewed interest in
strongly consistent solutions (see, e.g., [24] [25]). In this dissertation we focus on
this type of systems.

Naturally, the strongly consistent data and service replication schemes, which
we research, are heavily inspired by SQL database systems that also feature
strongly consistent transactions running in a distributed environment. How-
ever, the inspiration also comes from the research on Transactional Memory (TM)
[26], which applies the concept of transactions know from database systems as
a concurrency control mechanism in concurrent programming (in a local envi-
ronment). However, none of the existing solutions can be applied directly for
service replication. One of the main reasons why it cannot be done concerns
the characteristics of workloads typically encountered by modern replicated ser-
vices. For example, the average request execution time in systems we consider is
usually orders of magnitude shorter compared to database systems and orders
of magnitude longer compared to TM systems [27]. Also some parts of logic
of modern replicated services often cannot be easily expressed using SQL, the
language of the traditional database systems. Instead, a more suitable approach
is to rely on an interface akin to the one of TM systems, where a transaction is
considered a high-level programming language construct, which can enclose ar-
bitrary code and, in particular, may invoke complex methods or operations on
shared objects (see, e.g., [28] [29]). In this work we consider the latter approach,
which is the more general one.

Because of the differences in the offered semantics, the correctness criteria
used in the context of database systems (such as recoverability, avoiding cascading
aborts and strictness [30] or variations of the already mentioned serializability)
cannot be used to formalize the behaviour of the modern strongly consistent
replicated schemes. Unfortunately, the criteria known from the world of TM
systems (such as various flavours of opacity [31] [32] [33], TMS1 [34] or TMS2
[34]) cannot be used either. It is because these criteria are designed to strictly
adhere to the realm of a local environment, where certain guarantees concerting

4 1 Introduction

the ordering of transactions (such as the real-time order guarantee) come natu-
rally and are relatively inexpensive to provide at all times. On the other hand,
in a distributed environment these guarantees are often relaxed for certain types
of requests (such as read-only requests). Therefore, formalizing the semantics of
replicated systems, such as those considered in this dissertation, requires defin-
ing new correctness criteria.

It seems then, that although the strongly consistent replicated schemes again
start to gain popularity, the basis on which such solutions are established are not
well understood yet and much more work is required in this field. For exam-
ple, the existing literature lacks a thorough comparison of the basic replication
schemes such as SMR and DUR, both in terms of semantics and performance.
It comes as a surprise, because both SMR and DUR can be considered the base
for a great number of more complex replication schemes (see e.g., [35] [36] [37]
[38] [39] [40] among others). Only once we uncover the differences between
these schemes and clearly define their strong and weak sides, can we propose
new strongly consistent replication schemes that adhere to the current needs
and fully exercise the capabilities of modern (parallel) computer system archi-
tectures.

1.2 Aims and Contributions

Given the motivations presented above, we formulate our main thesis as fol-
lows:

It is possible to develop a scheme for service and data replication that simultane-
ously offers rich transactional semantics, strong consistency guarantees and high
performance across a wide range of workloads.

Below we sum up the main contributions presented in this dissertation:

1. Novel correctness criteria for strongly consistent replicated systems. We
define �-opacity and �-linearizability, two families of correctness criteria de-
signed for strongly consistent replicated systems. We build our properties
on opacity and linearizability, two well established correctness criteria de-
fined for transactional systems and systems modelled as shared objects
[31] [41]. By using the introduced properties, we can formalize the guar-
antees provided by a wide range of replication schemes which do or do
not feature transactional semantics and implement various optimizations,
such as execution of read-only requests by a single replica without any
inter-process synchronization. We prove that all members of the �-opacity
and �-linearizability families are safety properties (i.e., they are non-empty,
prefix-closed, and limit-closed). We also establish a formal relationship be-
tween the two families. We show that when requests are executed as trans-
actions in a �-opaque system and the transactions are hidden from clients

1.2 Aims and Contributions 5

(i.e. the intermediate results of a transaction execution is not available to
the client during transaction execution but only once the transaction com-
mits or aborts), then the system is �-linearizable. In particular, we show
the relationship between opacity and linearizability in their original defi-
nitions (to our best knowledge, it is the first result of this sort).

2. A thorough comparison of SMR and DUR. We conduct a comparison of
SMR and DUR both in terms of semantics as well as performance. We
prove the correctness guarantees of both systems and show that SMR satis-
fies real-time linearizability (a member of the �-linearizability family) where-
as DUR ensures update-real-time opacity (a member of the �-opacity family).
We prove that DUR satisfies update-real-time linearizability when transac-
tions are hidden from clients. Thus we show that DUR’s guarantees are
strictly weaker than SMR’s. We also consider SMR with Locks (LSMR), a
variant of SMR which allows read-only requests to be executed by a single
replica without any inter-process synchronization. We highlight the con-
sequences of introducing this optimization and prove that LSMR provides
strictly weaker guarantees compared to SMR but stronger than DUR’s.
The results of experimental tests reveal the strong and weak sides of SMR
and DUR across a wide range of workloads. The key result of the perfor-
mance comparison of both schemes is that neither is superior in all cases.
This finding is surprising, given that in the general case, only DUR can
potentially scale with the increasing number of replicas (SMR executes all
requests sequentially and LSMR, the optimized version of SMR, enables
concurrent execution exclusively for read-only requests).

3. A novel strongly consistent transactional replication scheme. We pro-
pose a novel scheme called Hybrid Transactional Replication (HTR), which
combines SMR and DUR for better performance, scalability, and improved
code expressiveness. We formally prove that HTR offers similar guaran-
tees as DUR. As we demonstrate in evaluation tests, HTR performs well
across a wide range of workloads. In particular, HTR is insensitive to
workloads typically know to be problematic for either SMR or DUR (i.e.,
computation intensive workloads for SMR and workloads characterised
by high contention levels for DUR). In some cases, HTR achieves up to 50%
improvement in performance over HTR configured in a way that simulates
DUR or LSMR (all updating transactions are executed in a way that resem-
bles either transaction execution in DUR or request execution in LSMR).
HTR’s performance can be fine-tuned by defining a policy, which allows
the system to alter the way transactions are handled and thus to adapt to
changing conditions. We discuss several manual policy optimization tech-
niques and we also propose a machine-learning-based approach, which
supports the programmer in the task of creating a policy suitable for a
given workload. By using the ML-based oracle, the system can automati-
cally adapt to changing workloads.

6 1 Introduction

1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2 we revisit work that is related to
our research. Then, in Chapter 3 we define the model of transactional replication
and lay out basic assumptions about the replicated systems we consider. Next,
in Chapter 4 we present the �-opacity and �-linearizability families of correctness
properties for replicated systems. In Chapter 5 we discuss two basic approaches
to service or data replication: SMR and DUR. We examine their characteris-
tics, guarantees they offer and performance under various workloads. Then, in
Chapter 6 we present HTR, a novel replication scheme that seamlessly merges
SMR and DUR. Finally, we conclude in Chapter 7.

Proofs of all formal results presented in this dissertation can be found in the
Appendix.

2
State of the Art

In this chapter we present work relevant to our research. We start with various
service and data replication schemes. Then, we discuss correctness criteria de-
fined for strongly consistent transactional and non-transactional replicated sys-
tems. Next, we focus on Distributed Transactional Memory systems. Finally, we
cover work related to some specific aspects of our HTR scheme.

2.1 Replication Schemes

Over the years, multiple service and data replication techniques have emerged
(see [15] for a survey). They differ in offered semantics, as well as performance
under various workloads. We focus on replication schemes that offer strong
consistency.

State Machine Replication [16] [17] [18] [42], which we describe in detail in Sec-
tion 5.1, is the simplest and most commonly used non-transactional replication
scheme. SMR uses a distributed agreement protocol to execute client requests
on all processes (replicas) in the same order. For replica coordination, various
fault-tolerant synchronization algorithms for totally ordering events were pro-
posed (see, e.g., [43] [44] among others). In particular, Total Order Broadcast (TOB)
has been used for request dissemination among replicas (see Section 3.2 for the
specification of TOB, [45] for a survey of TOB algorithms and [15] for further
references). Also implementations of TOB with optimistic delivery of messages
are used to build systems based on state replication, see e.g., [35] [36] [46] [47].
Execution of read-only requests can be optimized in SMR, so that only updating
requests require inter-process synchronization. The optimized version of SMR,
which we call SMR with Locks (LSMR), will be described in detail in Section 5.2.

Deferred Update Replication [15], described in detail in Section 5.3, is a ba-
sic replication scheme which features transactional semantics (explained in Sec-
tion 3.5). DUR is based on a multi-primary-backup approach which, unlike

8 2 State of the Art

SMR and LSMR, allows multiple (updating) client requests to be executed con-
currently. In DUR, a request is executed as an atomic transaction which runs in
isolation and whose updates are propagated upon transaction commit to other
replicas to guarantee persistence. DUR relies on an atomic commitment protocol
to ensure consistency. Various flavors of DUR are implemented in several com-
mercial database systems, including Ingres, MySQL Cluster and Oracle. These
implementations use two-phase-commit [30] as the atomic commitment proto-
col. In this work, we consider DUR based on TOB [45]. This approach is ad-
vocated by several authors because of its non-blocking nature and predictable
behaviour (see [48] [49] [50] among others). Most recently, it has been imple-
mented in D2STM [51] and in our system called Paxos STM [5] [6] (characterised
in Section 5.4). It has also been used as part of the coherence protocols of S-DUR
[37] and RAM-DUR [38].

Despite the fact that SMR and DUR are very well established replication
schemes, surprisingly, the literature lacked a direct comparison of both approa-
ches. In [5] [2], we compared SMR and DUR both theoretically and practically
and showed that neither scheme is superior.1 We summarize this work and in-
clude the experimental results presented there in Sections 5.4 and 5.5.

Our novel approach called Hybrid Transactional Replication, which we de-
scribe and evaluate in Chapter 6, is also a strongly consistent replication scheme
based on TOB. As discussed in detail in the chapter, HTR shares many similar-
ities with both SMR and DUR by allowing transactions to be executed either
in a pessimistic or optimistic mode, resembling request or transaction execu-
tion in SMR or DUR, respectively. Similarly to SMR and DUR, HTR fits the
framework of transactional replication (TR) [1], which formalizes the interaction
between clients and the replicated system. The programming model of TR cor-
responds to Distributed Transactional Memory (DTM), as discussed below. As
proved in Section 6.4, HTR offers guarantees on transaction execution, which
are similar to those provided by DUR.

There are a number of optimistic replication protocols that, similarly to our
HTR scheme, have their roots in DUR. For example, we can mention here Post-
gres-R [39], PolyCert [40] and Executive DUR (E-DUR) [10]. In Postgres-R, TOB is
only used to broadcast the updates produced by a transaction. This optimiza-
tion comes at the cost of an additional communication step, which is necessary
to disseminate the decision regarding transaction commit or abort to other repli-
cas. PolyCert (which we also discuss in Section 2.4.2) can switch between three
TOB-based certification protocols, which differ in the way the readsets of updat-
ing transactions are handled. E-DUR streamlines transaction certification with
the leader of the Paxos protocol. The differences between these systems lie not in
the general approach to processes synchronization, but in the way the transac-
tion certification is handled. In turn, the guarantees they offer can be formalized
with the same correctness properties that we use for DUR. We show this for-

1Note that neither SMR nor LSMR offers transactional semantics, however, the execution of a
request by SMR or LSMR can be regarded as a rudimentary transaction that is allowed to only
commit.

2.2 Correctness Properties for Replicated Systems 9

malization in Sections 2.2.1, 4.3 and 5.3.3). Note that all the above mentioned
protocols are aimed only at increasing the throughput of DUR and not at ex-
tending the transactional semantics of the base protocol, as in case of HTR (see
also Section 2.4).

2.2 Correctness Properties for Replicated Systems

Now we focus on correctness properties that can be used to formalize the guar-
antees offered by replicated systems.

2.2.1 Correctness Properties for Transactional Systems

Several correctness criteria have been proposed to formalize the guarantees of-
fered by transactional systems. Below we describe the most relevant ones. We
show that none of them allows for relaxed time-ordering of transactions and
at the same time provides sufficiently strong consistency guarantees that match
those of real practical systems (such as those based on DUR). Next, we proceed
to describe how our correctness criteria relate to others.

Serializability [14] specifies that all committed transactions are executed as if
they were executed sequentially by a single process. Strict serializability [14] ad-
ditionally requires that the real-time order of transaction execution is respected
(i.e. the execution order of non-overlapping committed transactions is preserved,
while the order of concurrent transactions is not specified). Update serializability
[52] is very similar to serializability, but allows read-only transactions to observe
different (but still legal) histories of the already committed transactions.

All three properties mentioned above regard only committed transactions
and say nothing about live or aborted transactions. Therefore, they are not
sufficient to describe behaviour of some transactional systems, especially when
transactions may perform arbitrary operations and reading an inconsistent state
may lead to erroneous behaviour (our model fits this class of transactional sys-
tems, see Chapter 3). Therefore, new correctness criteria emerged that formalize
the behaviour of all transactions in the system, including the live ones. Some of
the correctness criteria, such as recoverability, avoiding cascading aborts and strict-
ness [30], specify the behaviour of read and write operations for both live and
completed transactions. However, they say nothing about global ordering of
transactions (unlike serializability and properties similar to it). This, in turn, lim-
its their usefulness in the context of strongly consistent transactional systems.
Therefore, our attention focuses on properties that (in most cases) maintain a
global serialization for all transactions.

The following properties maintain a global serialization only for a subset
of transactions.2 Extended update serializability (formally defined in [53] as the

2Note, however, that the majority of correctness criteria discussed below were formulated with
a local environment in mind, where communication between processes is relatively inexpensive.

10 2 State of the Art

no-update-conflict-misses condition) ensures update serializability for both com-
mitted and live transactions. Therefore, it features a global serialization for all
the updating transactions (read-only transactions may observe a different seri-
alization). Virtual world consistency [54] allows an aborted transaction to observe
a different (but still legal) history; only committed transactions share a single
view of past (committed) transactions.

Opacity [55] [31] [32], which was originally proposed by Guerraoui and Ka-
palka, features a global serialization of all transactions and extends strict seri-
alizability in a way that live transactions are always guaranteed to operate on
a consistent state. In a sense, it is thus akin to extended update serializabil-
ity, which adds similar guarantees to update serializability. Rigorousness [56],
TMS2 [34] and DU-opacity [33] offer even stronger guarantees. Rigorousness
and TMS2 impose stronger requirements on the ordering of concurrent trans-
actions. DU-opacity explicitly requires that no read operation ever reads from a
commit-pending transaction which later aborts, unless the transaction which ex-
ecutes the read aborts itself. Moreover, all these three properties are only defined
in a model that assumes read-write registers. TMS1 [34], which was proposed
to slightly relax opacity, allows live and aborted transactions to observe a dif-
ferent view of past transactions (committed transactions share a consistent view
of the already committed ones). The possible histories are, however, restricted
by a few conditions which enforce quite strong consistency (despite the lack of
global serialization for all transactions). Similarly to strict-serializability, all of
the above properties require that the real-time order of transaction execution is
respected, thus they are not applicable to systems considered in this work (we
elaborate on this in Section 4.1).

The �-opacity family of properties, which is a contribution of this thesis and
is defined in Section 4.3, relaxes real-time order requirements on transaction ex-
ecution in opacity to a various degree (we consider opacity in its prefix-closed
version, as in [31]). All members of �-opacity maintain two crucial characteris-
tics of opacity, namely a global serialization of all transactions and a guarantee
for every transaction to always read a consistent state. As there are some analo-
gies between the members of the �-opacity family and other correctness prop-
erties, we now briefly outline each member, from the strongest to the weakest
one. The strongest property in the �-opacity family is real-time opacity, which is
equivalent to opacity defined in [31]. Commit-real-time opacity allows live and
aborted transactions to read stale (but still consistent) data. Write-real-time opac-
ity further relaxes the real-time order guarantees on transactions that are known
a priori to be read-only (i.e., before they commence execution). Update-real-time
differs from write-real-time opacity by allowing all read-only transactions to not
respect the real-time order (so also transactions, which happened not to perform
any updating operations). Program order opacity requires real-time order only for
transactions executed by the same process (the order of transactions executed by
different processes is not specified). In this sense, program order opacity is simi-
lar to virtual time opacity (VTO) [54], but defined in the framework of the original

Therefore, they are not suited for use in a distributed environment.

2.2 Correctness Properties for Replicated Systems 11

definition of opacity and not using partially ordered sets of events. Moreover,
unlike VTO, program order opacity (and other members of �-opacity) is a prefix
closed property (see Section 4.3). Finally, arbitrary order opacity makes no as-
sumptions whatsoever on the relative ordering of transactions. In this respect, it
is similar to serializability. However, contrary to serializability, arbitrary order
opacity also ensures that live transactions always observe a consistent view of
the system’s state. Hence, arbitrary order opacity is stronger than serializability.

Note that program order opacity is stronger than transactional causal consis-
tency [57] [58], because the latter respects the order of transaction execution on
every process but does not require a single sequential view of all executed trans-
actions. For the same reason, transactional causal consistency is incomparable
with arbitrary order opacity, in which such a single view needs to be maintained
but the order of transaction execution on any process does not need to be re-
spected.

2.2.2 Correctness Properties for Non-transactional Systems

Linearizability, proposed by Herlihy and Wing in [41], is the most widely known
correctness property for concurrent data structures and strongly consistent repli-
cated systems that do not offer transactional semantics (see, e.g., [59] [60]). Un-
like many other correctness criteria for (systems modelled as) shared objects,
such as PRAM consistency, cache consistency and slow consistency [61], lineariz-
ability maintains a global serialization of all operation executions in a similar way
to which opacity or strict serializability do so for transactions. Linearizability
also requires that the real-time order on operation execution is respected at all
times. This trait makes it unsuitable for distributed environments.

The �-linearizability family of properties, which we define alongside �-opa-
city, relaxes the real-time order guarantees on operation execution of lineariz-
ability in a similar way to which �-opacity does so for transactions in opacity
(see the definition and discussion of �-linearizability in Section 4.4). Real-time
linearizability, the strongest property of the family, is equivalent to the original
definition of linearizability and can be used to formalize the guarantees pro-
vided by SMR (see Section 5.1.3). As we formally prove, a weaker member of
�-linearizability, namely write-real-time linearizability, can be used to formalize
the guarantees provided by LSMR, an optimized version of SMR which allows
read-only requests to be processed without inter-replica synchronization (see
Section 5.2.3). Interestingly, final-state program order linearizability (an intermedi-
ary property used to define program order linearizability, another member of the
�-linearizability family) is equivalent to sequential consistency [62]. In a similar
way to which program order opacity is stronger than transactional causal con-
sistency, program order linearizability is stronger than causal consistency [61].
Arbitrary order linearizability, the weakest member of the �-linearizability family,
is incomparable with causal consistency for similar reasons why transactional
causal consistency is incomparable with arbitrary order opacity.

In a recent paper [63], the authors used linearizability as a safety property for

12 2 State of the Art

a TM system, in which every invocation of a transaction is executed exactly once
and transaction aborts are hidden from the programmer. In a somewhat similar
fashion, we use �-linearizability to formalize the behaviour of a replicated trans-
actional system, in which the intermediate results of a transaction execution are
invisible to the client (the client is notified only once a transaction commits or
aborts, see details in Section 4.5). However, in our approach aborts are exposed
to the processes, as we model transactional systems as abortable objects, defined
as follows.

Objects which may return special responses fail or pause for any operation
invocation when there is contention, appeared first in [64] under the name ob-
struction-free objects. The special response fail indicates that the operation was
not applied and the process is free to invoke any other operation. On the other
hand, pause means that the implementation is uncertain whether the operation
had any effect on the object. The authors show that the objects that may return
fail but not pause, cannot be implemented using only read/write registers. The
work in [65] introduced the notions of abortable objects and query-abortable objects.
In this approach, a special response abort always implies uncertainty whether
an operation was applied or not. On the other hand, query-abortable objects
provide a special query operation, which allows processes to determine their last
operation that caused a state transition of the object. Deterministic abortable ob-
jects [66] feature only one special response, abort, which always indicates that
the operation did not take an effect. As noted before, such objects cannot be im-
plemented using only read/write registers. The authors in [66] investigate their
computational power and the implicit hierarchy they form. The notion of de-
terministic abortable objects is now well-accepted by the community. Therefore,
unless noted otherwise, we mean deterministic abortable objects when we say
abortable objects.

The original definitions of obstruction-free, abortable and query-abortable
objects require that the objects return special responses only when contention
is encountered. This way these definitions prohibit trivial implementations,
which, e.g., always return abort instead of a regular response (i.e., different than,
e.g., abort). Among the most popular measures of contention are step-contention
[64] and interval-contention [65]. Step contention of an execution fragment in-
dicates the number of processes that take steps (e.g., perform operations on
CPU) within the fragment. On the other hand, interval contention takes into
account the number of concurrently processed high-level operations (some of
which could be not using CPU at the moment). In this work, we place no re-
strictions on the conditions when objects may return the response abort. We do
so for two main reasons. Firstly, we believe that this is an orthogonal problem,
which is related to progress rather than safety. Secondly, we use an abortable
object as a facade for a transactional system. Since transactional systems usu-
ally provide their own progress guarantees (e.g., progressiveness, global progress
or obstruction-freedom [31]), they would translate into the properties of the fa-
cade object (in particular, an obstruction-free transactional memory would im-
pose requirement on special responses of the facade object to occur only upon

2.3 Distributed Transactional Memory Systems 13

encountering step-contention).

2.2.3 Safety and Liveness Properties

Some authors argue that it is useful to distinguish two classes of correctness
properties: liveness and safety properties (see, e.g., [67] [68]). Although this dis-
tinction does not exhaust the whole spectrum of correctness properties (e.g., se-
rializability is neither a safety nor a liveness property), such a distinction is use-
ful, as it captures important and radically different facets of a computer system’s
correctness. Moreover, showing safety and liveness requires different proving
techniques.

Informally, a liveness property ensures that something good eventually hap-
pens during system execution. On the other hand, a safety property guarantees
that nothing bad ever does. This trait can be formalized by requiring that the
property is non-empty, prefix-closed and limit-closed. In the dissertation we
formally prove that all members of �-opacity and �-linearizability families are
indeed safety properties.

2.3 Distributed Transactional Memory Systems

The model of replication considered in this dissertation closely corresponds to
some Distributed Transactional Memory systems (briefly mentioned Section 2.1).
DTM evolved as an extension of local (non-distributed) transactional memory
[26] to distributed environment. In TM, transactions are used to synchronize
accesses to shared data items and are meant as an alternative to lock-based syn-
chronization mechanisms. TM also has been proposed as an efficient hardware-
supported mechanism for implementing monitors [69].

Paxos STM is an object-based DTM system that we originally developed to
evaluate DUR [5] (and compare with SMR) and later used as a testbed for the
E-DUR and HTR schemes [6] [10] [4] (see also the test results in Sections 5.4 and
6.7). Paxos STM builds on JPaxos [70]–a highly optimized implementation of
the Paxos algorithm [71].

Several other DTM systems were developed so far, e.g., Anaconda [72], Clu-
ster-STM [73], DiSTM [74], Hyflow [75] and Hyflow2 [76]. Notably, our system
was designed from the ground up as a fully distributed, fault-tolerant system,
in which crashed replicas can recover. Unlike DiSTM, there is no central coordi-
nator, which could become a bottleneck under high workload. The TOB-based
transaction certification protocol implemented by Paxos STM simplifies the ar-
chitecture, limits the number of communication steps and avoids deadlocks al-
together (unlike the commit protocols in Anaconda or Hyflow/Hyflow2). The
use of TOB also helps with graceful handling of replica crashes (which, e.g., are
not considered in Cluster-STM). The closest design to ours is the one represented
by D2STM [51], which also employs full replication and transaction certification

14 2 State of the Art

based on TOB. However, unlike Paxos STM, D2STM does not allow replicas to
be recovered after crash nor transactions to contain irrevocable operations, i.e., op-
erations whose side effects cannot be rolled back (such as local system calls).

2.4 Other Related Work

Now let us discuss work that is related to some aspects of our HTR scheme and
HTR-enabled Paxos STM.

2.4.1 Transactional Semantics

HTR allows irrevocable operations in transactions executed in the SM mode
(which guarantees a transaction commit, see Section 6.2). However, the code
of these transactions have to be deterministic, because each SM transaction is
executed by all replicas (independently). Notably, the system performance is
not compromised since a single transaction in the SM mode can run in parallel
with all transactions executed in the DU mode.

The problem of irrevocable operations has been researched in the context of
non-distributed TM (see e.g., [77] [78] [79] [80] among other). These operations
are typically either forbidden, postponed until commit, or switched into an ad
hoc pessimistic mode [81]. Some solutions for starved transactions (i.e., transac-
tion, which repeatedly abort) are relevant here, e.g., based on a global lock [82]
or leases [83]. The former is not optimal as it impacts the capability of the system
to process transactions concurrently. On the other hand, the latter solution does
not guarantee abort-free execution and requires a transaction to be first executed
fully optimistically at least once. More recently, Atomic RMI, a fully-pessimistic
DTM system which provides support for irrevocable operations, has been pre-
sented in [84] and [85]. Unlike Paxos STM, in which transactions are local in
scope and data is consistently replicated, Atomic RMI implements distributed
transactions and does not replicate data across different machines.

In database systems, there exists work on allowing nondeterministic opera-
tions, so also irrevocable operations. In [86], a centralized preprocessor is used
to split a transaction into a sequence of subtransactions that are guaranteed to
commit. The next subtransaction to be executed is established after the previous
one commits. This, however, requires one broadcast per subtransaction which
significantly increases latency.

2.4.2 Protocol Switching

Since in HTR a transaction can be executed in two different modes, solutions
which allow for protocol switching are relevant. For example, PolyCert [40] fea-
tures three certification protocols that differ in the way the readsets of updating
transactions are handled. Similarly, Morph-R [87] features three interchangeable

2.4 Other Related Work 15

replication protocols (primary-backup, distributed locking based on two-phase
commit, and TOB-based certification), which can be switched according to the
current needs. Contrary to PolyCert and Morph-R, our approach aims at the
ability to execute transactions in different modes with the mode chosen on per-
transaction-run basis. Additionally, our system considers a much wider set of
parameters and can be tuned by the programmer for the application-specific
characteristics. Hyflow [88] allows various modes of accessing objects needed
by a transaction: migrating them locally and caching (data flow) or invoking re-
mote calls on them (control flow). StarTM [89] uses static code analysis to select
between the execution satisfying snapshot isolation (SI) and serializability. Serial-
izability is ensured at all times, since the system executes transactions in the SI
mode only when it is guaranteed that no write-skew anomalies can occur.

In AKARA [90], a transaction may be executed either by all replicas as in
SMR, or by one replica with updates propagated after transaction finishes ex-
ecution, in a somewhat similar way to which it is done in DUR. In the latter
case, execution can proceed either in an optimistic or in a pessimistic fashion,
according to a schedule established prior to transaction execution using conflict
classes. However, in both cases the protocol requires two broadcast messages for
every transaction: a TOB message issued upon request submission, which estab-
lishes the final delivery order, and then, after a transaction finishes execution, a
reliable broadcast message that carries the transaction’s updates. On the other
hand DUR and HTR require only one broadcast for every transaction. Unlike
in HTR, in AKARA the execution mode is predetermined for every transaction
and depends on the transaction type.

Approaches that combine locks and transactions are also relevant. In [91],
Java monitors can dynamically switch between the lock-based and TM-based
implementations. Similarly, adaptive locks [81] enable critical sections that are
protected either by mutexes or executed as transactions. However, the above
two approaches use a fixed policy. In our approach, the HTR oracles implement
a switching policy that can adapt to changing conditions.

2.4.3 Machine Learning Techniques

The mechanisms implemented in HybridML (or HybML in short), our machine
learning (ML) based oracle for HTR, are heavily inspired by some algorithms
well known in the ML community. Most importantly, HybML implements a pol-
icy that is similar to the epsilon-greedy strategy for the multi-armed bandit problem
(see [92] for the original definition of the problem, [93] for the proof of conver-
gence, and [94] for the survey of the algorithms solving the problem). However,
some crucial distinctions can be made between the original approach and ours.
We discuss them in detail in Section 6.6.

A survey of self-tuning schemes for the algorithms and parameters used in
various DTM systems can be found in [95]. A few ML-based mechanisms have
been used in some of the transactional systems we discussed before. PolyCert
[40] implements two ML approaches to select the optimal certification protocol.

16 2 State of the Art

The first is an offline approach based on regressor decision trees, whereas the
second uses the Upper Confidence Bounds algorithm, typically used in the con-
text of the multi-armed bandit problem. Because the used certification protocols
behave differently under various workloads, in the latter approach the authors
decided to discretize the workload state space using the size of readsets gen-
erated during execution of transactions. This differs from our approach, since
in HybML we solve the multi-armed bandit problem independently for every
class of transactions. The rough classification, which can be much finer than in
PolyCert, is provided by the user. Morph-R [87] uses three different black-box
offline learning techniques to build a prediction model used to determine the
optimal replication schemes for the current workload, i.e., decision-trees, neural
networks, and support vector machines. Such heavy-duty ML approaches are
not suitable for our purposes because HTR selects an execution mode for each
transaction run independently and not for the whole system once every several
minutes, as it is usually the case in typical applications of ML techniques (see,
e.g., [96] [97]). Hyflow [75] uses heuristics to switch between the data-flow and
control-flow modes, but the authors do not provide details on the mechanisms
used.

3
System model

In this chapter we describe the system model for transactional replication. We
also provide the specification of Total Order Broadcast as it is the sole mecha-
nism used for interprocess communication in all algorithms discussed in this
dissertation.

3.1 Server Processes

A replicated service is implemented on top of a system consisting of a finite set
P = {p1, p2, ..., pn} of n service processes (or processes or replicas, in short) running
on independent machines (nodes) connected via a network. We assume a crash-
recovery failure model in which processes may crash independently and later on
recover and rejoin computation. A process is said to be up if it correctly executes
its program. Upon a crash event, a process fails by ceasing communication with
any other processes and becomes a down process. It can rejoin distributed com-
putation upon a recovery event, which requires executing a recovery procedure.
A process is said to be unstable if it crashes and recovers infinitely many times.
A process is correct if it is eventually permanently up (there is a time after which
it never crashes). Otherwise it is faulty, i.e. unstable or eventually permanently
down (there is a time when it crashes and later never recovers). No assumption
is made on the relative computation speeds of the processes.

Each process has access to its own volatile memory and stable storage. Contrary
to stable storage, the data stored in the volatile memory is lost upon crash. The
combined content of the volatile and stable storage of a process pi constitutes a
(local) state Si of pi. S = {S1, ..., SN} is a replicated state of the system.

18 3 System model

3.2 Inter-processes Communication

Processes communicate solely by exchanging messages through a network. The
network is formed by bidirectional channels called fair-loss links [98] maintained
by every pair of processes. Messages may be lost by the links and no upper
bound on message transmission is known. The failure pattern of the links is in-
dependent of the one of the processes. Fair-loss links are used to implement a
higher-level abstraction called perfect links, which is free of many of the draw-
backs of fair-loss links [99].

The above properties of processes and links imply that we deal with an
asynchronous system. Furthermore, we assume availability of a failure detector Ω,
which is the weakest failure detector capable of solving distributed consensus
in the presence of failures [100]. Then, we can also implement the Total Order
Broadcast mechanism [45], which is used by all algorithms discussed in this dis-
sertation to disseminate messages to all processes.

TOB defines two primitives: TO-Broadcast(m) and TO-Deliver(m). An appli-
cation uses these primitives to broadcast and receive messages with the total
order guarantee. Formally, the specification of TOB is given by the following
four properties (we follow the specification of TOB from [101]):

• Termination: If a process pi TO-Broadcasts a message m and then pi does
not crash, then pi eventually TO-Delivers m;

• Validity: For any message m:

1. every process pi that TO-Delivers m, TO-Delivers m only if m was
previously TO-Broadcast by some process pj , and

2. every process TO-Delivers m at most once;

• Agreement: If a process TO-Delivers a message m then every correct pro-
cess eventually TO-Delivers m;

• Total Order: Let pi and pj be any two processes that TO-Deliver some mes-
sage m. If pi TO-Delivers some message m′ before m then also pj TO-
Delivers m′ before m.

The properties provide that indeed each process can broadcast messages
and, if the sender does not crash for long enough, the messages will be even-
tually delivered in the same order by all correct processes.

3.3 Fault Tolerance

The replication robustness is influenced by the required availability of the ser-
vice. Ideally, a service should be operational when all machines except one
crash. However, this requirement is usually too strong since systems fulfilling it

3.5 Requests and Transactions 19

cannot be implemented efficiently. It is because the replicas would have to ex-
tensively use stable storage in order to be able to recover in the event of failures.
On the other hand, if majority of processes is up and running at any time, recov-
ery of failed processes can be very efficient and does not require replicas to use
stable storage during the normal (non-faulty) operation. All of the replication
schemes discussed in this dissertation fall into the latter category.

3.4 Client Processes

In addition to service processes we consider an unspecified number of client
processes (simply called clients). Clients submit requests to any of the service pro-
cesses and await responses. A client may submit only one request at a time. If
a client does not receive any response after submitting a request, it can choose
a different replica and issue the request again. Such a situation can occur if a
replica is down or a timeout was reached due to high communication latency.

Note that clients not necessarily are independent. It means that they can (di-
rectly or indirectly) communicate with each other outside the replicated service,
exchange information about their interactions with the replicated service and
make decisions (e.g., issue different kinds of requests) based on this informa-
tion.

3.5 Requests and Transactions

We assume a simple communication interface. To communicate with a repli-
cated service, a client sends a request message r = 〈Request, id , prog , args〉,
where id is a unique value used to identify requests, prog is a program to be
executed by the replicated service (as a transaction, see below), and args are the
arguments necessary to execute prog . The request message is then handled by
some service process. The service process replies to the client’s request r by
sending back a response message 〈Response, id , res〉, where res is the response
computed by the replicated service.1

We think of a client request (more specifically the prog field of a request) as
a transaction to be executed in isolation and atomically by the replicated service.
We assume that prog can consist of arbitrary operations performed on shared
objects (which are replicated by service processes) as well as some other (lo-
cal) objects managed by the processes independently. We allow transactions
to feature arbitrary code and assume no managed (sandboxed) environment,
in which transactions are free to fail without impacting the local or replicated

1Some algorithms presented in this dissertation implement a slightly modified version of the
interface: any request or response additionally features a clock field which comes useful when a
client changes replicas it issues requests to (see Sections 5.2, 5.3 and Chapter 6).

20 3 System model

state. Therefore, it is very important that live transactions never observe an in-
consistent state. Otherwise the transaction might cause damage, e.g., perform
unexpected I/O operations, throw unhandled exceptions, or enter infinite loops
[102] [103].

4
New Correctness Properties

for Replication Schemes

This chapter introduces �-opacity and �-linearizability, two families of correctness
properties suited to formalizing the guarantees of various replication schemes.
We start by giving some intuition behind the new criteria. Next, we lay out basic
notions, which are then used to formally define �-opacity and �-linearizability.
Finally, we prove a formal relationship between the two families of properties.

Originally, we introduced �-opacity in [7]. We further discussed it in [3],
where we also described the �-linearizability family of properties and estab-
lished the relationship between the families. Our formal framework closely fol-
lows the one of opacity from [31]. We also borrow some definitions from [104].

4.1 Intuition Behind �-Opacity and �-Linearizability

It is often desirable that a replicated service provides a real-time guarantee on the
execution of client requests. It means that if the execution of one request ends
before another request starts its execution (according to, e.g., a wall-clock), the
effects of the former are always visible to the latter. Providing this (intuitive)
guarantee in a distributed environment is not easy and tends to be very costly.
It is because respecting real-time order at all times requires inter-process syn-
chronization on execution of every single request. Therefore, replicated services
often relax the real-time requirement for at least some types of requests. E.g.,
read-only or aborted requests do not change the state of the system, so they do
not need to be ordered w.r.t. concurrent update requests. This way the system
performance can be greatly improved, especially when requests of those special
types constitute the vast majority of all requests processed by the system.

To better understand the consequences of loosening real-time order for some
types of requests, let us consider an example of DUR (see the detailed descrip-
tion of DUR in Section 5.3). In DUR, every request sent by a client to any of
the replicas (server processes) is executed by the replica as an atomic transac-

22 4 New Correctness Properties for Replication Schemes

tion. The execution is performed optimistically, without any synchronization
with other replicas. Only after the execution of the transaction is finished, the
resulting updates are broadcast to all replicas using a TOB [45], so that they
can update their state accordingly. However, upon receipt of a message with a
transaction’s updates, the replicas do not update their state right away. In order
to ensure that consistency is preserved across the system, all replicas (indepen-
dently) execute a certification procedure that checks if the transaction read any
stale data. If so, the transaction has to be rolled back and restarted. Since all up-
dates are delivered in the same order (guaranteed by TOB), all replicas change
their state in the same way. However, read-only transactions do not modify the
local or replicated state in any way, so they do not require a distributed certifi-
cation. Instead, only the replica that executed a read-only transaction certifies it
to ensure that it has not read any inconsistent data. As we argue in Section 2.1,
strong similarities in the way transactions are processed can be found between
DUR and more complex replication schemes such as Postgres-R [39], PolyCert
[40], HTR [6], E-DUR [10], and others. Therefore, the following reasoning as
well as all the results presented in this dissertation are also applicable for these
systems (see also Section 5.3 and Chapter 6).

Consider a DUR system, which consists of a few replicas (servers), where
one of them is lagging behind, i.e., missing some updates compared to the up-
to-date replicas (e.g., due to some messages being still in transit). Client c1 in-
teracts with an up-to-date replica, while client c2 interacts with the lagging one.
Suppose that c1 issues an update request (an updating transaction) and receives
feedback from its replica. The updates produced by this transaction do not reach
c2’s replica because of the lag. If the two clients communicate with each other
(directly or through some outside services), c2 may notice it is missing some up-
dates, or even worse, it may not notice, but still take actions, which depend on
the operations issued by c1. Indeed, if c2 starts a new transaction on the lagging
replica, c2 will not be able to observe the updates it was already informed about.
If the transaction undergoes certification, it will be aborted, because the updates
it produced are broadcast using TOB and will be delivered by any replica af-
ter delivery of the updates of the transaction executed by the up-to-date replica
(which are already delivered by some replicas). However, still up to some point
in time (possibly until the commit attempt) the transaction handled by the lag-
ging replica will be executed on stale data.1 Also, if the transaction issued by c2

is a query (a read-only transaction), the transaction may even commit (since no
inter-replica synchronization is required for read-only transactions). This clearly
stands in contrast with the real-time order requirement and shows that relaxed
guarantees require more attention from the programmer so that all corner cases
are handled correctly.2

The semantics of DUR and similar systems are not adequately formalized

1To prevent live transactions from reading stale data, the system would have to run a dis-
tributed consensus round before the start of each transaction.

2Note that the lack of the real-time guarantee in a replicated system is not problematic when
we consider only independent clients, i.e., clients, whose decisions are never influenced by infor-
mation provided by other clients through channels other than the replicated systems itself.

4.1 Intuition Behind �-Opacity and �-Linearizability 23

by any of the existing correctness criteria, as we argue in Section 2.2.1. Some
properties that do not require that the real-time order of transaction execution is
respected are too weak. In particular, serializability [14] provides no guarantees
on live or aborted transactions, and update serializability [52] or extended up-
date serializability [53] do not require all processes to witness all updates in the
system in the same order. Other well established properties such as opacity [31]
and TMS1 [34] are too strong, because they require that the real-time order on
transaction execution is respected at all times for all types of transactions. Note
that these criteria were proposed for TM systems (see e.g., [26] among others),
which were meant as a concurrency control mechanism that can replace locks.
Hence, the real-time order requirement is natural. Also, the real-time order is
relatively easier to ensure in a local execution environment, in which TM func-
tions.
�-opacity, which we define this chapter, is a family of closely related, opacity-

based safety properties that relax in a systematic way the real-time order re-
quirement on transaction execution. Roughly speaking, a system that satisfies
any property from the �-opacity family behaves as if all transactions (including
the live and aborted ones) are executed sequentially. However, the requirement
on the relative order in which transactions appear in the serialization depends
on the considered property. In the extreme cases, either the real-time order on
transaction execution has to be respected at all times (according to real-time opac-
ity), or not at all (according to arbitrary order opacity). It means that real-time
opacity, the strongest criterion from the �-opacity family, is equivalent to the
original definition of opacity in its prefix-closed version [31]. On the other hand,
arbitrary order opacity resembles serializability, but is defined not only for com-
mitted transactions but also accounts for live and aborted ones. Currently, �-
opacity features four criteria in-between real-time opacity and arbitrary order
opacity: commit-real-time opacity, write-real-time opacity, update-real-time opacity
and program order opacity. We prove that DUR satisfies update-real-time opacity,
which allows read-only and aborted transactions to operate on stale but consis-
tent data, i.e., the data observed by read-only and aborted transactions does not
necessarily reflect the most recent updates (see Section 5.3.3). Write-real-time
opacity and commit-real-time opacity are intermediate properties that allow us
to compare transactional replication schemes with some non-transactional repli-
cation schemes (explained below). Program order opacity is similar to virtual
time opacity [54], but defined in the framework of the original definition of opac-
ity (see also Section 2.2.1).

Alongside �-opacity, we define a family of safety properties called �-lineari-
zability, based on linearizability [41], which are intended to formalize the guar-
antees offered by strongly consistent systems that hide transactions from clients.
�-linearizability can also be used for systems, which do not feature transactional
semantics at all. In particular, the new properties are suitable for formalizing
guarantees provided by various flavours of SMR. Depending on the used op-
timizations, SMR satisfies real-time linearizability or weaker properties such as
write-real-time linearizability (see also Sections 5.1.3 and 5.2.3). Also, as we for-

24 4 New Correctness Properties for Replication Schemes

mally prove, �-linearizability preserves two important properties of linearizabil-
ity: locality and non-blocking.

We also give a formal result on the relationship between �-opacity and �-
linearizability. In order to establish a link between the two families we introduce
a gateway object. We show that, roughly speaking, when transactions are hidden
from clients, a �-opaque replicated system is �-linearizable. This result estab-
lishes a formal relationship between opacity and linearizability (in their original
definitions) and also directly compares the guarantees provided by systems such
as DUR and SMR. The definition of the gateway object is general enough so it
can be used to compare other transactional and non-transactional properties.

4.2 Base Definitions

In order to reason about the guarantees provided by the replicated service, we
model it as a set of shared objects X = {X1, X2, ...} accessible by processes from
P . Each shared object (or simply an object) has a unique identity and a type.
Each type is defined by a sequential specification that consists of:

• a set Q of possible states for an object,

• an initial state q0 ∈ Q,

• a set INV of operations that can be applied to an object,

• a set RES of possible responses an object can return, and

• a transition relation δ ⊆ Q× INV × RES ×Q.

This specification describes how an object of a given type behaves, if the
object is accessed one operation at a time. If (q, op, res, q′) ∈ δ, it means that
applying operation op to an object in state q may move the object to state q′ and
the response res is returned to the process that invoked op. For simplicity, we
assume that operation arguments are encoded in the operation itself.

We say that an operation op is total, if it is defined for every possible state of
an object, i.e., if and only if for every q ∈ Q, there exists (q, op, res, q′) ∈ δ.

We say that an operation op is updating for a given state q ∈ Q, if and only
if there exists (q, op, res, q′) ∈ δ, such that q 6= q′. We say that op is read-only, if
and only if there does not exist a state q, for which op is updating. Otherwise,
we say that op is potentially updating.

Let us consider an example. Read/write registers constitute an important class
of shared objects. A read/write register features two simple operations: read ,
which returns the current integer value v ∈ Z of the register, and write(i) for
some i ∈ Z, which sets the current value of the register to i and returns ok

afterwards. Then, we define the sequential specification of read/write registers
as TR = (Z, 0, INVR,RESR, δR), where INVR = {read} ∪ {write(i) : i ∈ Z},
RESR = {ok} ∪ Z, and δR = {(i, read , i, i) : i ∈ Z} ∪ {(i,write(j), ok, j) : i, j ∈
Z}. Both the read and write operations are total. Obviously, read is a read-only

4.2 Base Definitions 25

operation as it never modifies the state of the register, and write is not (write is
potentially updating). However, write is not always updating. When the register
is in state i (its value is i), then write(i) does not change its state. Therefore,
write(i) is not updating for state i.

Shared objects form a hierarchy, at the bottom of which are base objects. Base
objects represent individual memory locations which can be read and written.
Each higher level of the hierarchy contains shared objects of more abstract types.
Implementations of objects at a given level may only use base objects and other
lower-level shared objects.

Implementations of shared objects are defined by algorithms which describe
the steps required to complete each operation. When a process invokes an op-
eration on a shared object, it follows an appropriate algorithm. In each step, a
process may either perform local computation or engage other object.

We assume that every shared object encapsulates its state, i.e., each object or
local variable is only used by a single shared object implementation.

When a process pi executes an operation op on object X ∈ X , it invokes
an event X.inv i(op) and expects a response event X.respi(v). A pair of such
events is called a (completed) operation execution and is denoted by X.op →i v.
An invocation event, that is not followed by a response event, is called a pending
operation execution. X.op→i v is, respectively, read-only, potentially updating or
updating, if op is read-only, potentially updating or updating.

We model the system execution as a (totally ordered) sequence of events
called a history. Naturally, histories respect program order (events executed
by the same process are ordered according to their execution order), and also
causality between events across processes (if two events executed in the system
are causally related, one will precede the other in the history according to the
causality relation). Events that happen in parallel (in separate processes), and
that are not causally dependent, can appear in a history in an arbitrary order.3

For any history H , we denote by H|pi the restriction of H to events issued or
received by process pi. We denote by H|X (where X ∈ X) the restriction of H to
operations executed on X and their appropriate responses, and by H|S (where
S ⊆ X) the restriction of H to operations executed on objects from the set S and
their appropriate responses.

A history which is not restricted to any particular object or a set of objects is
called an implementation history. On the other hand, a high-level history is a history
H|S restricted to a set of objects S = {X1, X2, ...}, such that no object Xi is used
by the implementation of some other object Xj . Unless stated otherwise, when
we say a history we mean a high-level history.

An implementation history H is said to be well-formed, if for every process pi
and every shared objectX , (H|X)|pi is a (finite or infinite) sequence of operation

3An alternative approach to model the system execution would be to employ partially ordered
sets (or posets). This approach is equivalent to ours, because a poset can be represented by a set
of totally ordered histories (and we always analyse all possible histories a system can produce).
We argue that an approach based on totally ordered histories is more elegant, because it better
matches the sequential specifications used for t-objects. We also want to stay close to, and remain
compatible with, the original formal framework of opacity from [31].

26 4 New Correctness Properties for Replication Schemes

executions, possibly ending with a pending operation execution. A high-level
history H is well-formed, if for every process pi, H|pi is a (finite or infinite)
sequence of operation executions, possibly ending with a pending operation ex-
ecution. We consider only well-formed histories.

4.3 The �-Opacity Family of Properties

In this section, we define the �-opacity family of safety properties. First we in-
troduce some auxiliary definitions and then specify the properties. Finally, we
provide a discussion on the properties’ characteristics and show some examples.

4.3.1 Formal Definition

Let us start by distinguishing a subset of shared objects Q ⊂ X called t-objects
and defining a set T = {T1, T2, ...} of transactions.

The setQ = {x1, x2, ...} of t-objects consists of a special class of shared objects
that cannot be accessed directly by processes. Instead, they have to be accessed
within a context called a transaction, an abstract notion fully controlled by some
process. Also, an operation on a t-object cannot return a value that belongs to a
set A = {A1, A2, ...} of special return values used by the system.

Interaction between processes and t-objects is managed by a single transac-
tional memory shared object (TM object) M of the following interface:

• M.texec(Tk, x.op) →i {v,Ak} which denotes that process pi executes an
operation op on a t-object x of some type T = (Q, q0, INV ,RES , δ) within
a transaction Tk and as a result produces a return value v ∈ RES or a
special value Ak ∈ A;

• M.tryC (Tk) →i {Ak, Ck} which denotes that process pi attempts to com-
mit a transaction Tk and returns the special values Ak ∈ A or Ck;

• M.tryA(Tk) →i Ak which denotes that process pi aborts a transaction Tk
and returns Ak ∈ A.

Each operation on a TM object (executed by some process pi) can return a
special value Ak, which indicates that the transaction Tk that executed this oper-
ation has aborted. The value Ck, returned by the operation tryC (Tk), means that
Tk has committed. For any t-object of type T = (Q, q0, INV ,RES , δ), Ak /∈ RES

and Ck /∈ RES . A response event with a return value Ak or Ck is called, respec-
tively, an abort event or commit event (of transaction Tk). The commit or abort
events of transaction Tk are always the last events for Tk.

Let HI be an implementation history and M be a TM object. Then, we use
the term t-history for a high-level history HI |M . Let H be a t-history of some
TM object M . We denote by H|Tk the restriction of H to events concerning Tk,
i.e. invocation events of operations M.texec(Tk, x.op), M.tryC (Tk), M.tryA(Tk)

and their corresponding response events (for any t-object x and operation op).

4.3 The �-Opacity Family of Properties 27

We say that a transaction Tk is in H , if H|Tk is not empty. Let x be any t-object.
We denote by H|x the restriction of H to events concerning x, i.e., the invoca-
tion events of any operationM.texec(Tk, x.op) and their corresponding response
events, for any transaction Tk and operation op on x.

We say that a transaction Tk performs some action, when a given process
executes this action as part of Tk. A transaction that only executes read-only
operations in a given t-history H is called a read-only transaction in H . Other-
wise, we say that it is an updating transaction in t-history H . In general, during
an execution of a transaction, it is impossible to tell whether it will not perform
any updating operations before it finishes its execution. However, we distin-
guish a special class of transactions called declared read-only (DRO), which are
known a priori to be always read-only in any t-history (they are only allowed to
execute read-only operations on t-objects). Then, for any such transaction Tk,
we write DRO(Tk) = true. Every transaction Tk, for which DRO(Tk) = true ,
Tk is read-only, but the opposite is not necessarily true. A transaction that is
not declared read-only is called a potentially updating transaction. Every updating
transaction is potentially updating, and every read-only transaction that is not
declared read-only is also potentially updating (no matter whether the read-only
transaction is still live or already completed).4

We say that a transaction Tk is committed in a t-history H , if H|Tk contains
operation execution M.tryC (Tk) →i Ck (for some process pi). We say that the
transaction Tk is aborted in H , if H|Tk contains response event respi(Ak) from
any operation of Tk (for some process pi). If an aborted transaction Tk contains
an invocation of the operation M.tryA(Tk), it is said to be aborted on demand.
Otherwise, we say that Tk is forcibly aborted in H . A transaction Tk in H that is
committed or aborted is called completed. A transaction that is not completed
is called live. A transaction Tk is said to be commit-pending in H , if H|Tk has a
pending operation M.tryC (Tk) (Tk invoked the operation M.tryC (Tk), but has
not received any response from this operation).

We say that a t-history H is t-completed, if every transaction Tk in H is com-
pleted. A t-completion of a t-historyH is any (well-formed) t-completed t-history
H̄ such that:

1. H is a prefix of H̄ , and

2. for every transaction Tk in H , sub-history H̄|Tk is equal to one of the fol-
lowing histories:

• H|Tk, when Tk is completed, or

• H|Tk· 〈tryA(Tk)→i Ak〉, for some process pi, when Tk is live and there
is no pending operation in H|Tk, or

• H|Tk· 〈respi(Ak)〉, when Tk is live and there is a pending operation in
H|Tk invoked by some process pi, or

4The distinction between read-only and declared read-only (and between updating and po-
tentially updating) transactions is relevant for some systems and is reflected in different ordering
relations which we define later. Sometimes it is useful to treat a potentially updating transaction
as an updating one, even though it does not produce any updates. Such a transaction resembles
a write operation which is not always updating.

28 4 New Correctness Properties for Replication Schemes

• H|Tk· 〈respi(Ck)〉, when Tk is commit-pending for some process pi.

Let Ti and Tj be any two transactions in some t-history H , where Ti is com-
pleted. We define the following order relations on transactions in H :

• real-time order ≺r
H — we say that Ti ≺r

H Tj (read as Ti precedes Tj), if the
last event of Ti precedes the first event of Tj ;

• commit-real-time order ≺c
H — we say that Ti ≺c

H Tj , if (1) Ti ≺r
H Tj , and (2a)

both Ti and Tj are committed or (2b) both Ti and Tj are executed by the
same process pk;

• write-real-time order ≺w
H — we say that Ti ≺w

H Tj , if (1) Ti ≺r
H Tj , and (2a)

both Ti and Tj are potentially updating and are committed or (2b) both Ti
and Tj are executed by the same process pk;

• update-real-time order ≺u
H — we say that Ti ≺u

H Tj , if (1) Ti ≺r
H Tj , and (2a)

both Ti and Tj are updating and are committed or (2b) both Ti and Tj are
executed by the same process pk;

• program order ≺p
H — we say that Ti ≺p

H Tj , if Ti ≺r
H Tj and both Ti and Tj

are executed by the same process pk;

• arbitrary order ≺a
H — equivalent to ∅. Ti ≺a

H Tj never holds true.

Note that (2a) and (2b) are not mutually exclusive.
Let H , H ′ be two t-histories. We say that H ′ respects the �-order of H (where

� is any of the order relations specified above), if and only if ≺�H⊆≺�H′ , which
means that for any two transactions Ti and Tj in H , if Ti ≺�H Tj then Ti ≺�H′ Tj .
For any t-history H the following holds: ∅ =≺a

H⊆≺
p
H⊆≺u

H⊆≺w
H⊆≺c

H⊆≺r
H .

We say that Ti and Tj are concurrent if neither Ti ≺r
H Tj nor Tj ≺r

H Ti. We say
that any t-history H is t-sequential, if H has no concurrent transactions.

Let S be any t-completed t-sequential t-history, such that every transaction in
S, possibly except the last one, is committed. We say that S is t-legal, if for every
t-object x, the subhistory S|x = 〈texec(Ti, x.op1) →k res1, texec(Tj , x.op2) →l

res2, ...〉 (for any processes pk, pl, ..., and for any transactions Ti, Tj , ...) satisfies
the sequential specification (Q, q0, INV ,RES , δ) of x, i.e., there exists a sequence
of states q1, q2, ... in Q, such that (qn−1, opn, resn, qn) ∈ δ for any n > 0.

Let S be any t-completed t-sequential t-history. We denote by visibleS(Tk)

the longest subsequence S′ of S, such that for every transaction Ti in S′, either
(1) i = k, or (2) Ti is committed and Ti precedes Tk. We say that a transaction Tk
in S is legal in S, if the t-history visibleS(Tk) is t-legal.

We say that t-histories H and H ′ are equivalent, denoted H ≡ H ′, if for every
transaction Tk in T , H|Tk = H ′|Tk.

Definition 1. A finite t-historyH is final-state �-opaque, if there exists a t-sequential
t-history S equivalent to some t-completion of H , such that:

1. every transaction Tk in S is legal in S, and

2. S respects the �-order of H .

4.3 The �-Opacity Family of Properties 29

Ha
p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 0 x.wr2(1)→ ok tryC2 → A2

Hb
p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2

x.rd3 → 1 tryC3 → C3

Hc
p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2

x.rd3 → 1 y.wr3(1)→ ok tryC3 → C3

Hd
p1

p2

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 1 x.wr2(2)→ ok tryC2 → C2 x.rd3 → 0 tryC3 → C3

Figure 4.1: Example t-histories for two processes and up to three trans-
actions. Ha is commit-real-time opaque, but not real-time opaque. Hb is
update-real-time opaque, but not commit-real-time opaque. Addition-
ally, Hb is write-real-time opaque, if and only if T3 is known a priori to be
read-only (the DRO(T3) predicate holds true inHb). Hc is program order
opaque, but not update-real-time opaque nor write-real-time opaque.
Hd is arbitrary order opaque, but not program order opaque. We use
simplified notation: explicit calls to the TM object M as well as process
numbers are omitted, lower indices indicate the transaction number, rd
is a read operation and wr is a write operation.

Definition 2. A t-history H is �-opaque, if every finite prefix of H is final-state �-
opaque.

Definition 3. A system (modelled as a TM object) is �-opaque, if every history it pro-
duces is �-opaque.

In the above three definitions � can be either real-time, commit-real-time,
write-real-time, update-real-time, program order, or arbitrary order. Therefore,
we obtain a whole family of �-opacity properties. Real-time opacity is equivalent
to opacity. By substituting real-time with weaker ordering guarantees we obtain
gradually weaker properties with arbitrary order opacity being the weakest one.
Note that all these properties require a history to be legal.

4.3.2 Discussion

Real-time opacity, which is equivalent to the original definition of opacity in
its prefix-closed version [31], requires that all transactions, regardless of their
state of execution (live, aborted, commit-pending or committed) always observe
a consistent and most recent view of the system. Commit-real-time opacity re-
laxes opacity, by restricting the real-time order to only committed transactions.
It means that aborted transactions may observe stale, but still consistent data; no
artefacts such as reads out of thin air are possible. Write-real-time opacity and
update-real-time opacity additionally relax the real-time order requirement on

30 4 New Correctness Properties for Replication Schemes

transactions that, respectively, are known a priori to be read-only (are declared
read-only), or that have not performed any potentially updating operations (are
read-only). Program order opacity ensures that transactions respect program or-
der, i.e., the order of execution of all local transactions has to be respected across
all processes. Finally, arbitrary order opacity imposes no requirements on the
order of transactions’ execution, as long as all transactions are legal.

Write-real time opacity is only suitable for systems that can distinguish be-
tween transactions that have not performed any potentially updating operations
and transactions known a priori to be read only (the DRO predicate is true only
for the latter ones). In such systems, the additional information about transac-
tions can be either provided by the programmer, or can be deduced prior to a
transaction execution from the transaction code. By manually marking some
transactions as declared read-only, a programmer can decide whether a read-
only transaction Tk may read stale data (DRO(Tk) holds true) or has to respect
the real-time order (DRO(Tk) is false). We can make the following two simple
observations, which follow directly from the definitions. Firstly, in a write real-
time opaque t-history H , if there are no transactions for which the DRO predi-
cate holds, H is also commit-real-time opaque. Secondly, in an update real-time
opaque t-history H , if for all read-only transactions the predicate DRO holds,
then H is also write real-time opaque.

Note that not every updating transaction modifies the state of any t-object.
Consider a transaction Tk which first reads value i from a register x and then
writes the same value i to x, or just happens to write i to x without reading x
beforehand. Clearly, Tk is not a read-only transaction as it executes a write op-
eration (which is a potentially updating operation). However, in this particular
scenario, the write is not updating, because the state of x remains unchanged. A
similar example can be formulated for transactions that execute operations on
any objects featuring operations that are not always updating (see Section 4.2).

Our definition of update-real-time does not differentiate between transac-
tions that performed potentially updating operations, which modified state of
some t-objects, and those, which just happened not to change the value of the
t-objects, as in the example above. Doing so would result in a correctness prop-
erty that has no real practical application. None of the real-world transactional
systems we are aware of treat differently these two kinds of transactions and
neither does DUR (see 5.3). On the contrary, making such a distinction is neces-
sary when considering sequences of operation executions, as in �-linearizability
(see Section 4.4).

Figure 4.1 illustrates the relationship between the members of the �-opacity
family by example. It depicts four t-histories (two variants of t-historyHb can be
deduced depending on the value of DRO(T3)). Each t-history represents a case
when one property is satisfied while another, a stronger one, is not.

T-histories Ha and Hb represent our main motivation: enabling aborted and
read-only transactions to read from a stale (but consistent) snapshot. Let us first
consider Ha. Transactions T1 and T2 access the same t-object x. T1 precedes T2,
however T2 reads a stale value of x, and subsequently aborts. The only possible

4.4 The �-Linearizability Family of Properties 31

serialization of Ha in which all transactions are legal is 〈Ha|T2 ·Ha|T1〉. This se-
rialization does not respect the real-time order, as clearly T1 ≺r

Ha
T2. Therefore,

Ha breaks (real-time) opacity. However, it satisfies commit-real-time opacity,
because T2 is aborted and therefore it may observe stale data.

In t-history Hb, transaction T3, which does not perform any updating opera-
tions, is preceded by transaction T2. However, T3 does not observe the operation
x.wr2(2) of T2, as its operation x.rd3 returns the value written by T1. Therefore,
Hb breaks real-time opacity. Moreover, it also breaks commit-real-time opacity.
On the other hand, Hb satisfies write-real-time opacity when DRO(T3) holds,
and update-real-time opacity when DRO(T3) does not hold true. Note that if T3

would abort, then Hb would be commit-real-time opaque.
In t-history Hc, similarly to the previous example, T3 does not obey the real-

time order. This time, however, T3 is an updating transaction which commits.
Therefore, the history only satisfies program order opacity and not update-real-
time opacity, nor any stronger property. Finally, in t-history Hd, even the pro-
gram order is not preserved, as p2’s transaction T3 does not observe the effects of
another transaction (T2) executed by p2 earlier. This t-history, however, satisfies
arbitrary order opacity, as transactions T2 and T3 can be reordered, yielding an
equivalent legal execution 〈T3·T1·T2〉. This trait makes arbitrary order opacity
similar to serializability.

Now we show that �-opacity is a safety property [67] [68], similarly to opac-
ity. The full proofs of all formal results can be found in the Appendix.

Theorem 1. �-opacity is a safety property.

Proof sketch. �-opacity is non-empty since a t-history H = 〈〉 is �-opaque. Since
�-opacity of a t-history H is defined through final-state �-opacity on all of its
prefixes (which are finite), it is easy to show that �-opacity is prefix and limit-
closed. Therefore. �-opacity is a safety property.

Corollary 1. A system (modelled as a TM object) is �-opaque if, and only if every finite
history it produces is final-state �-opaque.

Proof. The proof follows directly from Theorem 1.

4.4 The �-Linearizability Family of Properties

In this section, we introduce the �-linearizability family of safety properties. We
begin by giving a formal definition and then we discuss the characteristics of
�-linearizability.

32 4 New Correctness Properties for Replication Schemes

4.4.1 Formal Definition

We provide the definition of �-linearizability for systems where shared objects
may be abortable. It means that any operation op invoked on an abortable shared
object X ∈ X (for some operation execution o), may return a special value ⊥,
thus indicating that the execution of op failed and did not change X’s state.
More precisely, in the sequential specification of an abortable object, the transi-
tion (q, op,⊥, q) is possible for any operation op and state q. In such case, we say
that operation op aborted. Otherwise, i.e., when op returns some value v 6= ⊥,
we say that operation op committed. An operation execution X.op →i v is, re-
spectively, aborted or committed, if op aborted or committed.

A history which has no pending operation executions is called completed. A
completion of a history H is any (well-formed) completed history H̄ such that H̄
consists of all completed operation executions fromH and appropriate response
events for a subset of pending operation executions in H (i.e., some pending
operation executions in H appear completed in H̄ or do not appear at all).5

Let oi and oj be any two operation executions in some history H , where oi
is a completed operation execution. We define the following order relations on
operations in H :

• real-time order <r
H — we say that oi <r

H oj (read as oi precedes oj), if the
response event of oi precedes the invocation event of oj ;

• commit-real-time order <c
H — we say that oi <c

H oj , if (1) oi <r
H oj , and (2a)

both oi and oj committed or (2b) both oi and oj are executed by the same
process pk;

• write-real-time order <w
H — we say that oi <w

H oj , if (1) oi <r
H oj , and (2a)

both oi and oj are potentially updating and committed or (2b) both oi and
oj are executed by the same process pk;

• program order <p
H — we say that oi <

p
H oj , if oi <r

H oj and both oi and oj
are executed by the same process pk;

• arbitrary order <a
H — equivalent to ∅. Never oi <a

H oj holds true.

Note that (2a) and (2b) are not mutually exclusive.
Let H , H ′ be two histories. We say that H ′ respects the �-order of H (where

� is any of the order relations specified above), if and only if <�H⊆<�H′ , which
means that for any two operation executions oi and oj in H , if oi <�H oj then

5Note that the definition of completion and t-completion from Section 4.3 are quite different.
t-completion is always a prefix of the original t-history, whereas a completion may lack some of
the events of the original history. Such a formulation is necessary to account for non-abortable
objects which have some non-total operations. Consider a history of a shared object implement-
ing a blocking queue. Let us assume that the history contains a pending dequeue operation and
no enqueue operations. Clearly, it is impossible to complete this history by adding some (legal)
return event for the dequeue operation. Yet, it is still possible that a future arrival of an enqueue
operation will allow the pending dequeue operation to complete. Therefore, the definition of com-
pletion has to be more admitting. Note also that we could use a more straightforward definition of
completion, i.e., similar to the definition of t-completion. It is because we define �-linearizability
for abortable objects. However, in order to maintain compatibility with the original definition of
linearizability, we opted not to do so.

4.4 The �-Linearizability Family of Properties 33

oi <
�
H′ oj . For any history H the following holds: ∅ =<a

H⊆<
p
H⊆<w

H⊆<c
H⊆<r

H .
We say that oi and oj are concurrent, if neither oi <r

H oj nor oj <r
H oi. We say

that any history H is sequential, if H has no concurrent operation executions.
Let S be any completed sequential history. We say that S is legal, if for every

object X , the subhistory S|X = 〈X.op1 →k v1, X.op2 →l v2, ...〉 (for any pro-
cesses pk, pl, ...) satisfies the sequential specification (Q, q0, INV ,RES , δ) of X ,
such that there exists a sequenceW = 〈q0, q1, ...〉 of states inQ and for any n > 0,
(qn−1, opn, vn, qn) ∈ δ. We call any such sequence a witness history of S. For any
operation execution on = X.opn →k vn in S, we say that on is updating in S

according to W , if qn−1 6= qn.
We say that histories H and H ′ are equivalent, denoted H ≡ H ′, if H ′ con-

tains all of the events of H and vice versa.
We distinguish yet another order relation whose definition we give below.

Let H be any history and S be a legal sequential history equivalent to some
completion of H . Let W be some witness history of S. Let oi and oj be any two
operation executions in H , where oi is a completed operation execution. We de-
fine the following order relation on operations in H (according to the sequential
history S and the witness history W):

• update-real-time order <u
H (S,W) — we say that oi <u

H(S,W) oj , if (1) oi <r
H

oj , and (2a) both oi and oj are updating in S according to W and are com-
mitted or (2b) both oi and oj are executed by the same process pk.6

Let H , H ′ be two histories. We say that H ′ respects the update-real-time or-
der of H according to S and W , if and only if <u

H(S,W) ⊆ <u
H′(S,W), which

means that for any two operation executions oi and oj in H , if oi <u
H(S,W) oj

then oi <
u
H′(S,W) oj . When H ′ = S, we say that S respects the update-real-

time order of H , if and only if there exists W , a witness history of S, such
that <u

H(S,W) ⊆ <u
S(S,W). In such case, we simplify the notation and write

<u
H⊆<u

S . For any history H and any legal history S equivalent to some com-
pletion of H (with any witness history W) the following holds: ∅ =<a

H⊆<
p
H⊆

<u
H(S,W) ⊆<w

H⊆<c
H⊆<r

H .
Now, let us provide the definition of �-linearizability.

Definition 4. A finite history H is final-state �-linearizable, if there exists a sequen-
tial history S, such that:

1. S is equivalent to H̄ , a completion of H ,

2. S is legal, and

3. S respects the �-order of H̄ .

Definition 5. A history H is �-linearizable, if every finite prefix of H is final-state
�-linearizable.

6Unlike other orders defined here, update-real-time order can only be considered in the context
of some execution, because for different sequential histories S (equivalent to some completion of
some history H), some operations in H may or may not be updating (depending on the previous
values of the objects on which the operations are performed). Hence, update-real-time order is
defined according to some witness history.

34 4 New Correctness Properties for Replication Schemes

Definition 6. A system (modelled as a set of shared objects) is �-linearizable, if every
history it produces is �-linearizable.

In the above two definitions � can be either real-time, commit-real-time,
write-real-time, update-real-time, program order, or arbitrary order.

Note that, we require that S respects the �-order of H̄ and not of H . It is
because S, which is equivalent to H̄ , may lack some of the operations that are
pending in H (by the definition of completion of H).

4.4.2 Discussion

�-linearizability relaxes the operation ordering guarantees of the original defini-
tion of linearizability [41] in a similar way to which �-opacity does it for trans-
action ordering guarantees of the original definition of opacity [31]. Note that
we consider abortable shared objects as well as the ordinary ones.7 Not only
this way we can encompass a wider array of systems (shared object implemen-
tations), but it also allows us to use �-linearizability to describe the behaviour of
transactional systems from the point of view of external clients (see Section 4.5).

The difference between write-real-time- and update-real-time linearizability
is to some extent similar to the difference between write-real-time- and update-
real-time opacity. Write-real-time linearizability relaxes the real-time order re-
quirement for read-only operations, i.e., operations that never change the state
of the object, such as a read operation on a register. Update-real-time linearizabil-
ity relaxes real-time also for operations that in a given execution did not change
the state of the object, i.e., a non-blocking pop operation performed on an empty
stack.

Now let us highlight the subtle difference in the analogy between write/up-
date-real-time opacity and write/update-real-time linearizability. Consider an
example in Figure 4.2. X is a shared object implementing an initially empty
stack on which two processes execute push and pop operations (push is always
updating and pop is a potentially updating operation that immediately returns,
if the stack is empty). These operations are executed directly on X in history
H . In t-history Ht, processes operate on a stack t-object x in an analogous way
as in H , but all operations are executed within separate transactions. Trivially,
H is not write-real-time linearizable. If it were, the first X.pop would have to
return 5 instead of null , because it was issued after X.push(5) committed and
write-real-time linearizability requires that committed and updating or poten-
tially updating operations respect the real-time order of operation execution.
However, H is update-real-time linearizable: H is completed and there exists a
legal sequential history S = 〈X.pop → null , X.push(5)→ ok , X.pop → 5〉 which
is equivalent to H and respects the update-real-time order of H (X.pop → null

does not modify the state of X in this particular execution, so can be moved in
S before X.push(5)→ ok).

7Trivially, in the latter case commit-real-time linearizability is equivalent to real-time lineariz-
ability. As we show later, surprisingly both properties are equivalent also for abortable shared
objects.

4.4 The �-Linearizability Family of Properties 35

H
p1

p2

X.push(5)→ ok

X.pop→ null X.pop→ 5

Ht

p1

p2

x.push1(5)→ ok

tryC1 → C1

x.pop2 → null

tryC2 → C2

x.pop3 → 5

tryC3 → C2

Figure 4.2: History H is not write-real-time linearizable, but is update-
real-time linearizable. t-historyHt is neither write- nor update-real-time
opaque.

Ha

p1

p2

X.write(5)→ ok

X.read→ 0

Hb

p1

p2

X.write(5)→ ok

X.read→ 5

Figure 4.3: History Ha is update-real-time linearizable, whereas Hb is
not.

On the other hand,Ht is neither update-real-time opaque nor write-real-time
opaque. Even though transaction T2 does not modify the state of any t-object (in-
cluding x), we still treat T2 as an updating transaction. This is because update-
real-time opacity does not differentiate between transactions which performed
potentially updating operations that modified the state of some t-objects, and
those, which happened not to change the value of the t-objects (see Section 4.3.2).
Therefore, Ht is not write-real-time opaque either, as this is a stronger property.

Now let us focus on the way �-linearizability is formalized. Naturally, our
property is based on linearizability [41]. However, unlike the original defini-
tion, �-linearizability is defined indirectly, through final-state �-linearizability,
i.e., in a similar way to which opacity/�-opacity are defined through final-state
opacity/�-opacity. This is because final-state �-linearizability is not prefix-closed,
if we consider any order relation weaker than real-time order.

To better understand why introducing the intermediate step in the definition
of �-linearizability is necessary, let us consider two example histories Ha and Hb

in Figure 4.3. Our main motivation to relax real-time order was to enable exe-
cutions such as the one in history Ha, where one process (p1) modifies the state
of some object and then, long after the operation committed, a lagging process
(p2) observes a stale value of this object by performing a read-only operation.
Naturally, Ha is final-state update-real-time linearizable, so is Hb, where one
operation (X.read → 5) observes the future state of some object. Clearly, Hb rep-
resents an execution that should not be allowed. The difference betweenHa and
Hb lies in the fact that every prefix of Ha is update-real-time linearizable, and
there exists a prefix of Hb, which is not (H ′b = 〈X.read → 5〉). Hence, we require

36 4 New Correctness Properties for Replication Schemes

Ha

p1

p2

X.push(5)→ ok

X.pop→ ⊥ X.pop→ 5

Hb

p1

p2

X.push(5)→ ok

X.pop→ ⊥ X.pop→ 5

Figure 4.4: Both histories Ha and Hb are commit-real-time linearizable
but also real-time linearizable. (The return value ⊥means that the oper-
ation aborted.)

that every finite prefix of a �-linearizable history is final-state �-linearizable.
Next we show that �-linearizability, as �-opacity, is a safety property.

Theorem 2. �-linearizability is a safety property.

Proof. The proof is analogous to the proof of Theorem 1.

As proven in [104], linearizability in its original definition is a safety prop-
erty only for objects which are finitely non-deterministic (thus also for determin-
istic objects). For objects which are infinitely non-deterministic, linearizability
is not limit-closed and thus it is not a safety property. On the other hand, �-
linearizability (thus also real-time linearizability) is more general as it is trivially
limit-closed also for the latter ones. Hence real-time linearizability is equivalent
to the original definition of linearizability, but only when we consider objects
which are finitely non-deterministic.

Corollary 2. A system (modelled as a set of shared objects) is �-linearizable, if and only
if every finite history it produces is final-state �-linearizable.

Proof. The proof follows directly from Theorem 2.

�-linearizability preserves two important properties of linearizability: locality
and non-blocking [41]. The former requires that a system is �-linearizable, if and
only if every shared object managed by the system is �-linearizable. The latter
requires that every finite �-linearizable history has an extension that is also �-
linearizable.

Theorem 3. �-linearizability is non-blocking and satisfies locality.

Proof sketch. The proof is inspired by the proof in [41] of a similar theorem but
regarding linearizability in its original definition.

Now, let us show an interesting result that highlights the relationship be-
tween commit-real-time- and real-time linearizability. Consider historiesHa and
Hb from Figure 4.4. In both histories, X.push(5) → ok pushes a value onto the
stack X , whereas X.pop → ⊥ intends to remove a value from X but aborts.
Clearly, the order of execution of these two operations does not matter, both
histories are commit-real-time and real-time linearizable. It would not be so,

4.4 The �-Linearizability Family of Properties 37

if X.pop had not aborted. However, an aborted operation does not change the
state of the object. As the special value ⊥ carries no information on the current
state of the object or why the operation failed, we can prove the following result.

Theorem 4. Commit-real-time linearizability is equivalent to real-time linearizability.

Proof sketch. We start by showing that in order to prove that commit-real-time
linearizability is equivalent to real-time linearizability, it suffices to show that
every final-state commit-real-time linearizable history is final-state real-time lin-
earizable and vice versa.

Since, <c
H⊆<r

H , by the definition of final-state �-linearizability, every final-
state real-time linearizable history is trivially also final-state commit-real-time
linearizable. The difficult part of the proof concerns showing that any final-state
commit-real-time linearizable history H is also final-state real-time linearizable.
We do so in two major steps.

First we take some completion H̄ of H and then we create a directed graph
G such that operation executions from H̄ form vertices and there is an edge in
G for any two preceding (in real-time) operation executions in H̄ . We then take
S, a commit-real-time linearizable sequential history equivalent to H̄ , strip all
aborted operations from S and use the resulting history S′ to supplement G
with additional edges reflecting the precedence order of operation executions in
S′. We then show that the resulting graph G′ is acyclic.

SinceG′ is acyclic and includes an edge for every pair of preceding operation
executions in H̄ , history SG′ obtained by performing a topological sort of G′ is a
sequential history which maintains this precedence. By construction of SG′ it is
easy to show that SG′ is equivalent to H̄ .

We now move to the second major part of the proof and show that the con-
structed history SG′ is legal. We do so in three steps. First, we consider a history
S′′, which is constructed by removing from SG′ all aborted operation executions,
and show that it is equivalent to S′. Then, we use a lemma (Lemma 3 in the Ap-
pendix) to prove that S′ is legal. The lemma states that given two sequential
histories S1 and S2 which only differ in that S2 features some aborted operation
oa and S1 does not, S1 is legal if and only if S2 is legal. In consequence S′′ is also
legal. Finally, we use the lemma again to prove that SG′ is legal.

Since SG′ is a sequential history equivalent to H̄ , SG′ is legal, and SG′ respects
the real-time order of H̄ , therefore H is final-state real-time linearizable which
concludes the proof.

Note that an aborted operation is substantially different from an aborted
transaction as one can witness the results of partial transaction execution (e.g.,
a return value of a TM operation o executed prior to the transaction’s abort).
Hence, commit-real-time opacity and real-time opacity are not equivalent.

38 4 New Correctness Properties for Replication Schemes

4.5 Relationship Between �-Opacity and �-Linearizability

In order to show the relationship between �-opacity and �-linearizability, we in-
troduce a gateway shared object, whose sole purpose is to simply execute a trans-
actional program as a single operation thus hiding the results of the intermediate
steps of transactional execution from the client.

A gateway shared object G is an abortable shared object implemented using
a TM object M , as shown in Algorithm 1. The interface of G consists of a single
operation G.perform(progk) →i {vk,⊥} where progk is a program executed as a
single transaction Tk by process pi. progk consists of steps that either perform
some local computation, operate on t-objects managed byM , or control the flow
of the transaction. Upon invocation of perform(progk), a process pi performs
steps of progk one by one starting from the first one. The effects of step execu-
tion are recorded in a special variable called context (line 2). It stores values of
temporary variables, state of the program execution (e.g., which step is next),
and any other information required to execute the program (as defined by progk
itself). All the operations on t-objects, which form a part of some step, are ex-
ecuted by pi through object M (we assume that each step contains at most one
such operation). More precisely, for every call of operation op on a t-object x in
progk, pi invokes M.texec(Tk, x.op) (line 7), where Tk is a transaction spawned
to execute progk. Since the execution of the step was substituted by an opera-
tion on M , its execution is simulated to update the context variable as if the step
was executed directly (line 9). To this end we use the return value produced by
M.texec(Tk, x.op). The first execution of the texec operation marks the start of
transaction Tk. If texec returns Ak, the execution of the rest of progk is cancelled,
Tk is aborted and ⊥ becomes the return value for the G.perform(progk) call (line
8). Transaction Tk is aborted on demand, if the execution of progk produces a
step containing an abort command (line 12). The execution of the last opera-
tion specified within progk is followed by the invocation ofM.tryC (Tk) (line 14),
which attempts to commit the current transaction. If this operation succeeds
and returns Ck, then G.perform(progk) returns context (line 16); otherwise, ⊥ is
returned (line 15).

The sequential specification (Q, q0, INV ,RES , δ) of G is given as follows:

• Q is a set of all possible combined states of all t-objects in M ,

• q0 is the combined initial state of all t-objects in M ,

• INV is the set containing all operations perform(progk), where progk is any
(correct) transactional program that eventually terminates,

• RES is the set of all possible results obtained by executing any progk,

• δ is a transition relation such that δ ⊆ Q× INV × RES ×Q.

(q, op, res, q′) ∈ δ if either q = q′, op = perform(progk) and res = ⊥, or op =

perform(progk) and res = vk (vk 6= ⊥), which is obtained as a result of execution
of progk on t-objects managed by M in state q. Then, q′ is the state of (possibly)

4.5 Relationship Between �-Opacity and �-Linearizability 39

Algorithm 1 Implementation of a gateway shared object G for process pi
1: function PERFORM(text progk)
2: context ← null
3: while true do
4: step ← FETCHNEXTSTEP(progk, context)
5: if step is local computation then context ← EXECUTE(step, context)
6: if step involves an operation op on a t-object x then
7: v ←M.texec(Tk, x.op)
8: if v = Ak then return ⊥
9: context ← SIMULATESTEPEXECUTION(step, context , v)

10: if step is an abort command then
11: M.tryA(Tk)
12: return ⊥
13: if step is null (there are no more steps in progk) then
14: v ←M.tryC (Tk)
15: if v = Ak then return ⊥
16: return context

modified t-objects in M .
We allow context to contain any data obtained from the execution of progk.

In particular, it may reflect the whole interaction between G and M during the
execution of transaction Tk (if the result of every transactional operation is stored
in a separate local variable held within context). However, if for any reason Tk
aborts, no results of partial execution of progk (and thus Tk), are returned to pi.
This way the sequential specification ofG is never compromised, in case Tk does
not commit.

Note that by allowing a broad definition of context , we aimed at providing
a definition of G, which is as general as possible. This approach allowed us to
avoid the need for defining a programming language and embedding the whole
reasoning in its framework as in [32].

Theorem 5. Let M be a TM object and let G be a gateway shared object of M . If M is
�-opaque then G is �-linearizable.

Proof sketch. In order to show that G is �-linearizable, we need to prove that
any finite history produced by G is final-state �-linearizable (by Corollary 2).
Therefore, we assume some finite implementation history H , and show how
to construct a sequential history SG of events on G that is equivalent to H̄G, a
completion of HG = H|G. Next, we prove that SG is legal. Finally, we show that
SG respects the �-order of H̄G.

In order to obtain history SG we first construct a completion H̄G of HG.
Then we take SM , a t-sequential t-history equivalent to a completion H̄M of
HM = H|M and rearrange the operation executions in H̄G so that their order
corresponds to the order of transactions in SM . We say that SG is induced by SM .

To prove the legality of SG we start by considering Tl, the last committed
transaction in SM (from assumptions we know that all transactions in SM are
legal, thus also the last one is legal). We use Tl to obtain a t-sequential t-history
vis l = visibleSM

(Tl) which consists of all committed transactions in SM . Then
we show by a contradiction that vis l is equal to α|M , where α = 〈stepsH(o1) ·
stepsH(o2) · ...〉|M is a sequence of events such that stepsH(ok) returns all events

40 4 New Correctness Properties for Replication Schemes

executed in (the implementation history) H as a part of a committed operation
execution of operation G.perform(progk).

Since for any t-object x, vis l|x satisfies the sequential specification of x, so
does α|M . Note that α|M is legal because any progk executed through G oper-
ates in isolation and may interact with other processes only through t-objects (G
allows only local computation besides operations on M). Now to prove that SG
is legal it suffices to show that inserting aborted operation executions to α|M
does not break the legality of the history. This can be proved using the specifi-
cation of G.

Finally, by construction of SG it is easy to show that the matching order re-
lations between transactions in SM and operation executions in SG are main-
tained.

Theorem 5 allows us to reason about the properties of a TM system, when
transactions are invisible to processes using the system. This result is particu-
larly important when we consider a system built with several TM implementa-
tions, each one used by clients as a simple (non-transactional) shared object.

Note that an implication opposite to the one from Theorem 5 does not neces-
sarily hold. The reason for this stems from the results presented in [105] and in
[34]. In the former, the authors prove that when none of the intermediate results
of a transaction execution are available after the transaction aborts, TMS1 is nec-
essary and sufficient for observational refinement (TMS1 allows live and aborted
transactions to observe a different view of past transactions, while committed
transactions share a consistent view of the already committed ones, see also Sec-
tion 2.2.1). It means that a programmer cannot distinguish between an execu-
tion of a transaction on a TM object that satisfies TMS1 and an execution of the
same transaction on an abstract TM object that would execute all transactions
sequentially. In the latter paper, the authors show that TMS1 is incomparable
with opacity, i.e., TMS1 admits some executions that opacity does not and vice
versa. We believe that a notion of a gateway shared object can be considered as
an alternative to observational refinement for comparing guarantees offered by
TM systems as seen by external clients.

Corollary 3. Let M be a TM object and let G be a gateway shared object of M . If M is
commit-real-time opaque, then G is real-time linearizable.

Proof. The proof follows directly from Theorems 4 and 5.

This result shows that a TM system which allows transactions to read stale
data is still real-time linearizable if it eventually aborts every such transaction.

5
Basic Replication Schemes

In this chapter we discuss two basic approaches to service (or data) replication:
active and passive replication. In active replication, which we demonstrate using
the State Machine Replication scheme based on TOB, a request is executed by each
replica independently. On the other hand, in passive replication, demonstrated
using the Deferred Update Replication scheme, which is also based on TOB, a re-
quest is executed only by a single replica and then the updates produced during
request execution are propagated to other service processes, so they can update
their state accordingly.

SMR and DUR represent two widely different ways of replicating a service
(or data) and they function as a base for more complex replication schemes, as
discussed in Section 2.1. Both schemes have their advantages and disadvan-
tages, which we explore in this chapter. Also, they offer different guarantees, as
we formally prove.

We present SMR in two variants: basic and optimized called SMR with Locks
(LSMR). Compared to SMR, LSMR allows read-only requests to be executed con-
currently and without inter-process synchronization. Although this optimiza-
tion seems relatively straightforward, it is rarely found in real-life implementa-
tions. We discuss it to show how allowing read-only requests to be processed
without inter-process synchronization impacts the guarantees offered by LSMR
compared to SMR.

We follow the description of algorithms from [1]. Our proofs of correctness
for SMR, LSMR and DUR, which are given in this chapter, can be found in [106]
and [3]. The comparison of the schemes summarizes the work presented in [5]
and [2]. The presented results of the experimental evaluation have been featured
in the latter paper.

42 5 Basic Replication Schemes

5.1 State Machine Replication

In this section we discuss the SMR scheme in its basic version. We also formally
prove the guarantees provided by SMR.

5.1.1 Specification

In SMR [16] [17] [18] a service is fully replicated by every process. All replicas
start from the same initial state and advance by processing all requests in the
same order. Naturally, execution of each request has to be deterministic. Oth-
erwise, the consistency among replicas could not be preserved as the replicas
might advance differently. The crucial element of this scheme is the protocol
used for dissemination of requests among replicas. The required semantics is
provided by the TOB protocol [49] (see Section 3.2).

In our pseudocode, which is given in Algorithm 2, we assume that each
request is handled by a separate thread. Each client request consists of three
elements: id , a unique identification number, prog , which specifies the opera-
tions to be executed and args , which holds the arguments needed for the pro-
gram execution. Prior to execution, a request is broadcast to all replicas using
TO-BROADCAST (line 3). Only then each replica executes the request indepen-
dently (line 6). After the request is executed, the thread that originally received
the request returns the response to the client (line 4).

Some additional data structures holding a history of clients’ requests have to
be maintained to provide fault-tolerance in case of the loss of request/response
messages. For brevity we omit them in the pseudocode.

5.1.2 Characteristics

SMR does not offer transactional semantics since it does not support constructs
such as rollback and retry, which can be used to control the execution flow. How-
ever, the execution of a request by SMR can be regarded as a rudimentary trans-
action that is allowed to only commit.

Algorithm 2 State Machine Replication for process pi
Thread q on request r from client c (executed on one replica)
1: response resq ← ⊥
2: upon INIT
3: TO-BROADCAST r // blocking
4: return (r.id , resq) to client c

The main thread of SMR (executed on all replicas)
5: upon TO-DELIVER (request r)
6: response res ← execute r.prog with r.args
7: if request with r.id handled locally by thread q then
8: resq ← res

5.2 State Machine Replication with Locks 43

Naturally, the program specified by a request needs to be deterministic. Oth-
erwise replicas would diverge. This requirement can often be a very limiting one
because even simple operations, such as generating a log entry with a times-
tamp, must be handled carefully.

Although SMR does not allow for any degree of parallelism in request ex-
ecution, it performs surprisingly well (see the performance analysis of SMR in
Section 5.4). It is because execution of a request happens directly on objects in
memory (unlike in DUR, in which access to shared objects happens through the
complicated transactional machinery that adds a substantial overhead to a re-
quest execution, see Section 5.3).

5.1.3 Correctness

In order to reason about correctness of SMR, typically it is modelled as a shared
object which exports a set of operations and has a well defined sequential specifi-
cation. Many authors state that SMR satisfies linearizability (see, e.g., [17], [107]).
However, none of the papers we are aware of feature a formal proof of SMR’s
correctness. Therefore, we present a formal result on SMR’s correctness and
show that it satisfies real-time linearizability. The full proof of the theorem can
be found in Appendix B.1.

Theorem 6. State Machine Replication satisfies real-time linearizability.

Proof sketch. In order to prove that SMR satisfies real-time linearizability, we
have to show that for every finite history H produced by SMR, there exists a
sequential legal history S equivalent to some completion H̄ of H , such that S
respects the real-time order of H̄ .

Constructing the sequential history S is easy, because we know that replicas
execute all requests sequentially and in the order consistent with the order of
message delivery established by TOB. Naturally then S also respects the real-
time order of H̄ and is trivially legal.

5.2 State Machine Replication with Locks

In SMR in its basic version, every request is executed by all processes. Doing
so may seem wasteful, especially for requests which do not change the state of
the system, i.e., for requests that are a priori known to be read-only. Therefore,
now we show SMR with Locks (LSMR), which allows read-only requests to be
executed only by one replica.

5.2.1 Specification

In LSMR, whose pseudocode is given in Algorithm 3, every request is marked
either as a read-only or as a potentially updating. In the first case, a request can

44 5 Basic Replication Schemes

Algorithm 3 State Machine Replication with Locks for process pi
1: integer LC ← 0

Thread q on request r from client c (executed on one replica)
2: response resq ← ⊥
3: upon INIT
4: if r.prog is read-only then
5: wait until LC ≥ r.clock
6: r-lock { resq ← execute r.prog with r.args } // readers-writer lock, read-mode
7: else
8: TO-BROADCAST r // blocking
9: return (r.id ,LC , resq) to client c

The main thread of LSMR (executed on all replicas)
10: upon TO-DELIVER (request r)
11: w-lock { LC ← LC + 1 // readers-writer lock, write-mode
12: response res ← execute r.prog with r.args }
13: if request with r.id handled locally by thread q then
14: resq ← res

be executed by only one replica, as doing so will not result in any changes to the
local or replicated state. On the other hand, potentially updating requests are
executed as in SMR, i.e., first they are broadcast using TOB to all replicas and
then executed by all replicas independently.

Note that allowing a read-only request issued by a client to be executed by
only one replica without inter-process synchronization may result in a situa-
tion where the client does not observe the changes performed by the previous
requests he issued. Such a situation may occur when a client first issues a po-
tentially updating request r1 to some replica pi, receives a response and sub-
sequently issues a read-only request r2 to a replica pj 6= pi, which slightly lags
behind others (pj misses some updates compared to the up-to-date replicas, e.g.,
due to some messages being still in transit). In particular, pj might have not yet
delivered (through TOB) the updating request r1, which has been already pro-
cessed by pi, and whose corresponding response message has been returned to
the client. As a result, the execution of r2 on pj does not observe the changes
performed by r1, i.e., a request issued previously by the same client. To mitigate
such situations, we introduce a simple mechanism based on logical clocks. To
this end, LSMR maintains a special global variable LC initialized to 0 (line 1).
LC represents the logical clock, which is incremented (line 11) every time an
updating request is executed (line 12). LC allows the process to track whether
its state is recent enough to execute the client’s request. It is done by comparing
the value of LC with the value of the clock field of the client request (line 5).
The check is not necessary in case of an updating request because disseminat-
ing it through TOB guarantees that it always executes on the most recent state.1

After a request is executed, the current value of LC is returned to the client in
the response message (line 9). This way, the client may use this value in the
subsequent request he issues.

Note that execution of read-only and updating requests is guarded by a lock

1For this very reason, LC does not need to be maintained in SMR.

5.2 State Machine Replication with Locks 45

(lines 6 and 11–12). This way we guarantee, that the state of the system does not
change during execution of a read-only request (execution of potentially updat-
ing requests is serialized, because requests delivered using TOB are processed
as non-preemptable events). Since read-only requests do not change the state of
the service, multiple read-only requests can be allowed to execute concurrently.
To this end LSMR uses a readers-writer lock (in the pseudocode r-lock represents
the lock in the readers mode while w-lock represents the lock in the writer mode,
lines 6 and 11–12).

5.2.2 Characteristics

Naturally, optimizing the execution of read-only requests may greatly improve
the performance of SMR, especially when such requests constitute the vast ma-
jority of requests processed by a service (which represents a typical case, see,
e.g., [27]). Note that the information about the type of request (read-only or up-
dating) is not always easily available prior to request execution. It is one of the
reasons why LSMR implementations are not common in practice [108]. Also,
LSMR is significantly more complex than SMR and still offers only limited scal-
ability (all updating requests need to be executed sequentially by all replicas as
in SMR). Also, as we show below, allowing read-only requests to be executed
without any inter-process synchronization weakens the provided guarantees.

5.2.3 Correctness

We can show that LSMR does not satisfy real-time linearizability using a simi-
lar example as in Section 5.2.1, but featuring two (independent) clients issuing
requests r1 and r2. The full proofs of the following theorems are available in
Appendix B.2.

Theorem 7. State Machine Replication with Locks does not satisfy real-time lineariz-
ability.

Proof sketch. We show that LSMR does not satisfy real-time linearizability by
giving a counter example involving three processes and two different requests.
An updating request r1 is broadcast using TOB to all three replicas but is first
delivered and executed only by processes p1 and p2 (typically TOB requires that
a majority of processes needs to receive a message before it can be delivered, see
Section 3.3). Before r1 reaches p3 but after both p1 and p2 finish execution of r1,
p3 executes locally a read-only request r2 (issued by a client who did not issue
r1). Naturally r2 needs to be serialized before r1 for the serialization to be legal.
However, such serialization does not respect the real-time order of the execution
and thus LSMR does not satisfy real-time linearizability.

Corollary 4. State Machine Replication with Locks does not satisfy commit-time lin-
earizability.

46 5 Basic Replication Schemes

Proof. The proof follows directly from Theorem 7 and Theorem 4 (commit-real-
time linearizability is equivalent to real-time linearizability).

As we now show below, LSMR satisfies write-real-time linearizability, which
is slightly weaker than real-time linearizability.

Theorem 8. State Machine Replication with Locks satisfies write-real-time lineariz-
ability.

Proof sketch. In order to prove that LSMR satisfies write-real-time linearizability,
we have to show that for every finite history H produced by LSMR, there exists
a sequential legal history S equivalent to some completion H̄ of H , such that S
respects the write-real-time order of H̄ .

The crucial part of the proof concerns a proper construction of S. We do so
in the following way. Let us start with an empty sequential history S′. Now
we add to S′ all updating operation executions from H̄ . However, we do so
according to the order of the (unique) numbers associated with each updating
operation execution. The number associated with each updating operation exe-
cution ok of some request rk is the value of the LC variable from the time when
the operation execution is being processed by the replica (i.e., during execution
of rk). We show that this number is the same for each replica and that it unam-
biguously identifies the operation execution (thanks to the use of TOB as the sole
mechanism used to disseminate messages among replicas and the fact that LC
is incremented prior to execution of every potentially updating request). Then,
one by one, we add to S′ all read-only operation executions from H̄ . For every
such operation execution ok of some (read-only) request rk, we insert it in S′ im-
mediately after a potentially updating operation execution ol of some request rl,
such that the value set to LC (on the replica that executes rk) just prior to execu-
tion of rl is equal to the value of LC during execution of rk. It means that rl is the
last potentially updating request processed by the replica prior to execution of
rk (note that rl might not exist if rk is executed on the initial state of the replica).
Now we consider independently each (continuous) subhistory of S′ which con-
sists only of read-only operation executions (i.e., roughly speaking, we consider
the periods of time in between execution of updating requests). For each such
subhistory, when necessary, we rearrange the read-only operation executions so
that their order respects the order in which these operation executions appear in
subhistory H̄|pi, for every process pi. Then S = S′.

By construction of S, it is easy to show that S respects the write-real-time
order of H . Then we show how to construct the witness history W for S. Doing
so is straightforward because replicas execute all potentially updating requests
sequentially and in the order of message deliveries.

The consequences of having weaker guarantees in LSMR compared to SMR
can be illustrated using a similar scenario to the one described in Section 4.1.
When clients can communicate with each other through channels outside the
replicated service, the following situation can occur: a client c1 connected to a
lagging replica can receive from it a response, which is not consistent with the

5.3 Deferred Update Replication 47

more up-to-date information c1 received from some other client c2 (c2 is con-
nected to a different, more up-to-date replica). This problem can be mitigated
by having the clients exchange the values of the logical clock when communicat-
ing outside of LSMR. More precisely, when client c1 with the logical clock value
v1 receives a message from client c2 outside of LSMR and the message carries v2,
i.e., the current value of the logical clock of c2, then c1 changes v1 to max (v1, v2)

and uses the new value in the subsequent request he issues to LSMR. However,
in principle using this technique can be difficult, because clients can communi-
cate indirectly, through several other services.

5.3 Deferred Update Replication

In this section, we focus on the DUR protocol. We follow the description of
DUR in its simplest form, as in [1] (see also [7], [3] and [4]). We then formally
prove DUR’s guarantees. Finally, we discuss an important optimization of DUR,
which can greatly improve its performance.

5.3.1 Specification

Unlike SMR and LSMR, DUR [15] is a multi-primary-backup approach, in which
any request (so also an updating request) is executed only by a single replica and
all replicas can execute different requests concurrently (also in separate threads
on multiple processor cores). After a request is executed, the replica that exe-
cuted it issues the resulting modifications to other replicas so they can update
their state accordingly. In this case, we have to resolve any conflicts between
concurrently processed requests that access the same data items in a non-trivial
manner (at least one of the requests modifies the data item). This is where trans-
actions come into play. Then, each request is executed as an atomic transaction
which, from the client’s point of view, runs sequentially with respect to any other
concurrent transactions in the system.

We focus on DUR in its basic version, in which all data items (shared objects)
managed by the replicated service are fully replicated on each replica. During
the execution phase, a transaction (spawned to execute a client request) operates
in isolation on local copies of shared objects. The transaction’s execution phase is
followed by the committing phase where the processes synchronize and certify
transactions. Transaction certification means checking if a (committing) transac-
tion does not conflict with any other concurrent transactions (i.e., the transaction
had not read any shared objects modified by a concurrent but already committed
transaction). It is the only moment in a transaction’s lifetime that requires replica
synchronization. Upon successful certification, replicas update their state. Oth-
erwise the transaction is rolled back and restarted. As mentioned in Section 2.1,
DUR can use various protocols for transaction certification, but here we discuss

48 5 Basic Replication Schemes

DUR relying on TOB, which avoids blocking and limits the number of costly
network communication steps [49].

In order to ensure that a live transaction always executes on a consistent
state, we perform partial transaction certifications during transaction execu-
tion. However, these procedures are done only locally and do not involve any
inter-replica synchronization. Also note that for simplicity, we assume that each
shared object (replicated on every replica) can only be read or written to.

Consider the pseudocode for DUR which is given in Algorithm 4. Clients
interact with the replicated service running on DUR in a somewhat similar way
as in SMR and LSMR. However, now we require that prog (submitted as part
of the request) at some point calls the COMMIT procedure thus indicating that
transaction execution is finished. As in case of LSMR, we require that there is
an additional element passed along with every client request (the clock variable,
line 20) and every client response (the current value of the LC variable, line 22,
see below).

Each DUR process maintains two global variables. The first one, LC , repre-
sents the logical clock which is incremented every time a process applies updates
of a transaction (line 52). As in LSMR, LC allows the process to track whether its
state is recent enough to execute the client’s request (line 20). Additionally, LC is
used to mark the start and the end of the transaction execution (lines 25 and 53).
The transaction’s start and end timestamps, stored in the transaction descriptor
(line 18), allow us to reason about the precedence order between transactions.
Let H be some execution of DUR, Ti and Tj some transactions in H and ti and
tj be their transaction descriptors, respectively. Then, ti.end ≤ tj .start holds
true only if Ti ≺r

H Tj ; otherwise Ti and Tj are concurrent.2 The second variable,
Log , is a set used to store the transaction descriptors of committed transactions.
Maintaining this set is necessary to perform transaction certification.

DUR detects conflicts among transactions by checking whether a transaction
Tk that is being certified read any stale data (shared objects modified by a con-
current but already committed transaction).3 To this end, DUR traces accesses
to shared objects independently for each transaction. The identifiers of objects
that were read and the modified objects themselves are stored in private, per
transaction, memory spaces. On every read, an object’s identifier is added to the
readset (line 30). Similarly, on every write a pair of the object’s identifier and the
corresponding object is recorded in the updates set (line 36). Then, the CERTIFY

function compares the given readset against the updates sets of all committed
transactions in Log which are concurrent with Tk. If it finds any non-empty in-
tersection of the sets, Tk is aborted and forced to retry; otherwise, it can proceed.
Note that a check against conflicts is performed upon every read operation (line
31). This way Tk is guaranteed to always read from a consistent snapshot.

When a transaction’s code calls COMMIT (line 37), the committing phase is

2Moreover, if both Ti and Tj are committed updating transactions and ti.end > tj .start , then
Ti and Tj must not be in conflict (as otherwise Tj would be aborted).

3Note that two concurrent transactions which modify the same data item are not in conflict,
unless the transaction that tries to commit later read any data modified by the transaction that
commits first.

5.3 Deferred Update Replication 49

initiated. If Tk is a read-only transaction (Tk did not modify any objects), it can
commit straight away without performing any further conflict checks or process
synchronization (line 39). All possible conflicts would have been detected ear-
lier, upon read operations (line 31). If Tk is an updating transaction, it is first
certified locally (line 42). This step is not mandatory, but allows the process to
detect conflicts earlier, and thus sometimes avoids costly network communica-
tion. Next, the transaction’s descriptor containing readset and updates is broad-
cast to all processes through TOB using the TO-BROADCAST primitive (line 44).
The message is delivered in the main thread, where the final certification takes
place (line 51). This procedure ultimately determines the fate of the transaction,
i.e., whether to commit or to abort it. Upon successful certification, the processes
apply Tk’s updates and commit Tk (lines 52–55). Otherwise, Tk is rolled back and
reexecuted by the same process.

To manage the control flow of a transaction, the programmer can use two
additional procedures: ROLLBACK and RETRY. ROLLBACK (line 47) stops the
execution of a transaction and revokes all the changes it performed so far. RETRY

(line 45) forces a transaction to rollback and restart (the outcomeq variable is
initialized with failure, thus the condition in line 27 is evaluated to true).

For clarity, we make several simplifications. Firstly, we use a single global
(reentrant) lock to synchronize operations on LC (lines 25, 52, 53), Log (lines
10 and 54) and the accesses to transactional objects (lines 34 and 55). Secondly,
we allow Log to grow indefinitely. Log can easily be kept small by garbage col-
lecting information about the already committed transactions that ended before
the oldest live transaction started its execution in the system. Thirdly, we use the
same certification procedure for both the certification test performed upon every
read operation (line 31) and the certification test that happens after a transaction
descriptor is delivered to the main thread (line 51). In practice, doing so would
be very inefficient, because upon every read operation we check for the con-
flicts against all the concurrent transactions (line 10), thus performing much of
the same work again and again. However, these repeated actions can be easily
avoided by associating the accessed shared objects with a version number equal
to the value of LC at the time the objects were most recently modified.

5.3.2 Characteristics

In DUR requests are executed as independent transactions which operate in iso-
lation on a consistent snapshot. A programmer can use the rollback and retry con-
structs to better manage the control flow of the transaction’s execution. These
constructs can be used to suspend execution of a transaction until a certain con-
dition is met.

Note that a DUR transaction cannot execute irrevocable operations, i.e., opera-
tions whose side effects cannot be rolled back (such as local system calls). It is
because, a transaction in DUR can be aborted at any point during execution or
upon certification and then restarted.

A transaction may be aborted multiple times before it eventually commits.

Algorithm 4 Deferred Update Replication for process pi
1: integer LC ← 0
2: set Log ← ∅
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid , obj) ∈ t.updates then
5: value ← obj
6: else
7: value ← retrieve object oid
8: return value
9: function CERTIFY(integer start , set readset)

10: lock { L← {t ∈ Log : t.end > start} }
11: for all t ∈ L do
12: writeset ← {oid : ∃(oid , obj) ∈ t.updates}
13: if readset ∩ writeset 6= ∅ then
14: return failure

15: return success

Thread q on request r from client c (executed on one replica)
16: enum outcomeq ← failure // type: enum { success, failure }
17: response resq ← null
18: txDescriptor t← null // type: record (id, start, end, readset, updates)
19: upon INIT
20: wait until LC ≥ r.clock
21: TRANSACTION()
22: return (r.id ,LC , resq) to client c
23: procedure TRANSACTION
24: t← (a new unique id , 0, 0, ∅, ∅)
25: lock { t.start ← LC }
26: resq ← execute r.prog with r.args
27: if outcomeq = failure then
28: TRANSACTION()
29: function READ(objectId oid)
30: t.readset ← t.readset ∪ {oid}
31: lock { if CERTIFY(t.start , {oid}) = failure then
32: RETRY()
33: else
34: return GETOBJECT(t, oid) }
35: procedure WRITE(objectId oid , object obj)
36: t.updates ← {(oid ′, obj ′) ∈ t.updates : oid ′ 6= oid} ∪ {(oid , obj)}
37: procedure COMMIT
38: stop executing r.prog
39: if t.updates = ∅ then
40: outcomeq = success
41: return
42: if CERTIFY(t.start , t.readset) = failure then
43: return
44: TO-BROADCAST t // blocking
45: procedure RETRY
46: stop executing r.prog

47: procedure ROLLBACK
48: stop executing r.prog
49: outcomeq ← success

The main thread of DUR (executed on all replicas)
50: upon TO-DELIVER (txDescriptor t)
51: if CERTIFY(t.start , t.readset) = success then
52: lock { LC ← LC + 1
53: t.end ← LC
54: Log ← Log ∪ {t}
55: apply t.updates }
56: if transaction with t.id executed locally by thread q then
57: outcomeq ← success

5.3 Deferred Update Replication 51

The number of aborts depends on the level of contention, i.e., the number of
other, concurrent updating transactions which access the same data. When con-
tention is low, transactions sporadically need to be reexecuted. Then the over-
all cost of transaction reexecution is much lower than the cost of scheduling
transactions so they never run into conflicts, as in a pessimistic (lock-based) ap-
proach to transaction execution. On the other hand, when contention is high,
a lot of resources such as CPU or network can be wasted. Note that in an ex-
treme case, one transaction’s commit causes aborts of all concurrently executing
transactions thus forcing them to restart. Then, execution of all transaction’s is
effectively sequential (for detailed analysis see [2]).

Although DUR executes requests concurrently, transaction certification and
the subsequent process of applying updates (in case of successful certification)
happens sequentially. Therefore the scalability of DUR is limited by the capabil-
ity of the main threads of replicas to process updates. However, our experience
shows that often there are other factors that limit the performance (and scalabil-
ity) of DUR, e.g., insufficient network bandwidth (see Section 5.4).

5.3.3 Correctness

Now we formally prove DUR’s guarantees. We use DUR as specified in Algo-
rithm 4, but we consider only t-histories of DUR, i.e., histories limited to events
that are related to operations on t-objects and controlling the flow of transactions
such as commit and abort events. In this sense, we treat the implementation of
DUR as some TM object M , and reason about t-histories H|M , in a similar way
to which we do it in Section 4.5. As we argue in Section 2.1, strong similarities in
the way transactions are processed can be found between DUR and more com-
plex replication schemes such as Postgres-R [39], E-DUR [10] and PolyCert [40].
Therefore, the results presented below are also applicable for these systems. The
full proofs of the following theorems are available in Appendix B.3.

Theorem 9. Deferred Update Replication does not satisfy write-real-time opacity.

Proof sketch. The proof follows a counter example similar to the one presented
in Section 4.1.

Corollary 5. Deferred Update Replication does not satisfy real-time opacity.

Proof. The proof follows directly from Theorem 9 and definitions of write-real-
time opacity and real-time opacity (real-time opacity is strictly stronger than
write-real-time opacity).

Theorem 10. Deferred Update Replication satisfies update-real-time opacity.

Proof sketch. In order to prove that DUR satisfies update-real-time opacity, we
have to show that (by Corollary 1) for every finite t-historyH produced by DUR,
there exists a t-sequential t-history S equivalent to H̄ (some completion of H),

52 5 Basic Replication Schemes

such that S respects the update-real-time order of H and every transaction Tk in
S is legal in S.

The crucial part of the proof concerns a proper construction of S. We do
so in the following way. Let us start with an empty t-sequential t-history S′.
Now we add to S′ t-histories H̄|Tk of all committed updating transactions Tk
from H̄ . However, we do so according to the order of the (unique) numbers
associated with each such transaction Tk (with transaction descriptor tk). The
number associated with Tk is the value of tk.end . This value is equal to the
value of the LC variable of the replica that processes the updates of Tk upon
committing Tk. We show that this number is the same for each replica and that
it unambiguously identifies the operation execution (thanks to the use of TOB as
the sole mechanism used to disseminate messages among replicas and the fact
that LC is incremented upon commit of every updating transaction). Then, one
transaction at a time, we add to S′ all operations of all aborted and read-only
transactions from H̄ . For every such transaction Tk (with transaction descriptor
tk), we insert H̄|Tk in S′ immediately after operations of a committed updating
transaction Tl (with transaction descriptor tl), such that tk.start = tl.end . It
means that Tl is the last committed updating transaction processed by the replica
prior to execution of Tk (note that Tl might not exist if Tk is executed on the
initial state of the replica). Now we consider independently each (continuous)
sub-t-history of S′ which consists only of operations of read-only and aborted
transactions (i.e., roughly speaking, we consider the periods of time in between
commits of updating transactions). For each such sub-t-history, when necessary,
we rearrange the operations of the read-only and aborted transactions so that
their order respects the order in which these operation executions appear in sub-
t-history H̄|pi, for every process pi. Because we always consider all operations
of every transaction together, S′ is t-sequential. Then S = S′.

By construction of S, it is easy to show that S respects the update-real-time
order of H . Then we show by a contradiction that there does not exist a transac-
tion in S that is not t-legal, hence every transaction in S is legal.

Now we can easily show how DUR can be used to build an update-real-time
linearizable system.

Corollary 6. Let G be a gateway shared object implemented using Deferred Update
Replication. Then, G satisfies update-real-time linearizability.

Proof. The proof follows directly from Theorem 5 and Theorem 10.

5.3.4 The Multiversioning Optimization

Multiversioning [109] in an important optimization technique which allows a sys-
tem that implements this optimization to store multiple versions of transactional
objects in a way that is transparent to the programmer. Object versions are
immutable, thus they can be accessed concurrently without any synchroniza-
tion. A transaction uses only one version of any transactional object. The object

5.3 Deferred Update Replication 53

version is always chosen so that effectively a transaction operates on a consis-
tent snapshot of the local state. As a result, read-only transactions never con-
flict (unlike concurrent updating transactions that access the same transactional
objects). Moreover, because read-only transactions are guaranteed to commit,
readset does not have to be maintained for the declared read-only transactions,
i.e., transactions which are known a priori not to perform any updating opera-
tions. Therefore the multiversioning optimization can greatly improve the over-
all performance and scalability of the transactional system when workloads are
dominated by read-only transactions [27].

In Algorithm 5, we show the pseudocode for MvDUR, i.e., DUR with the
multiversioning optimization. Compared to DUR, MvDUR no longer stores
information about committed transactions in Log . Instead, MvDUR maintains
multiple object versions obj for each object identifier oid . Each object version is
paired with a corresponding version number ver . When a transaction commits,
the system atomically creates new versions of all objects modified by the transac-
tion (lines 54–55), all having the same version number assigned, which is equal
to the current value of the logical clock LC .

Compared to DUR, there is also a new function GETVERSION, which takes
two arguments oid and notNewerThan and retrieves a version obj of an object
identified with oid that is the most recent among all those object versions that
have a version number lower than or equal notNewerThan (lines 2–4). It can be
used to read from a consistent snapshot of the system and return the most recent
object version that existed in the system up to a given moment in time. This way
all reads which are performed by a transaction are consistent and no conflict
checks are necessary. Hence, as mentioned before, read-only transactions are
guaranteed to always commit and declared read-only transactions do not need
to record their accesses in the readset (line 33).

The transaction certification phase in MvDUR is different and much more
efficient than in DUR. Instead of checking a transaction’s readset against the
updates sets of (possibly many) committed concurrent transactions, for each ob-
ject read by the committing transaction the certification procedure simply com-
pares the committing transaction’s start timestamp with the version numbers
of objects stored by the replica. If the most recent version of a read object has a
version number which is greater than the transaction’s start timestamp, then a
conflict exists–i.e., a new version was created after the transaction had already
started execution. Note that the version number of an object in MvDUR directly
corresponds to the value of the end field of a transaction descriptor of an already
committed updating transaction in DUR.

The committing phase in MvDUR is similar to DUR’s one. Both algorithms
differ in the way each replica applies transaction updates. In MvDUR, replicas
update their state by adding new object versions (lines 54–55). For this, we have
to use locks since these operations must be done atomically. However, in prac-
tice MvDUR can be implemented in a way that avoids using locks altogether
(by, e.g., exploiting the visibility rules of the memory model).

In our pseudocode, no object version is ever removed from the system. How-

Algorithm 5 Deferred Update Replication with Multiversioning for process pi
1: integer LC ← 0
2: function GETVERSION(objectId oid , integer notNewerThan)
3: lock { return (obj , ver) such that obj is a version of object oid whose version number ver
4: is the highest available such that ver ≤ notNewerThan }
5: function GETOBJECT(txDescriptor t, objectId oid)
6: if (oid , obj) ∈ t.updates then
7: value ← obj
8: else
9: (obj , ver)← GETVERSION(oid , t.start)

10: value ← obj

11: return value
12: function CERTIFY(integer start , set readset)
13: for all oid ∈ readset do
14: (obj , ver)← GETVERSION(oid ,∞)
15: if ver > start then
16: return failure

17: return success

Thread q on request r from client c (executed on one replica)
18: enum outcomeq ← failure // type: enum { success, failure }
19: response resq ← null
20: txDescriptor t← null // type: record (id, start, end, readset, updates)
21: upon INIT
22: wait until LC ≥ r.clock
23: TRANSACTION()
24: return (r.id ,LC , resq) to client c
25: procedure TRANSACTION
26: t← (a new unique id , 0, 0, ∅, ∅)
27: lock { t.start ← LC }
28: resq ← execute r.prog with r.args
29: if outcomeq = failure then
30: TRANSACTION()
31: function READ(objectId oid)
32: obj ← GETOBJECT(t, oid)
33: if r.prog is not declared-read-only then
34: t.readset ← t.readset ∪ {oid}
35: return obj

36: procedure WRITE(objectId oid , object obj)
37: t.updates ← {(oid ′, obj ′) ∈ t.updates : oid ′ 6= oid} ∪ {(oid , obj)}
38: procedure COMMIT
39: stop executing r.prog
40: if t.updates = ∅ then
41: outcomeq = success
42: return
43: if CERTIFY(t.start , t.readset) = failure then
44: return
45: TO-BROADCAST t // blocking
46: procedure RETRY
47: stop executing r.prog

48: procedure ROLLBACK
49: stop executing r.prog
50: outcomeq ← success

The main thread of DUR (executed on all replicas)
51: upon TO-DELIVER (txDescriptor t)
52: if CERTIFY(t.start , t.readset) = success then
53: lock { LC ← LC + 1
54: for all (oid , obj) ∈ t.updates
55: add obj as a new version of object oid with version number LC }
56: if transaction with t.id executed locally by thread q then
57: outcomeq ← success

5.4 Evaluation 55

ever, a simple garbage collection mechanism can be proposed, as follows. Let
us consider a replica r, and let t be the transaction descriptor of the oldest live
transaction in r (t.start is equal to the the lowest value among all descriptors of
live transactions in r). Let d be the set of all object versions in r whose version
numbers are lower than or equal t.start . Then, for each shared object identified
with oid , all its versions in d excluding the most recent version of oid , can be
safely dropped.

Note that some conflicts between updating transactions are detected earlier
in DUR than in MvDUR. Imagine a scenario in which a replica receives a mes-
sage regarding a transaction Ti and subsequently commits it. After that, a live
transaction Tj executed by the replica attempts to read an object modified by
Ti. In DUR, Tj would be immediately aborted because the certification func-
tion (invoked in line 31) would return failure. On the other hand, in MvDUR
Tj would be free to execute without interruptions until it invokes the COMMIT,
RETRY, or ROLLBACK procedure. However, by using objects whose version num-
bers are strictly lower than the numbers assigned to objects updated by Ti, Tj
always executes on a consistent snapshot. Naturally, one could implement a
simple early conflict detection mechanism, which aborts as soon as possible all
updating transactions deemed to fail the certification test once these transaction
attempt to commit (line 43).

It is easy to see why MvDUR satisfies the same correctness guarantees as
DUR, once we understand that the conflict condition checked during transac-
tion certification is the same as in DUR, although formulated slightly differently,
i.e., using version numbers. It means that given the same set of the already com-
mitted transactions and a committing transaction T , DUR and MvDUR decide
in the same way whether to commit or abort T . Then, the only difference be-
tween DUR and MvDUR lies in that MvDUR commits read-only transactions
which would be aborted in DUR. However, in terms of the provided guaran-
tees, update-real-time opacity, i.e., the property satisfied by DUR, equally treats
(committed) read-only and aborted (read-only or updating) transactions. Hence,
MvDUR also satisfies update-real-time opacity.

5.4 Evaluation

In this section, we present the results of experimental evaluation of SMR and
DUR under different workload types and varying contention levels, obtained
using popular microbenchmarks: Hashtable and Bank. For each benchmark,
we developed a non-replicated service (SeqHashtable and SeqBank) executing re-
quests sequentially on one machine, and a replicated, fault-tolerant counterpart,
where the program code and data structures (hashtable and bank accounts) were
fully replicated on all nodes.

56 5 Basic Replication Schemes

5.4.1 Software and Environment

For tests of SMR and DUR we used JPaxos and Paxos STM (see Section 2.3 for
relevant references). JPaxos implements the basic SMR (and not LSMR) scheme.
It means that JPaxos treats read-only and read-write requests in the same way
and every request is first broadcast and then executed independently by every
replica. Paxos STM, our optimistic distributed transactional memory system, the
DUR scheme and thus can execute requests (transactions) in parallel on many
machines and threads running on multicore processors. Paxos STM employs the
multiversioning optimization so it essentially implements the optimized version
of DUR, which we called MvDUR in the previous section (see Section 5.3.4). Ad-
ditionally, for better performance, Paxos STM implements early conflict detec-
tion and avoids using locks altogether. Both systems use an implementation of
TOB based on Paxos [71]. The TOB protocol is optimized using batching and
pipelining, which bring performance benefits (see e.g., [110]). Batching means
broadcasting a batch of messages (if available) by only one protocol instance.
Pipelining allows the protocol leader to initiate several instances of the protocol
in parallel (as in [71]).

Both JPaxos and Paxos STM allow replicas to crash and later recover and
seamlessly rejoin. Notably, nonvolatile storage is scarcely used during regular
(non-faulty) system operation. During recovery, a recovering replica can obtain
the current state from other live replicas (if at least a majority of replicas is oper-
ational all the time). In this evaluation, we compared the performance of the two
systems during regular (non-faulty) execution. But in all our experiments, we
ran both systems with the recovery protocol enabled, so they were fully fault-
tolerant.

We ran tests in a cluster of 20 nodes connected via 1Gb Ethernet network.
Each node had 28-core Intel E5-2697 v3 2.60GHz processor, 64GB RAM, and
used Scientific Linux CERN 6.7 with Java HotSpot 1.8.0.

The TOB protocol used by JPaxos and Paxos STM was configured to have
at most two concurrent instances of consensus and the batch capacity 64KB. We
experimentally established an optimal number of threads in Paxos STM to be
160 for Hashtable and 280 for Bank (these values were used in all our tests). A
high number of threads (far exceeding the number of physical cores) was nec-
essary to fully exercise the hardware due to threads blocking on I/O (network)
operations. To reduce the overhead caused by client-server communication, the
clients ran on replicas. The number of clients in JPaxos and Paxos STM was
constant per replica, and equal the number of threads in Paxos STM.

5.4.2 Benchmarks

We tested in total 12 different workloads using two microbenchmarks, Hashmap
and Bank.

The Hashtable benchmark features a hashtable of size h = 10000, storing
pairs of key and value, and accessed using the get, put, and remove operations.
A run of this benchmark consists of a load of requests which are issued to the

5.4 Evaluation 57

Request type→ RO requests RW requests
a) Hashtable Default 100 get 8 get + 2 put/remove
b) Hashtable Prolonged 100 get + 1 ms 8 get + 2 put/remove + 1 ms
c) Hashtable High-Contention 100 get 40 get + 10 put/remove
d) Bank 250k read 2 read + 2 write

Figure 5.1: Number of operations per benchmark configuration.

hashtable. We consider two types of requests (transactions): a read-only (RO)
request executes a series of get operations on a randomly chosen set of keys
whereas a read-write (RW) request executes a series of get operations, followed
by a series of update operations (either put or remove). The Hashtable is pre-
populated with h

2 random integer values from a defined range, thus giving the
saturation of 50%. The saturation level is preserved all the time: if a randomly
chosen key points at an empty element, a new value is inserted using put; other-
wise, the element is removed using remove.

Execution times of hashtable operations are negligible compared to network
latency and other factors that overshadow the computational cost of operations
executed within a request. In order to simulate computation-heavy workloads
(requests performing I/O operations, extensive data processing, cryptographic
computation, etc.) request execution time can be prolonged by the active wait
performed after finishing all operations specified by the request type. In order
to simulate optimal utilization of CPU, the active wait can be performed only
by a given number of concurrent threads (e.g., equal the number of processor
cores).

We used three Hashtable configurations: Default, Prolonged, and High-Con-
tention, which represent various workload types, modelled by varying the num-
ber and length of operations in RO and RW transactions (see Figure 5.1). In all
cases, each RO request scans a vast amount of data using 100 get operations.
In contrary, RW requests have fewer operations (10 in Default and Prolonged
and 50 in High-Contention), where 20% are update operations. In Prolonged
Hashtable, each RO and RW transaction is prolonged by 1 ms, which simulates
a computation-heavy workload.

The Bank benchmark features a replicated array of 250k bank accounts. A
run of this benchmark consists of a load of RW and RO requests accessing the
accounts. A RW request transfers money between two accounts, by executing
two get and two put operations on the replicated array. A RO request computes
a balance, by reading all accounts and summing up the funds.

For each benchmark, we examined three test scenarios, obtained by the fol-
lowing mix of RW and RO requests in the test load: 10%, 50%, and 90% of RW
requests. RO requests were known a priori. In Paxos STM, different test sce-
narios allow us to simulate variable contention in the access to data shared by
concurrent transactions.

For all benchmarks, we present throughput–the number of completed requests
(committed transactions) per second. In Paxos STM-based service, concurrent
transactions may conflict and abort, so we also present the abort rate, the percent-

58 5 Basic Replication Schemes

age of transactions aborted due to conflicts out of a total number of transaction
executions. The abort rate gives a useful insight into the level of contention. We
also measured data transfer in Mb/s to witness network congestion, as it is a
limiting factor in many tests.

Note that given a large enough number of concurrent requests, in both SMR
and DUR request execution happens in parallel with message dissemination.
However, typical workloads are never able to fully exercise at the same time the
available processing power and the TOB protocol. Therefore, for every bench-
mark configuration and tested system we tried to asses the intuitive predomi-
nant characteristics of the workload: execution versus TOB dominance. In case
of execution dominance the processing power is the limiting factor: the rate of
execution of requests’ code is insufficient and thus the TOB protocol is not uti-
lized in 100%. On the other hand, in case of TOB dominance, CPUs often wait for
long periods of time until messages are disseminated. Only once the messages
are delivered, the executions of currently processed requests can be completed,
thus freeing the CPUs to process subsequent requests. The precise definitions of
execution or TOB dominance can be found in [2].

5.4.3 Benchmark Results

In Figure 5.1 we present the test results of JPaxos and Paxos STM. The corre-
sponding performance of the non-replicated (and thus fault-prone) sequential
counterparts is given Figure 5.2. To better show the contention levels achieved
by Paxos STM in the tests, we present in Figure 5.3 the average number of con-
flicts per update transaction (krw) for different workloads and cluster configura-
tions. Below we discuss the test results in detail.

Default Hashtable

Default Hashtable replicated using JPaxos executes all requests sequentially on
each node. Thus, it cannot scale with an increasing number of nodes. No re-
quests are ever reexecuted, since they never conflict. However, the performance
of JPaxos is not uniform across the whole range of cluster sizes (see Figure 5.1a).
In all three test scenarios, JPaxos achieves the pick throughput when the network
is nearly saturated (see the network congestion results in Figure 5.1a). Later,
because the network is saturated, the throughput decreases with an increasing
number of nodes, and so the time of broadcasting messages to a higher number
of replicas also grows. On the other hand, before the network gets saturated, the
increase in throughput in the low range of cluster sizes can only be attributed to
gradually better utilization of the TOB protocol.

The results in Figure 5.1a show that the execution time in Default Hashtable
under JPaxos is not dominant, since otherwise the throughput would be con-
stant. Thus, this benchmark is TOB dominated, and processors often wait for
requests to arrive.

JPaxos achieves the highest performance in the 90% RW test scenario that
features the highest percentage of short RW requests, hence we infer that the

a) Hashmap Default b) Hashmap Prolonged

0k

50k

100k

150k

200k

250k

300k

350k

400k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o
 1

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

Paxos STM
JPaxos

0k

50k

100k

150k

200k

250k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o
 1

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

0k

10k

20k

30k

40k

50k

60k

70k

80k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a

ri
o
 5

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

Paxos STM
JPaxos

0k

10k

20k

30k

40k

50k

60k

70k

80k

 4 6 8 10 12 14 16 18 20
S

c
e

n
a

ri
o
 5

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

0k

20k

40k

60k

80k

100k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o

 9
0

%
 R

W
T

h
ro

u
g

h
p

u
t

(r
e

q
/s

)

Number of replicas

Paxos STM
JPaxos

0k

5k

10k

15k

20k

25k

30k

35k

40k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o

 9
0

%
 R

W
T

h
ro

u
g

h
p

u
t

(r
e

q
/s

)

Number of replicas

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20

A

b
o

rt
 r

a
te

Number of replicas

Paxos STM 10%
Paxos STM 50%
Paxos STM 90%

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20

A

b
o

rt
 r

a
te

Number of replicas

0

200

400

600

800

1000

 4 6 8 10 12 14 16 18 20

N

e
tw

o
rk

 c
o
n
g

e
s
ti
o

n
 (

M
b
/s

)

Number of replicas

Paxos STM 10%
Paxos STM 50%
Paxos STM 90%

JPaxos 10%
JPaxos 50%
JPaxos 90%

0

200

400

600

800

1000

 4 6 8 10 12 14 16 18 20

N

e
tw

o
rk

 c
o
n
g

e
s
ti
o

n
 (

M
b
/s

)

Number of replicas

c) Hashmap High-Contention d) Bank

0k

10k

20k

30k

40k

50k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a

ri
o
 1

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Paxos STM
JPaxos

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a

ri
o
 1

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

0k

10k

20k

30k

40k

50k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o
 5

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

Paxos STM
JPaxos

0k

20k

40k

60k

80k

100k

120k

 4 6 8 10 12 14 16 18 20
S

c
e

n
a
ri
o
 5

0
%

 R
W

T
h
ro

u
g

h
p
u

t
(r

e
q

/s
)

Number of replicas

0k

10k

20k

30k

40k

50k

60k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o

 9
0

%
 R

W
T

h
ro

u
g

h
p

u
t

(r
e

q
/s

)

Number of replicas

Paxos STM
JPaxos

0k

20k

40k

60k

80k

100k

120k

140k

 4 6 8 10 12 14 16 18 20

S
c
e

n
a
ri
o

 9
0

%
 R

W
T

h
ro

u
g

h
p

u
t

(r
e

q
/s

)

Number of replicas

0%

20%

40%

60%

80%

100%

 4 6 8 10 12 14 16 18 20

A

b
o

rt
 r

a
te

Number of replicas

Paxos STM 10%
Paxos STM 50%
Paxos STM 90%

0%

1%

2%

3%

4%

5%

6%

7%

8%

 4 6 8 10 12 14 16 18 20

A

b
o

rt
 r

a
te

Number of replicas

0

200

400

600

800

1000

 4 6 8 10 12 14 16 18 20

N

e
tw

o
rk

 c
o
n
g

e
s
ti
o

n
 (

M
b
/s

)

Number of replicas

Paxos STM 10%
Paxos STM 50%
Paxos STM 90%

JPaxos 10%
JPaxos 50%
JPaxos 90%

0

200

400

600

800

1000

 4 6 8 10 12 14 16 18 20

N

e
tw

o
rk

 c
o
n
g

e
s
ti
o

n
 (

M
b
/s

)

Number of replicas

Figure 5.1: Benchmark results for 10%, 50%, and 90% of RW requests (or
transactions). Paxos STM implements the DUR scheme whereas JPaxos
implements the SMR scheme.

Test scenario→ 10% RW 50% RW 90% RW
a) SeqHashtable Default 657785 1002342 2270151
b) SeqHashtable Prolonged 994 996 998
c) SeqHashtable High-Contention 468966 528255 650705
d) SeqBank 40477 73174 208853

Figure 5.2: Throughput of sequential services (req/s).

Cluster size→ 3 6 9 11 14 17 20
a) Hashtable Default

10% RW 0.41 0.89 1.33 1.63 1.98 1.90 2.35
50% RW 0.42 0.91 1.34 1.65 1.95 1.93 2.56
90% RW 0.42 0.91 1.34 1.65 1.97 1.92 2.29

b) Hashtable Prolonged
10% RW 0.15 0.43 0.76 1.00 1.45 2.15 2.42
50% RW 0.39 0.91 1.38 1.68 2.12 2.07 2.49
90% RW 0.41 0.95 1.41 1.72 2.13 2.05 2.46

c) Hashtable High-Contention
10% RW 5.08 10.24 15.91 19.15 18.99 22.05 25.59
50% RW 5.09 10.27 16.02 18.41 18.00 19.74 25.03
90% RW 5.10 10.34 15.98 19.09 20.26 19.85 25.99

d) Bank
10% RW 0.00 0.00 0.00 0.00 0.00 0.00 0.01
50% RW 0.01 0.01 0.02 0.03 0.04 0.05 0.06
90% RW 0.01 0.02 0.03 0.04 0.05 0.07 0.08

Figure 5.3: The number of conflicts per update transaction (krw) in tests
of Paxos STM.

62 5 Basic Replication Schemes

TOB protocol was best utilized in this test compared to other test scenarios, i.e.,
a larger number of requests was delivered per protocol instance.

Conversely to JPaxos, the Default Hashtable benchmark replicated under
Paxos STM gives better performance for a higher percentage of RO requests.
This is not surprising since RO requests do not require agreement coordination,
hence the costly TOB operation. The plots obtained through experimental eval-
uation of Paxos STM have a similar shape as for JPaxos, i.e., the throughput
increases until the network is saturated, and later steadily drops as abort rate
raises (see abort rate in Figure 5.1a). The explanation of this behaviour is the
same as it was in case of Default Hashtable replicated with JPaxos. The abort
rate is low for the 10% RW test scenario, moderate for the 50% RW test scenario,
and high (ranging from 27% up to 67%) when 90% of transactions are updating.
When Paxos STM had the highest throughput, then for all test scenarios on aver-
age every RW transaction was conflicting and had to be reexecuted at least once
before it could commit, as krw ≈ 1.3 (see Figure 5.3). For three replicas, on aver-
age every second RW transaction was executed (krw ≈ 0.4), while for 20 replicas
on average every RW transaction was reexecuted at least twice (krw ≈ 2.3). A
high number of conflicts means wasted resources and lower overall throughput,
which was more than two times worse compared to JPaxos in the same scenario
(in the 10% and 50% RW scenarios, Paxos STM always performed better than
JPaxos).

One can see that Paxos STM in this workload underutilizes the TOB proto-
col for a small number of replicas until the network becomes saturates. Clients,
who are collocated with the replicas, are not able to produce enough requests,
so the number of update transactions (only those require agreement coordina-
tion using TOB) is not large enough to fully exercise the capability of the TOB
protocol.

In all evaluation tests, the non-replicated Default SeqHashtable surpasses
the performance of JPaxos- and Paxos STM-based replicated counterparts (see
Figure 5.2a). But this immense throughput is achieved at the cost of no fault
tolerance and scaling capability. The throughput values among test scenarios
vary since the time of executing RO and RW requests is different. In the best
10% RW scenario, Paxos STM-based Default Hashtable reaches at most about
half of the performance of its non-replicated counterpart.

Prolonged Hashtable

In contrast to Default Hashtable, where the TOB time was dominant, the Pro-
longed Hashtable benchmark aims at mimicking a computation-heavy work-
load with the execution time dominance. For this, we have used exactly the
same set of operations in a transaction as in Default Hashtable, but the execu-
tion of each request is prolonged by 1 ms.

Prolonged Hashtable, when replicated using JPaxos, has a stunningly uni-
form throughput of about 965 req/s, regardless of the number of nodes (see
Figure 5.1b). This indicates that the lengthy execution time of each request en-
tirely covers up the cost of replica coordination. Since all requests are processed

5.4 Evaluation 63

sequentially, the parallel architecture does not bring any gain in throughput.
Moreover, the lengths of RO and RW transactions are similar, thus despite the
execution time dominance, there is no difference in performance between the
10%, 50%, and 90% RW scenarios.

In contrast, Prolonged Hashtable replicated using Paxos STM shows excel-
lent scaling. In the 10% RW scenario, the throughput increases with the num-
ber of nodes almost linearly, up to the cluster with 14 replicas, when the net-
work becomes saturated. In other scenarios, Paxos STM scales pretty well up
to 10 nodes. Then, the network gets saturated and the performance drops. The
overall throughput is significantly higher than it is for JPaxos-based Prolonged
Hashtable, even for just three nodes. This is credited to Paxos STM’s ability
of executing transactions in parallel, thus taking the advantage of the multi-core
hardware. Note that the abort rate is nearly the same as in the Default Hashtable
benchmark.

The non-replicated Prolonged SeqHashtable has the throughput in the range
of 994–998 req/s, depending on the scenario (see Figure 5.2b), which is very sim-
ilar to the one of JPaxos-based replicated counterpart, where all requests are also
processed sequentially. This is as expected since the Prolonged Hashtable bench-
mark replicated using JPaxos has the execution time dominant workload, thus
broadcasting a message using TOB takes a relatively small amount of time com-
pared to the duration of request execution. In contrast to Default SeqHashtable,
the non-replicated Prolonged SeqHashtable does not even come close to the per-
formance of Paxos STM-based replicated counterpart that was superior in all test
scenarios and delivered a much higher throughput.

High-Contention Hashtable

The High-Contention Hashtable benchmark aims at testing a replicated system
in a high contention environment. Thus, compared to Default Hashtable’s con-
figuration, the number of read and update operations in RW requests grew 5
times: to 40 get and 10 put/remove operations. Note that the execution time
of a RW transaction is longer in High-Contention Hashtable than in Default
Hashtable. However, it is still much shorter than the time of TOB, which is
dominant in this benchmark both for JPaxos and Paxos STM.

The High-Contention and Default Hashtables, which were replicated using
JPaxos, have a very similar performance (see Figure 5.1c). The slight differ-
ence in the overall throughput stems from the larger size of RW requests in
the High-Contention Hashtable benchmark. Therefore, the maximum through-
put which is achieved by JPaxos-based High-Contention Hashtable is just a few
percent lower compared to the maximum throughput of JPaxos-based Default
Hashtable across all scenarios.

The High-Contention Hashtable benchmark, which is implemented using
Paxos STM, suffers from a very high contention level (a large number of concur-
rent transactions try to access the same data). The increased level of contention
(compared to contention in Default and Prolonged Hashtables) causes a larger
number of transactions to be aborted due to conflicts and reexecuted, which di-

64 5 Basic Replication Schemes

minishes the overall throughput. The abort rate under Paxos STM, starts from
34% in the 10% RW test run on three nodes, and reaches striking 96% in the 90%
RW test run on 20 nodes (see abort rate in Figure 5.1c). Therefore, on average,
every RW transaction is reexecuted due to conflicts around 5 times in the former
case, and 26 times in the latter case, before it finally commits (see Figure 5.3).
Compared to JPaxos, Paxos STM-based High-Contention Hashtable performs
better only in the 10% RW scenario. In other cases, JPaxos greatly outperforms
Paxos STM, which is especially visible in the 90% RW scenario, where on av-
erage High-Contention Hashtable performs 10 times better under JPaxos than
under Paxos STM which suffers from a very high abort rate.

The non-replicated High-Contention SeqHashtable provides visibly worse
throughput than Default SeqHashtable (see Figure 5.2a,c). The lower perfor-
mance can be attributed to the higher execution time of RW requests. However,
the throughput variation across test scenarios is smaller. This is because the ex-
ecution times of RO and RW requests are approximately the same. Therefore,
since the overall throughput is lower, the difference among test scenarios is less
noticeable as the number of RW requests increases. However, in all test scenar-
ios, the performance of the non-replicated High-Contention SeqHashtable ser-
vice trumps the performance of its fault-tolerant counterparts, and the through-
put is a few times larger than the best throughput achieved by the implementa-
tions using JPaxos and Paxos STM.

Bank Benchmark

Contrary to the Hashtable benchmarks, the number of operations executed as
the result of RO and RW requests are very different in the Bank benchmark: A
RO request reads all 250k elements of the array, which represent bank accounts.
On the other hand, a RW request is very short–it just reads two randomly cho-
sen elements of the array and subsequently modifies them. In effect, the cost of
executing a RO transaction is much higher compared to the cost of a RW trans-
action. However, a huge number of operations executed per each RO request
does not lead to large TOB messages in JPaxos, as a RO request only contains a
single command to read the bank accounts and calculate a total of funds. There-
fore, the processing CPUs have become the bottleneck in this benchmark, not
the computer network.

In the 10% and 50% RW test scenarios, the throughput of Bank replicated
using JPaxos is constant across cluster sizes nodes (see Figure 5.1d), and it is
clearly restricted by the CPU time of processing requests. In case of the 90% RW
scenario, the situation is slightly different. For a small number of nodes (3-7),
JPaxos-based Bank experiences the TOB time dominance, while for a larger clus-
ter size, the execution time is dominant. In the range of 3-7 nodes, the through-
put grows linearly, as in case of other TOB time dominant tests. This behaviour is
attributed to a relatively low number of submitted requests, which make JPaxos
underutilize the TOB protocol. However, on the contrary to other TOB time
dominated benchmarks, when the throughput reaches its peak value, it stays
constant instead of deteriorating with an increasing number of replicas. This is

5.4 Evaluation 65

because the peak performance is not bounded in this test by the network band-
width, but rather by the available processing power. In fact, the network is far
from being saturated for every cluster size. Hence, for a high number of nodes,
the throughput of JPaxos is only limited by the time of processing requests.

Bank implemented using Paxos STM also experiences the TOB time dom-
inance only for the 90% RW scenario. As in the most of other tests, the sys-
tem improves the performance up to the point when the network becomes sat-
urated. Since the contention levels are relatively small for the 90% RW scenario,
the degradation of performance for a higher number of replicas is relatively be-
nign. In the 10% and 50% RW scenarios, JPaxos-based Bank is execution time
dominant and the system scales almost linearly across the whole range of clus-
ter sizes. This behaviour can be attributed to the ability of Paxos STM to use
the underlying parallel multicore architecture well and process many requests
in parallel using a large number of available processor cores. These good re-
sults were heavily influenced by the optimizations of the TOB protocol, namely,
batching and pipelining. Without these optimizations, the TOB protocol would
perform much worse, given a very small size of agreement coordination mes-
sages that carry transaction read-sets and updates (each message has only 76
bytes), extremely short RW transaction execution times, and a large number of
RW transactions performed concurrently.

Note that the performance results that we got for Bank are quite different
from the results obtained by running the Hashtable benchmarks. In all variants
of Hashtable, test scenarios with a larger number of RO requests generated a
higher throughput for all cluster sizes. Now, the opposite is true–the best results
are obtained for the 90% of RW requests. This behaviour can be easily explained
if we recall that it takes significantly more time to execute a RO request than a
RW request.

The non-replicated SeqBank outperforms its replicated counterparts for the
90% RW scenario, with the throughput reaching 208k req/s (see Figure 5.2d).
However, in both 10% and 50% RW scenarios, SeqBank performs better than
JPaxos-based Bank for all cluster sizes, but worse than Paxos STM-based Bank
for larger cluster sizes. E.g., in the cluster with 20 nodes, in the 10% RW scenario,
SeqBank has half the throughput of Paxos STM-based Bank, and in the 50% RW
scenario, it reaches 3/4 of the throughput that is achieved by Paxos STM-based
Bank. Note that the implementation of SeqBank does not incur any overhead
that is characteristic for the replicated counterparts. This fact, together with a
very short time of RW requests compared to RO requests, enabled SeqBank to
perform five times better when the number of RW requests grew from 10% to
90%.

5.4.4 Evaluation Summary

The results of the evaluation indicate that neither SMR (JPaxos) nor DUR with
the multiversioning optimization (Paxos STM) is superior in all cases. This out-
come may be surprising given that only DUR can scale with increasing number

66 5 Basic Replication Schemes

of replicas. The performance of both replication schemes heavily depends on
the characteristics of the workload.

JPaxos executes all requests sequentially, thus if the execution time is domi-
nant, it performs poorly compared to Paxos STM which can process transactions
in parallel and thus scale (see Figure 5.1b). Paxos STM behaves well especially
in test scenarios involving many RO transactions, but suffers under high con-
tention (evidenced by abort rate). Then, JPaxos is clearly better since it deliv-
ers predictable and stable performance (see Figure 5.1c for 50% and 90% RW).
However, the overhead caused by TOB, and by the network that often gets sat-
urated, severely reduce the performance of both systems. TOB dominance can
overshadow the gain of parallelism in Paxos STM and, in consequence, reduce
scalability. If at least RO requests dominate TOB, then efficiency could be kept
constant by decreasing the number of conflicts, e.g., by contention management.

The optimizations of TOB give Paxos STM considerable performance boost.
This is especially visible in Bank (see Figure 5.1d) where replicas can get a lot of
transactions ready to commit at the same time, so the TOB protocol with batch-
ing can broadcast them all at once.

When TOB time is dominant (Figure 5.1a,c), JPaxos does not perform uni-
formly, and the pick throughput is when the network is nearly saturated (see
the network congestion plot). Before that, JPaxos’ throughput grows with the
number of replicas. This is because with replicas are collocated clients that can
now produce more requests, but still their quantity and capacity are not enough
to effectively utilize the TOB protocol. (The network saturation occurs later in
Bank where message sizes are small.) Once the network becomes saturated, the
throughput is deteriorating as the cluster size increases, since threads (CPUs)
are exhausted by TOBs and execute less requests.

Not surprisingly JPaxos always yields lower performance than the non-repli-
cated implementations of our benchmarks (see Figures 5.1 and 5.2). Although
in both cases all requests are executed sequentially, in JPaxos a request addition-
ally needs to be broadcast to all replicas, what can take a substantial amount of
time and processing power. More interestingly, Paxos STM and sequential ser-
vices gave variable results. E.g., Paxos STM was the clear winner for Prolonged
Hashtable (see Figure 5.1b and 5.2b) and for Bank with 10% and 50% of RW
requests (see Figure 5.1d and 5.2d). This is credited to Paxos STM’s ability of
executing transactions in parallel, thus being able to fully utilize the multi-core
hardware. In other cases, the sequential, non-replicated services demonstrated
higher throughput. However, they are vulnerable to system failures. In con-
trast, replicated services can tolerate failures of machines and communication
links, thus ensuring service reliability and availability.

5.5 Comparison 67

5.5 Comparison

As we showed in the previous section, in many cases SMR proves to be highly ef-
ficient although it allows no parallelism (or limited parallelism in case of LSMR).
In fact, when a workload is not CPU intensive, it performs much better than
DUR. Also SMR is relatively easy to implement, because most of the complexity
is hidden behind TOB. A major drawback of SMR is that it requires a replicated
service to be deterministic. Otherwise consistency could not be preserved.

Contrary to SMR (and partially to LSMR), in DUR parallelism is supported
for read-only as well as updating transactions by default–each transaction is
executed by a single replica in a separate thread and in isolation. This way
DUR takes better advantage over modern multicore hardware. However, the
performance of DUR is limited for workloads generating high contention. It is
because in such conditions transactions may be aborted numerous times before
eventually committing. Aborting live transactions as soon as they are known to
be in conflict with a transaction that had just recently committed may help but
only to some degree.

LSMR and DUR requires no synchronization (no communication step) among
replicas for read-only transactions as they do not change the local or replicated
state. This way read-only requests are handled by LSMR and DUR much more
efficiently compared to SMR. Additionally, in DUR read-only transactions can
be provided with abort-free execution guarantee by introducing the multiver-
sioning scheme (LSMR does not provide transactional semantics and execution
of requests cannot be aborted altogether).

Usually there is a significant difference in the size of network messages com-
municated between replicas in SMR/LSMR and DUR. In DUR, the broadcast
messages contain transaction descriptors with readsets and updates sets. The
size of these messages can be significant even for a medium sized transaction.
Large messages cause strain on the TOB mechanism and increase transaction
certification overhead. On the other hand, in SMR usually the requests consist
only of an identifier of a method to be executed and data required for its execu-
tion; these messages are often as small as 100B.

The DUR scheme supports concurrency on multicore architectures. Concur-
rent programming is error-prone but atomic transactions greatly help to write
correct programs. Firstly, operations defined within a transaction appear as
a single logical operation whose results are seen entirely or not at all. Sec-
ondly, concurrent execution of transactions is deadlock-free which guarantees
progress. Moreover, the rollback and retry constructs enhance expressiveness.
However, as mentioned earlier, irrevocable operations are not permitted since
at any moment a transaction may be forced to abort and restart due to conflicts
with other transactions.

All three SMR, LSMR and DUR offer different correctness guarantees. SMR
offers the strongest guarantees, i.e., real-time linearizability. LSMR offers slightly
weaker guarantees for transactions marked as read-only. DUR guarantees up-

68 5 Basic Replication Schemes

date-real-time opacity, which corresponds to update-real-time linearizability. Hence,
it offers the weakest guarantees of the three schemes.

6
Hybrid Transactional Replication

In this chapter, we define Hybrid Transactional Replication (HTR), a novel trans-
actional replication scheme that seamlessly merges DUR and SMR. First, we dis-
cuss the transaction oracle–the key new component of our algorithm. Next, we
explain the HTR algorithm by presenting its pseudocode and giving the proof of
correctness. Then, we discuss the strengths of HTR and present two approaches
to creating an oracle: a manual, tailored for a given workload, and an auto-
matic, based on machine learning. Finally, we evaluate the performance of our
approach under various workloads.

Originally, we introduced HTR in [6]. We proposed the oracle based on ma-
chine learning in [4]. There we also presented the formal proof of correctness of
HTR.

6.1 Transaction Oracle

Our aim was to seamlessly merge the SMR and DUR schemes, so that requests
(transactions) can be executed in either scheme depending on the desired per-
formance considerations and execution guarantees (e.g., support for irrevocable
operations). Transaction oracle (or oracle, in short) is a mechanism that for a given
transaction’s run is able to assess the best execution mode: either the SM mode,
which resembles request execution using SMR, or the DU mode, which is analo-
gous to executing a request using DUR. The oracle may rely on hints declared by
the programmer as well as on dynamically collected statistics, i.e., data regarding
various aspects of system’s performance, such as:

• duration of various phases of transaction processing, e.g., execution time
of a request’s (transaction’s) code, TOB latency, and duration of transaction
certification,

• abort rate, i.e., the ratio of aborted transaction runs to all execution at-

70 6 Hybrid Transactional Replication

tempts,

• sizes of exchanged messages, readsets and updates sets,

• system load, i.e., a measure of utilization of system resources such as CPU
and memory,

• delays introduced by garbage collector,

• saturation of the network.

Declared read-only transactions, i.e., transactions known a priori to be read-only,
are always executed in the DU mode since they do not alter the local or repli-
cated state and thus do not require distributed certification. Hence, decisions
made by the oracle only regard updating transactions.

Since the hardware and the workload can vary between the replicas the sys-
tem can use different oracles at different nodes and independently change them
at runtime when desired. For brevity, in the description of the algorithm we ab-
stract away the details of the oracle implementation and treat it as a black box
with only two functions: FEED(data), used to update the oracle with data col-
lected over the last transaction’s run, regardless of the outcome, and QUERY(re-
quest), used to decide in which mode a new transaction is to be executed).

The problem of creating a well-performing oracle is non-trivial and depends
on the expected type of workload. In Section 6.5 we discuss a handful of tips on
how to build an oracle that matches the expected workload. Then, in Section 6.6,
we also show an oracle which uses machine learning techniques to automati-
cally adjust its policy to changes in the workload.

6.2 Specification

Below we describe the HTR algorithm, whose pseudocode is given in Algo-
rithm 6. HTR is essentially DUR (Algorithm 4), extended with the SMR scheme
(Algorithm 2) and the UPDATEORACLESTATISTICS procedure (line 16) that feeds
the oracle with the statistics collected in a particular run of a transaction before
the transaction is committed, rolled back, or retried.

Note that HTR features two sets of functions/procedures facilitating execu-
tion of a transaction (i.e., performing read and write operations on shared objects)
and managing the control flow of the transaction (i.e., procedures used to com-
mit, rollback or retry the transaction). One set of functions/procedures is used
by transactions executed in the DU mode (lines 35–56) and one is used by trans-
actions executed in the SM mode (lines 81–98).

When a transaction is about to be executed, the oracle is queried to determine
the execution mode for this particular transaction’s run (line 26). When the DU
mode is chosen (line 27), a transaction, called a DU transaction, is executed and
certified exactly as in DUR. It means that it is executed locally (line 30) and once
the execution is finished and the COMMIT procedure invoked (line 43), the in-

6.3 Characteristics 71

formation about the transaction is broadcast using TOB (line 50) to all replicas
so that the transaction can undergo the final certification and possibly commit
(depending on the outcome of the final certification, line 62). On the other hand,
when the SM mode is chosen (line 31), the request is first broadcast using TOB
(line 32) and then executed on all replicas as an SM transaction (lines 77–80).
The execution of SM transactions happens in the same thread which is respon-
sible for certifying DU transactions and applying the updates they produced. It
means that at most one SM transaction can execute at a time and its execution
does not interleave with handling of commit of DU transactions. However, the
algorithm does not prevent concurrent execution of an SM transaction and mul-
tiple DU transactions; only the certification test and the state update operations
of these DU transactions may be delayed until the SM transaction is completed.

Since the execution of an SM transaction is never interrupted by receipt of
a transaction descriptor of a DU transaction, no SM transaction is ever aborted.
It means that an SM transaction does not need to be certified and can commit
straight away (lines 88–91). For the same reason, reading a shared object does
not involve checking for conflicts (line 82) and reading the current value of LC
(line 78) does not have to be guarded by a lock.

Naturally, an SM transaction has to be deterministic, so that the state of the
system is kept consistent across replicas.

Note that regardless of the used execution mode and the fate of the trans-
action (i.e., whether the transaction is committed, aborted or rolled back), the
statistics gathered during the transaction’s run are always fed to the oracle after
the run is completed (lines 51 and 72).

Because the pseudocode of HTR is based on the pseudocode we provided
for DUR (Algorithm 4), there are similar simplifications in both pseudocodes:
we use a single global (reentrant) lock to synchronize operations on LC (lines
29, 63, 64, 88, 89), Log (lines 10, 65, 90), and the accesses to transactional ob-
jects (lines 40, 66, 91), we allow Log to grow indefinitely and we use the same
certification procedure for both the certification test performed upon every read
operation for DU transactions (line 37) and the certification test that happens
after a transaction descriptor of a DU transaction is delivered to the main thread
(line 62). The limitations introduced by these simplifications can be mitigated in
a similar manner as in DUR.

6.3 Characteristics

Below we present the advantages of the HTR algorithm compared to the exclu-
sive use of the schemes discussed in Chapter 5. We also discuss the potential
performance benefits that will be evaluated experimentally in Section 6.7.

Algorithm 6 Hybrid Transactional Replication for process pi
1: integer LC ← 0
2: set Log ← ∅
3: function GETOBJECT(txDescriptor t, objectId oid)
4: if (oid , obj) ∈ t.updates then
5: value ← obj
6: else
7: value ← retrieve object oid
8: return value
9: function CERTIFY(integer start , set readset)

10: lock { L← {t ∈ Log : t.end > start} }
11: for all t ∈ L do
12: writeset ← {oid : ∃(oid , obj) ∈ t.updates}
13: if readset ∩ writeset 6= ∅ then
14: return failure

15: return success
16: procedure UPDATEORACLESTATISTICS(txDescriptor t)
17: TransactionOracle.FEED(t.stats)

Thread q on request r from client c (executed on one replica)
18: enum outcomeq ← failure // type: enum { success, failure }
19: response resq ← null
20: txDescriptor tDU ← null // type: record (id, start, end, readset, updates, stats)
21: upon INIT
22: wait until LC ≥ r.clock
23: TRANSACTION()
24: return (r.id ,LC , resq) to client c
25: procedure TRANSACTION
26: mode ← TransactionOracle.QUERY(r)
27: if mode = DUmode then
28: tDU ← (a new unique id , 0, 0, ∅, ∅, ∅)
29: lock { tDU .start ← LC }
30: resq ← execute r.prog with r.args
31: else // mode = SMmode
32: TO-BROADCAST r // blocking
33: if outcomeq = failure then
34: TRANSACTION()
35: function READ(objectId oid)
36: tDU .readset ← tDU .readset ∪ {oid}
37: lock { if CERTIFY(tDU .start , {oid}) = failure then
38: RETRY()
39: else
40: return GETOBJECT(tDU , oid) }
41: procedure WRITE(objectId oid , object obj)
42: tDU .updates ← {(oid ′, obj ′) ∈ tDU .updates : oid ′ 6= oid} ∪ {(oid , obj)}
43: procedure COMMIT
44: stop executing r.prog
45: if tDU .updates = ∅ then
46: outcomeq = success
47: return
48: if CERTIFY(tDU .start , tDU .readset) = failure then
49: return
50: TO-BROADCAST tDU // blocking
51: UPDATEORACLESTATISTICS(tDU)

52: procedure RETRY
53: stop executing r.prog

54: procedure ROLLBACK
55: stop executing r.prog
56: outcomeq ← success

The main thread of HTR (executed on all replicas)
57: enum outcome ← null // type: enum { success, failure }
58: response res ← null
59: request r ← null
60: txDescriptor tSM ← null
61: upon TO-DELIVER (txDescriptor tDU)
62: if CERTIFY(tDU .start , tDU .readset) = success then
63: lock { LC ← LC + 1
64: tDU .end ← LC
65: Log ← Log ∪ {tDU}
66: apply tDU .updates }
67: if transaction with tDU .id executed locally by thread q then
68: outcomeq ← success

69: upon TO-DELIVER (request rq)
70: r ← rq
71: TRANSACTION()
72: UPDATEORACLESTATISTICS(tSM)
73: if request with r.id handled locally by thread q then
74: outcomeq ← outcome
75: resq ← res

76: procedure TRANSACTION
77: tSM ← (a deterministic unique id based on r.id , 0, 0, ∅, ∅, ∅)
78: tSM .start← LC
79: res ← null
80: res ← execute r.prog with r.args

81: function READ(objectId oid , object obj)
82: return GETOBJECT(tSM , oid)
83: procedure WRITE(objectId oid , object obj)
84: tSM .updates ← {(oid ′, obj ′) ∈ tSM .updates : oid ′ 6= oid} ∪ {(oid , obj)}
85: procedure COMMIT
86: stop executing r.prog
87: if tSM .updates 6= ∅ then
88: lock { LC ← LC + 1
89: tSM .end ← LC
90: Log ← Log ∪ {tSM }
91: apply tSM .updates }
92: outcome ← success
93: procedure RETRY
94: stop executing r.prog
95: outcome ← failure

96: procedure ROLLBACK
97: stop executing r.prog
98: outcome ← success

74 6 Hybrid Transactional Replication

6.3.1 Expressiveness

Implementing services using the original SMR replication scheme is straightfor-
ward since it does not involve any changes to the service code. However, the
programmer does not have any constructs to express control-flow other than
the execution of a request in its entirety. In our HTR replication scheme, the pro-
grammer can use expressive transactional primitives ROLLBACK and RETRY to
withdraw any changes made by transactions and to retry transactions (possibly
in a different replication mode). In this sense, these constructs are analogous to
DUR’s, but they are also applicable for transactions executed in the pessimistic
SM mode. Upon retry, the SM transaction is not immediately reexecuted on
each node. Instead, the control-flow returns to the thread which is responsible
for handling the original request. The oracle is then queried again, to determine
in which mode the transaction should be reexecuted. Similarly, reexecution of
DU transactions is also controlled by the oracle.

Constructs such as RETRY can be used to suspend execution of a request until
a certain condition is met. Note that in SMR doing so is not advisable since it
would effectively block the whole system. It is because in SMR all requests are
executed serially in the order they are received. On the contrary, when RETRY is
called from within an SM transaction, the HTR algorithm rolls back the transac-
tion and allows it to be restarted when the condition is met.

6.3.2 Irrevocable Operations

In DUR, transactions may be aborted and afterwards restarted due to conflicts
with other older transactions. Thus, they are forbidden to perform irrevocable
operations, i.e., operations whose side effects cannot be rolled back (such as lo-
cal system calls). Irrevocable (or inevitable) transactions are transactions that con-
tain irrevocable operations. Support for such transactions is problematic and
has been subject of extensive research in the context of non-distributed TM (see
Section 2.4.1). However, the proposed methods and algorithms are not directly
transferable to distributed TM systems where problems caused by distribution,
partial failures, and communication must also be considered. Below we explain
how the HTR algorithm deals with irrevocable transactions.

In the HTR algorithm, irrevocable transactions are executed exclusively in
the SM mode, thus guaranteeing abort-free execution, which is necessary for
correctness. It also means that only one irrevocable transaction is executed at
a time. However, our scheme does not prevent DU transactions to be executed
in parallel–only certification and the subsequent process of applying updates of
DU transactions (in case of successful certification) must be serialized with ex-
ecution of SM transactions. Since an SM transaction runs on every replica, we
only consider deterministic irrevocable transactions. Non-deterministic transac-
tions would require acquisition of a global lock or a token to be executed exclu-
sively on a single replica. Alternatively, some partially centralized approaches
could be employed, as in [86]. However, they introduce additional communi-
cation steps, increase latency, and may force concurrent transactions to wait a

6.4 Correctness 75

significant amount of time to commit.
We forbid the ROLLBACK and RETRY primitives in irrevocable transactions

(as in [80] and other TM systems) since they may leave the system in an incon-
sistent state.1

6.3.3 Performance

As mentioned in Section 5.2, it is not straightforward to optimize the original
SMR scheme to handle read-only requests in parallel with other (read-only or
updating) requests. However, in the HTR algorithm, read-only transactions are
executed only by one replica, in parallel with any updating transactions–there
is no need for synchronization among replicas to handle the read-only transac-
tions.

HTR can benefit from the multiversioning optimization in the same way as
can the DUR scheme (see Section 5.3.4). In HTR extended with this optimiza-
tion read-only transactions are guaranteed abort-free execution thus boosting
HTR’s performance for workloads dominated by read-only requests. The im-
plementation of HTR which we use in our tests implements the multiversioning
optimization (see Section 6.7).

Unless an updating transaction is irrevocable (thus executed in the SM mode)
or non-deterministic (thus executed in the DU mode), it can be handled by HTR
in either mode for increased performance. The choice is made by the HTR oracle
that constantly gathers statistics during system execution and can dynamically
adapt to the changing workload (which may vary between the replicas). In Sec-
tion 6.5, we discuss the tuning of the oracle and in Section 6.6 we introduce an
oracle, which relies on machine learning techniques for dynamic adaptation to
changing conditions.

6.4 Correctness

Below we give formal results on the correctness of HTR. The reference safety
property we aim for is update-real-time opacity which we introduced in Sec-
tion 4.3 and used to prove correctness of DUR (see Section 5.3.3). Roughly speak-
ing, update-real-time opacity is satisfied, if for every execution of an algorithm
(represented by some history H) it is possible to construct a sequential history S
such that:

1. H is equivalent to S, i.e., H and S contain the same set of transactions,
all read and write operations return the same values and the matching
transactions commit with the same outcome,

1Interestingly, Atomic RMI [85], a fully pessimistic distributed (but not replicated) TM system,
allows nondeterministic irrevocable operations to be performed inside transactions.

76 6 Hybrid Transactional Replication

2. every transaction in S is legal, i.e. the values of shared objects read by the
transaction are not produced out of thin air but match the specification of
the shared objects, and

3. S respects the real-time order for committed updating transactions in H ,
i.e., for any two committed updating transactions Ti and Tj , if Ti ended
before Tj started then Ti appears before Tj in S.

However, it is impossible to directly prove that HTR satisfies update-real-
time opacity due to a slight model mismatch, as we now explain. Recall that in
HTR, every time a request is executed in the SM mode, multiple identical trans-
actions are executed across the whole system (the transactions operate on the
same state and produce the same updates). In the formalization of update-real-
time opacity (which is identical to the formalization of the original definition of
opacity by Guerraoui and Kapalka), every such transaction is treated indepen-
dently. Therefore, unless such an SM transaction did not perform any modifi-
cations or rollback on demand, it is impossible to construct such a sequential
history S, in which every transaction is legal.2 However, we can show that ex-
ecution of multiple SM transactions regarding the same client request is equiv-
alent to an execution of a single transaction (on some replica) followed by dis-
semination of updates to all processes, as in case of a DU transaction. Therefore,
we propose a mapping called SMreduce, which allows us to reason about the
correctness of HTR. Roughly speaking, under the SMreduce mapping of some
history of HTR, for any group of SM transactions regarding the same request r,
such that the processes that executed the transactions applied the updates pro-
duced by the transactions, we allow only the first transaction of the group in the
history to commit; other transactions appear aborted in the transformed history.
The detailed definition of SMreduce, together with formal proof of correctness
can be found in Appendix B.4.

Before we prove that HTR satisfies update-real-time opacity under the SM-
reduce mapping, we first show that HTR does not satisfy a slightly stronger
property, write-real-time opacity, and thus also does not guarantee real-time opac-
ity (which is equivalent to the original definition of opacity [31], as shown in
Section 4.3).

Theorem 11. Hybrid Transactional Replication does not satisfy write-real-time opacity.

Proof. Trivially, every t-history of DUR is also a valid t-history of HTR, because
transactions in DUR are handled exactly in the same way as DU transactions in
HTR. Since DUR does not satisfy write-real-time opacity [3], neither does HTR.

Corollary 7. Hybrid Transactional Replication does not satisfy real-time opacity.

2As a counter example consider an execution of HTR featuring a single client request which
is executed as an SM transaction on every replica: a transaction first reads 0 from a transactional
object x and subsequently increments the value of x, i.e., writes 1 to x. Even for 2 replicas, it is
impossible to construct a legal sequential history featuring all the SM transactions.

6.4 Correctness 77

Proof. The proof follows directly from Theorem 11 and definitions of write-real-
time opacity and real-time opacity (real-time opacity is strictly stronger than
write-real-time opacity).

Theorem 12. Under the SMreduce mapping, Hybrid Transactional Replication satis-
fies update-real-time opacity.

Proof sketch. In order to prove that HTR satisfies update-real-time opacity, we
have to show that (by Corollary 1) for every finite t-historyH produced by HTR,
under SMreduce there exists a t-sequential t-history S equivalent to H̄ (some
completion ofH), such that S respects the update-real-time order ofH and every
transaction Tk in S is legal in S.

The proof is somewhat similar to the proof of correctness of DUR. The crucial
part of the proof concerns a proper construction of S. We do so in the following
way. Let us start with an empty t-sequential t-history S′. Now we add to S′

t-histories H̄|Tk of all committed updating transactions Tk from H̄ . However,
we do so according to the order of the (unique) numbers associated with each
such transaction Tk (with transaction descriptor tk). The number associated with
Tk is the value of tk.end . This value is equal to the value of the LC variable of
the replica that processes the updates of Tk upon committing Tk. We show that
this number is the same for each replica and that it unambiguously identifies
the operation execution (thanks to the use of TOB as the sole mechanism used
to disseminate messages among replicas, the fact that LC is incremented upon
commit of every updating transaction and the SMreduce mapping). Then, one
transaction at a time, we add to S′ all operations of all aborted and read-only
transactions from H̄ . Note that we include here all the SM transactions which
are committed in the original history but aborted under the SMreduce mapping
in H̄ . For every such transaction Tk (with transaction descriptor tk), we insert
H̄|Tk in S′ immediately after operations of a committed updating transaction Tl
(with transaction descriptor tl), such that tk.start = tl.end . It means that Tl is
the last committed updating transaction processed by the replica prior to exe-
cution of Tk (note that Tl might not exist if Tk is executed on the initial state of
the replica). Now we consider independently each (continuous) sub-t-history of
S′ which consists only of operations of read-only and aborted transactions (i.e.,
roughly speaking, we consider the periods of time in between commits of updat-
ing transactions). For each such sub-t-history, when necessary, we rearrange the
operations of the read-only and aborted transactions so that their order respects
the order in which these operation executions appear in sub-t-history H̄|pi, for
every process pi. Because we always consider all operations of every transaction
together, S′ is t-sequential. Then S = S′.

By construction of S, it is easy to show that S respects the update-real-time
order of H . Then we show by a contradiction that there does not exist a transac-
tion in S that is not t-legal, hence every transaction in S is legal.

78 6 Hybrid Transactional Replication

6.5 Tuning the Oracle

As pointed out in [27], DTM workloads that are commonly considered are usu-
ally highly diversified in regard to the execution times and to the number of ob-
jects accessed by each transaction (this is also reflected in our benchmark tests
in Section 6.7). However, the execution times of the majority of transactions are
way under 1 ms. Therefore, the mechanisms that add to transaction execution
time have to be lightweight or otherwise the benefits of having two execution
modes will be overshadowed by the costs of maintaining an oracle.

In the HTR algorithm, the oracle is defined by only two methods that have
to be provided by the programmer. Combined with multiple parameters col-
lected by the system at runtime, the oracle allows for a flexible solution that can
be tuned for a particular application. Our experience with HTR-enabled Paxos
STM and multiple benchmarks shows that there are the two most important
factors that should be considered when implementing an oracle:

• Keeping abort rate low. A high abort rate means that many transactions
executed in the DU mode are rolled back (multiple times) before they fi-
nally commit. This undesirable behaviour can be prevented by executing
some (or all) of them in the SM mode. The SM mode can also be chosen
for transactions consisting of operations that are known to generate a lot
of conflicts, such as resizing a hashtable. On the contrary, the DU mode is
good for transactions that do not cause high contention, so can be executed
in parallel thus taking advantage of modern multicore hardware.

• Choosing the SM mode for transactions that are known to generate large
messages when executed optimistically in the DU mode. Large messages
increase network congestion and put strain on the TOB mechanism, thus
decreasing its performance. The execution of an SM transaction usually
only requires broadcasting the name of the method to be invoked; such
messages are often shorter than 100B.

Note also that since SM transactions are guaranteed to commit, they do not
require certification, which eliminates the certification overhead. This overhead
(in the DU mode) is proportional to the size of transactions’ readsets and up-
dates sets.

In [6] we evaluated HTR-enabled Paxos STM using manually devised or-
acles that were designed to fit the expected workload. The oracles delivered
good performance, even though the oracles’ policies were very simple: they ei-
ther limited the abort rate, had transaction execution modes predefined for each
transaction type or simply executed in the SM mode transactions which were
known a priori to cause high contention.

Naturally, the more complex the application, the more difficult designing an
oracle which works well. Moreover, manually defined oracles have limited ca-
pability to adjust to changing workloads. Therefore we decided to create mech-

6.6 Machine-Learning-based Oracle 79

anisms that aid the programmer in devising oracles that can adopt to varying
conditions.

6.6 Machine-Learning-based Oracle

Before we describe our machine learning (ML) based approach to creating or-
acles, let us first reflect on the constraints of our environment and the require-
ments that we set.

6.6.1 Requirements and Assumptions

Determining the optimal execution mode for each transaction run (in a cer-
tain state of the system) can be considered a classification problem. Solving
such problems is often accomplished by employing offline machine learning
techniques such as decision trees, nearest neighbours or neural networks [111].
However, it seems that resorting to such (computation-heavy) mechanisms in
our case is not most advantageous because of the high volatility of the envi-
ronment which we consider. Our system scarcely uses stable storage (whose
performance is typically the limiting factor in database and distributed storage
systems) and thus Paxos STM’s performance is sensitive even to small changes
in the CPU load. In turn, the changes could be caused by variance in one or
many aspects of the workload such as sizes of received requests, shared object
access patterns, request execution times, number of clients, contention levels,
etc. Therefore, we opted for reinforcement learning techniques, i.e., approaches
which learn by observing the rewards on the already made decisions.

Naturally, the primary limitation for the automated oracle is that the mech-
anism it relies on cannot incur a noticeable overhead on transaction processing.
Otherwise, any gains resulting from choosing an optimal execution mode would
be overshadowed by the time required for training the oracle or querying it. It
means that we had to resort to lightweight ML techniques that are neither CPU
nor memory intensive (see below). Also, the ML mechanism must work well in a
multithreaded environment. This can be tricky because each query to the oracle
is followed by a feedback on transaction execution passed to the ML mechanism.
Note that the statistics gathered on a particular transaction run heavily depend
on the overall load of the system, therefore calculating the reward (used by the
ML mechanism to learn) is not straightforward.

Ideally, before a transaction is executed, the oracle should know what ob-
jects the transaction will access and approximately how long the execution will
take. This is typically done in, e.g., SQL query optimizers featured in most of the
database engines. Unfortunately, obtaining such information in our case is very
difficult. It is because in our system transactions may contain arbitrary code and
are specified in Java, a rich programming language, which enables complex con-
structs. One could try static code analysis as in [112], but this approach tends

80 6 Hybrid Transactional Replication

to be expensive and not that accurate in the general case. However, it is rea-
sonable to assume that not every request (transaction) arriving in the system is
completely different from any of the already executed ones. Therefore, transac-
tions can be clustered based on some easily obtainable information (e.g., content
of the arguments passed alongside transaction’s code), statistics on past execu-
tions that aborted due to conflicts or simple hints given by the programmer. The
latter could range from, e.g., a qualitative level of contention generated by the
transaction (low, medium, high), to the number of objects accessed by the transac-
tion compared to other transactions, or to as straightforward as a unique number
which identifies a given class of transactions (as in our system, see below).

6.6.2 Approach inspired by Multi-armed Bandit Problem

The ML-based oracle called HybridML (or HybML in short), which we propose,
relies on a rough classification provided by the programmer. As mentioned
above, the classification may involve various elements but we investigate the
simplest one, in which similar transactions have the same number associated
with them. We say that transactions with the same number form a class. For ex-
ample, a class can be formed out of transactions which perform money transfer
operations between pairs of accounts. Such transactions are inherently simi-
lar despite moving funds between different pairs of accounts. The similarities
regard, e.g., shared objects access pattern, CPU utilization, broadcast message
sizes, etc.3

HybML is inspired by and closely resembles the epsilon-greedy strategy for
solving the multi-armed bandit problem (see [92] [93] for the problem and [94] for
algorithms). In the multi-armed bandit problem there is a number of slot ma-
chines which, when played, return a random reward from a fixed but unknown
probability distribution specific to that machine. The goal is to maximize the
sum of rewards in a sequence of plays. In the epsilon-greedy strategy, in any
given play with some small probability ε a random slot machine is chosen. In
the majority of plays, however, the chosen machine is the one that has been per-
forming best in the previous rounds. Varying the value of ε enables balancing of
exploration and exploitation.

Roughly speaking, in HybML we use a slightly modified version of the ep-
silon-greedy strategy to solve the two-armed bandit problem for each class in-
dependently (with DU and SM modes corresponding to the two slot machines).
Firstly, HybML determines whether to optimize the network or CPU usage. In
the former case, HybML aims at choosing an execution mode in which broad-
cast messages are smaller. Otherwise, HybML decides on an execution mode in
which the transaction can execute and commit more quickly.

The exact way in which HybML works is a bit more complicated. When a
new transaction is about to start, HybML first checks what was the preferred ex-
ecution mode for the given class of transactions. Then, depending on the most

3In case of more complicated transactions, which feature loops or multiple if-then statements,
there might be bigger differences in the mentioned characteristics. Then, however, the program-
mer may easily provide slightly finer classification of the transactions.

6.6 Machine-Learning-based Oracle 81

prevalent mode, it randomly chooses the execution mode with probabilities εDU

or εSM (below we explain the reason for managing two values of ε instead of
just one). Otherwise, HybML tries to optimize either network or CPU usage, de-
pending on which is the observed bottleneck under a given workload. HybML
always first ensures that network is not saturated, because saturating a network
always results in degradation of performance (see Section 5.4, [5] and [2]). To
this end, HybML compares the values of moving averages, which store mes-
sage sizes for either execution mode, and chooses a mode which corresponds to
smaller messages. If, on the other hand, CPU is the limiting factor, HybML re-
lies on moving medians, which store the duration of transaction execution and
commit (see also the discussion in Section 6.6.3 for the reasons on using moving
medians instead of moving averages in case of optimizing CPU usage). Since
unlike SM transactions, DU transactions can abort, HybML stores additional
moving averages and medians to account for aborted DU transactions. This way,
by knowing abort rate (measured independently for each class and accounting
separately for conflicts detected before and after the network communication
phase), HybML can estimate the overall cost of executing and committing a DU
transaction (in terms of both network traffic and execution time).

Note that the average cost of a single attempt to execute (and hopefully com-
mit) a transaction in the DU mode is smaller compared to the cost of executing
a transaction in the SM mode. It is because a DU transaction can abort due to
a conflict and an SM transaction is guaranteed to commit. When a DU transac-
tion aborts, no costly state update is performed and sometimes, if the conflict is
detected before performing the broadcast operation, no resources are wasted on
network communication. Therefore, in order to guarantee fair exploration, the
probability with which the DU mode is chosen should be higher than the prob-
ability with which the SM mode is chosen. This observation led us to use εDU

and εSM instead of a single value ε. Currently εDU = 0.01 and εSM = 0.1, which
could be interpreted as follows: due to a higher resource cost of choosing the
SM mode over the DU mode, the latter is chosen 10 times more frequently. As
shown in Section 6.7, the system works very well with these values, but by using
abort rate, these values can be easily set to reflect the true cost of an execution
attempt.

There are few substantial differences between the definition of the original
problem of multi-armed bandit problem and our case. Firstly, in the original
problem the probability distributions of rewards in slot machines do not change
and thus the strategy must account for all previous plays. HybML must be able
to adjust to changing environment (e.g., workload) and thus it relies on moving
medians. Most importantly, however, we treat choosing an optimal execution
mode for any class independently, i.e., as a separate instance of the multi-armed
bandit problem. In reality the decisions made by HybML for different classes of
transactions are (indirectly) inter-dependent. It is because the reward returned
after a transaction commits or aborts does not reflect solely the accuracy of the
decision made by HybML, but it also entails the current load of the system.
The load of the system naturally depends on all transactions running concur-

82 6 Hybrid Transactional Replication

rently and thus indirectly on the decisions made by HybML for transactions of
different classes. Note that if we were to reflect the inter-dependency between
decisions made for different classes (in the form of a context as in the contextual
multi-armed bandit problem [113]), the scheme would get extremely compli-
cated and in practice it would never converge.

6.6.3 Implementation Details

Although the idea behind HybML seems simple, implementing it in a way that
it works reliably was far from easy. It is mainly because of the characteristics of
workloads we consider in conjunction with quirks of JVM that we had to deal
with, provided that Paxos STM is written in Java.

The biggest challenge we faced was to accurately measure the duration of
transaction execution. In particular, we were interested in obtaining faithful
measurements on the time spent by the main thread of HTR on handling SM and
DU transactions. When network is not saturated, the main thread becomes the
bottleneck because it serializes execution of SM transactions with certification of
DU transactions and is also responsible for applying transaction updates to the
local state.4 The CPU times we measure (using the ThreadMXBean interface)
are in orders of microseconds, which means that we can expect a large error.
The instability of measurements is further amplified by the way Java threads
are handled by JVM. In JVM, Java threads do not correspond directly to the
low-level threads of the operating system (OS) and thus the same low-level OS
thread which, e.g., executes transactions, can be also responsible for performing
other tasks for the JVM such as garbage collecting unused objects every once in
a while.5 As a result, we often observed measurements that were up to 3 orders
of magnitude higher than the typical ones. As we were unable to obtain con-
sistent averages using relatively small windows (necessary to quickly adopt to
changing conditions), we resorted to moving medians, which are less sensitive
to outliers.

6.7 Evaluation

In this section, we present the results of the empirical study of the HTR scheme.
To this end we compare the performance of HTR using HybML with the perfor-
mance of HTR running with the DU or SM oracles, which execute all updating
requests in either the DU mode or the SM mode. As we explained in Section 6.6,

4Note that parallelising operations in this thread does not necessarily result in better perfor-
mance. It is because even for large transactions the cost of transaction certification or applying
updates is comparable to the time required for completing a memory barrier, action which is nec-
essary in order to preserve consistency (in the pseudocode, the memory barrier happens prior
acquiring the lock and once it is released, lines 63, 66, 88, 91; the core of Paxos STM uses no locks
but relies on memory barriers triggered by accessing volatile variables).

5Our testing environment does not allow us to use low-level JNI code for enabling thread
affinity in Java.

6.7 Evaluation 83

HybML optimizes the usage of network or CPU, depending on which is the cur-
rent bottleneck. Since avoiding network saturation is relatively simple, because
it entails choosing the execution mode which results in smaller messages being
broadcast, we focus on the more challenging scenario in which the processing
power of the CPUs is the limiting factor. Under this scenario, we have to con-
sider a much wider set of variables such as transaction execution and commit
times, contention levels, shared object access patterns, etc.

6.7.1 Software and Environment

We conducted tests using HTR-enabled Paxos STM, our fault-tolerant object
based DTM system written in Java, which we already featured in Section 5.4.
We run Paxos STM in a cluster of 20 nodes connected via 16Gb Ethernet over In-
finiband. Each node had 28-core Intel E5-2697 v3 2.60GHz processor 64GB RAM
and was running Scientific Linux CERN 6.7 with Java HotSpot 1.8.0.

6.7.2 Benchmarks

In order to test the HTR scheme, we extended the hashtable microbenchmark,
which we used in Section 5.4. The benchmark features a hashtable of size h,
storing pairs of key and value accessed using the get, put, and remove operations.
A run of this benchmark consists of a load of requests (transactions) which are
issued to the hashtable, each consisting of a series of get operations on a ran-
domly chosen keys and then a series of update operations (either put or remove).
Initially, the hashtable is prepopulated with h

2 random integer values from a de-
fined range, thus giving the saturation of 50%. This saturation level is always
preserved: if a randomly chosen key points at an empty element, a new value is
inserted; otherwise, the element is removed.

In the current implementation of the benchmark, we can adjust several pa-
rameters for each class of transactions independently and at run-time. The pa-
rameters include, among others, the number of read and write operations, the
subrange of the hashmap from which the keys are chosen, access pattern (ran-
dom keys or a continuous range of keys) and the duration of the additional sleep
operation, which is invoked during transaction execution in order to simulate a
computation heavy workload. By varying these parameters and the ratio of
concurrently executing transactions of different classes, we can generate diverse
workloads, which differ in CPU and network usage and are characterised by
changing contention levels.

We consider three test scenarios: Simple, Complex and Complex-Live. We use
the first two scenarios to evaluate the throughput (measured in requests per sec-
ond) and scalability of our system. The latter scenario is essentially the Complex
scenario, whose parameters are changed several times throughout the test. We
use the Complex-Live scenario to demonstrate the ability of HybML to adjust to
changing conditions at run-time (we show the throughput of HTR in the func-
tion of time). For each scenario we define from 2 up to 11 classes of transactions,

84 6 Hybrid Transactional Replication

Scenario Parameter T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Simple

probability 90 10
reads 2500 300

updates 0 5
range 600k 600k

Complex

probability 90 1 1 1 1 1 1 1 1 1 1
reads 2500 200 200 200 200 200 200 200 200 200 200

updates 0 5 5 5 5 5 5 5 5 5 5
range 10.24M 5.12M 2.5M 1.28M 640k 320k 160k 80k 40k 20k 10k
offset 0 Distinct part of Hashtable for each T1–T10

Complex-Live

a (0-200 s) As in Complex

b (200-400 s)
reads 2500 400 (2x as in Complex)

updates 0 10 (2x as in Complex)
c (400-600 s) sleep 0 Extra 0.1ms sleep in every transaction
d (600-800 s) range 10.24M Half the range from Complex for each T1–T10

e (800-1000 s) As in Complex

Figure 6.1: Benchmark parameters for different test scenarios. In the
Complex-Live b-d scenarios we change some parameters compared to the
Complex scenario.

whose parameters are summarized in Figure 6.1). We have chosen the parame-
ters so that one can observe the strong and weak aspects of HTR running with
either the DU or SM oracle. This way we can demonstrate HybML’s ability to
adapt to different conditions. In order to utilize the processing power of the sys-
tem across different cluster configurations, we increase the number of requests
concurrently submitted to the system with the increasing number of replicas.

6.7.3 Benchmark Results

In Figures 6.2, 6.3 and 6.4 we present the test results of HTR. Below we discuss
the test results in detail.

The Simple Scenario

In this scenario, for which the test results are given in Figure 6.2a, there are
only two classes of transactions (T0 and T1), which operate on a hashmap of
size h=600k. T0 transactions (i.e., transactions, which belong to the T0 class) are
read-only and execute 2500 read operations in each run. T1 transactions perform
300 read and 5 updating operations. The ratio between transactions T0 and T1 is
90:10.

In this scenario the throughput of HTR running with the SM oracle remains
constant across all cluster configurations. It is because the execution of all T1

transactions needs to be serialized in the main thread of HTR, which quickly
becomes the bottleneck. The throughput of 150k tps (transactions per second),
achieved already for 4 nodes, indicates the limit on the number of transactions
that the system can handle in any given moment. Also, the transactions executed
in the SM mode never abort, thus the abort rate is zero.

6.7 Evaluation 85

In the case of HTR running with the DU oracle, with the increasing number
of replicas, the throughput first increases, then, after reaching maximum for 5
replicas, slowly diminishes. The initial scaling of performance can be attributed
to increasing processing power that comes with a higher number of replicas tak-
ing part in the computation. In the 5 node configuration, the peak performance
of HTR running with the DU oracle is achieved. As in case of the SM oracle, the
main thread of HTR becomes saturated and cannot process any more messages
which carry state updates. Naturally, with the increasing number of concur-
rently executed transactions, one can observe the raising number of transactions
aborted due to conflicts. Therefore, adding more replicas results in diminishing
performance. The abort rate of almost 40% in the 20 node cluster configuration
means that every updating transaction is on average executed 7.5 times before it
eventually commits.

The HybML oracle takes advantage of the scaling capabilities of DUR for
smaller cluster configurations–the performance yielded by HybML is on par
with the performance of the DU oracle, because HybML always chooses the
DU mode for all updating transactions. From 10 nodes upwards, the perfor-
mance of the DU oracle drops below the performance of the SM oracle. The
10-12 node configurations are problematic for the HybML oracle, because the
relative difference in performance of DU and SM modes is modest, and thus
it is difficult for the oracle to make an optimal decision. This is why we can
observe that HybML still chooses the DU mode for the T1 transactions, instead
of SM. Then, however, the differences start to increase, and HybML begins to
favour the SM mode over the DU mode for the T1 transactions (see the third di-
agram in Figure 6.2a, which shows the dominant execution mode for each class
in HybML; different colours signify the relative ratio between executions in the
DU and the SM modes). Eventually (from the 15 node configuration upwards),
HybML always chooses the SM mode thus yielding the same performance as
the SM oracle.

The Complex Scenario

In the Complex scenario, for which the evaluation results are given in Figure 6.2b,
there is only one class of read-only transactions (T0, the same as in the Simple
scenario) and 10 classes of updating transactions (T1-T10). Each updating trans-
action has the same likelihood of being chosen and each performs 200 read and 5
update operations. However, for each class we assign a disjoint subrange of the
hashmap. It means that each (updating) transaction from a given class can only
conflict with transactions, which belong to the same class. Because the sizes of
subranges are different for every class of transactions, the contention levels for
each class will greatly differ: they would be lowest for transaction T1 (whose
range encompasses 5.12M keys) and highest for T10 (whose range encompasses
just 10k keys). The exact values of the subranges are given in Figure 6.1).

As in case of the Simple scenario, in the Complex scenario the DU oracle
first yields better performance than the SM oracle. The highest throughput of
about 200k tps is achieved by the DU oracle for the 8 nodes configuration, while

a) Simple b) Complex

0k

50k

100k

150k

200k

250k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u
t
(r

e
q

/s
)

Number of replicas

DU
HybML

SM

0k

50k

100k

150k

200k

250k

300k

350k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u
t
(r

e
q

/s
)

Number of replicas

DU
HybML

SM

0%

10%

20%

30%

40%

50%

 4 6 8 10 12 14 16 18 20

A
b
o

rt
 r

a
te

Number of replicas

DU
HybML

SM

0%

10%

20%

30%

40%

50%

 4 6 8 10 12 14 16 18 20

A
b
o

rt
 r

a
te

Number of replicas

DU
HybML

SM

T0

T1

 4 6 8 10 12 14 16 18 20

D
o
m

in
a
n
t
m

o
d
e
 i
n
 H

y
b
M

L

Number of replicas

100% SM100% DU

T0-T6

T7

T8

T9

T10

 4 6 8 10 12 14 16 18 20

D
o
m

in
a
n
t
m

o
d
e
 i
n
 H

y
b
M

L

Number of replicas

100% SM100% DU

Figure 6.2: The performance of HTR with different oracles across vari-
ous cluster configurations.

0k

50k

100k

150k

200k

250k

300k

350k

 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Number of replicas

HybML
HybML 10% error
HybML 30% error

Figure 6.3: The performance of HybML in the Complex scenario, when
HybML is provided with an inaccurate classification of transactions.

6.7 Evaluation 87

the performance of the SM oracle levels at about 160k tps. Note that for the
3-5 nodes configuration, the SM oracle performance scales. It is because in the
Complex scenario the updating transactions are shorter than in the Simple sce-
nario. Therefore, in order to saturate the main thread of HTR, more concurrently
submitted requests are needed (the thread becomes saturated in the 5 nodes con-
figuration).

For larger cluster configurations, the performance of the DU oracle degrades
due to the rising number of conflicts. As a result, the performance of the DU
oracle drops below the performance of the SM oracle for the 15 nodes configu-
ration.

Note that the abort rate levels, which we can observe for the DU oracle, are
very similar to the ones we saw in the Simple scenario. However, there are
significant differences between the abort rates measured for each transaction
class independently. For instance, for the 20 node configuration, the abort rate
is about 4% for T1 and over 99% for T10 (in the latter case a transaction is on
average aborted 150 times before it eventually commits).

In this scenario, HybML demonstrates its ability to adjust to the workload
and achieves performance that is up to 40% higher than the DU oracle’s and
up to 75% higher than the SM oracle’s. This impressive improvement in perfor-
mance justifies our ML-based approach. The plot show that HybML maintains a
relatively low abort rate of about 7-8% across all cluster configurations. One can
see that the higher number of concurrently executed transactions, the higher
percentage of transactions is executed by HybML in the SM mode thus keep-
ing contention levels low. Naturally, HybML chooses the SM mode first for the
T10 transactions, for which the contention level is the highest. Then, gradually,
HybML chooses the SM mode also for transactions, which belong to classes T9,
T8 and also T7. For other transactions the cost of execution in the DU mode is
still lower than the cost of execution in the SM mode, and thus HybML always
chooses for these transactions the DU mode, regardless of the cluster configura-
tion.

In order to check the consequences of providing HybML with an inaccurate
classification of transactions, we purposefully marked some percentage of up-
dating transactions with a random number corresponding to some other class.
The results of this experiment are given in Figure 6.3. Naturally, as a baseline we
used the performance of HybML from the previous test. Understandably, with
10% or 30% of incorrectly marked transactions (HybML 10% error and HybML
30% error in the Figure), HybML still performs better than either the DU or SM
oracles but not as fast as previously (the performance for the 10% and 30% mis-
take scenarios peaked at 240k tps and 200k tps, respectively). This result indi-
cates that HybML gracefully handles even quite significant errors in the classifi-
cation provided by the programmer.

The Complex-Live scenario

In the Complex-Live scenario we demonstrate the ability of HybML to adapt in
real-time to changing conditions. To this end we consider the system consisting

88 6 Hybrid Transactional Replication

0k

50k

100k

150k

200k

250k

300k

 0 100 200 300 400 500 600 700 800 900 1000

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Time (s)

DU

HybML

SM

Figure 6.4: The Complex-Live scenario: the performance of HTR in the
function of time.

of 9 nodes and a workload identical with the one from the Complex scenario,
which we then change several times during a 1000 seconds run. A plot showing
the throughput of HTR with different oracles is given in Figure 6.4. One can see
that in all cases the HybML oracle gives better performance than either the DU
or SM oracles and almost instantly reacts to changes of the workload.

During the first 200 seconds the observed performance matches the results
from the Complex scenario. The throughput fluctuates a little bit because of the
garbage collector, which periodically removes unused objects from memory.6

Towards the 200th second the throughput slightly decreases as garbage collect-
ing becomes regular.

In the 200th second we change the parameters of the benchmark, so now
each updating transaction performs twice the number of read and updating op-
erations as before (see Complex-Live b scenario in Figure 6.1). The performance
of the system decreases, because such a change results in longer transaction ex-
ecution times and larger messages. HybML performs 70% better than the SM
oracle and over 50% better than the DU oracle.

Between the 400th and 600th second, the benchmark parameters are the same
as in the Complex scenario but the execution of each updating transaction is
prolonged with 0.1 ms sleep thus simulating a computation heavy workload.
Naturally, such workload is troublesome for the SM oracle, because all updating
transactions are executed sequentially. The additional 0.1 ms sleep is handled
well by the system when transactions are executed in the DU mode, because
transaction execute in parallel. HybML achieves about 15% better performance
than the DU oracle, as it allows about 75% of the T10 transactions (which are

6Executing a transaction in the DU mode results in more noticeable overhead due to the
garbage collector. Hence, one can observe bigger fluctuations in throughput for the DU and
HybML oracles compared to the SM oracle.

6.7 Evaluation 89

most likely to be aborted due to conflicts) to be executed in the SM mode, thus
reducing the abort rate and saving on transaction reexecutions.

The change to the benchmark parameters in the 600th second involves re-
ducing by half the size of the hashmap subrange for each class. This way the
updating transactions, which perform the same number of read and updating
operations as in the Complex scenario, are much more likely to abort due to
conflicts. This change is reflected by a steep decrease in performance of the DU
oracle. On the other hand, the performance of the SM oracle is almost the same
as in the Complex scenario, because execution of all updating transactions takes
the same amount of work as in the Complex scenario. Smaller subranges im-
pact favourably only data locality. This phenomenon is reflected by a slightly
better performance. Stunningly, the performance of HybML is almost the same
as in the Complex scenario: HybML automatically started to execute a higher
percentage of updating transactions in the SM mode thus keeping the abort rate
low. The achieved throughput is over 65% better than with the DU oracle and
over 50% than with the SM oracle.

The last 200 seconds of the test is performed with the parameters from the
Complex scenario. HybML quickly relearns the workload and starts to perform
as in the first 200s of the test.

6.7.4 Evaluation Summary

We tested the HTR scheme with three oracles: DU, SM and HybML. The DU
and SM oracles execute all updating transactions either in the DU or SM mode.
Therefore, a system using these oracles resembles an implementation of DUR
(see Section 5.3) and an implementation of the optimized version of SMR, which
allows read-only requests to be executed in parallel (LSMR, see Section 5.2).
Unlike the DU and SM oracles, the HybML oracle mixes transaction execu-
tion modes to achieve better performance and scalability (as evidenced by Fig-
ure 6.2). Our tests show that HybML provides performance that is at least as
good as with either DU or SM (when the difference in performance between
the system running with the DU or SM oracles is large enough) and often ex-
ceeds it by up to 50-70% across a wide range of cluster configurations and types
of workload. HybML avoids the pitfalls of either SMR and DUR and handles
very well the workloads that are notoriously problematic for either replication
scheme (i.e., computation intensive workloads in SMR and workloads charac-
terised by high contention levels in DUR).

We also demonstrated HybML’s ability to quickly adjust to changing con-
ditions. The automatic adaptation to a new workload type happens smoothly
and almost instantly, without even temporary degradation of performance, com-
pared to the performance under stable conditions (see Figure 6.4). All the ben-
efits of the HTR scheme running with the HybML oracle require only minimal
input from the programmer, which involves providing a rough classification of
transactions submitted to the system. Slight inaccuracies in the classification do
not heavily impact the performance achieved by HTR running with HybML.

7
Conclusions

In this dissertation we revisited State Machine Replication and Deferred Update
Replication, two well established schemes for service and data replication. Our
findings uncovered the differences in semantics offered by the schemes as well
as in their performance under diverse workloads. However, our research not
only broadened the understanding of SMR and DUR, but it also led us to several
contributions in the field of distributed replication.

The main goal of this dissertation, as stated in Section 1.2, was to propose
a new replication scheme that simultaneously offers rich transactional seman-
tics, strong consistency guarantees and provides high performance across a wide
range of workloads, thus bringing the best features of both SMR and DUR. We
believe that the goal has been achieved. In support of this claim we summarize
below the contributions of this dissertation.

Firstly, in Chapter 4, we defined the �-opacity and �-linearizability families
of correctness properties, which can be used to formalize the guarantees offered
by replicated transactional systems and replicated systems modelled as shared
objects. Our properties relax in a systematic way the real-time order requirement
of opacity and linearizability, two well established correctness criteria used in
the context of transactional memory systems and shared objects. The formal
result on the relationship between members of the �-opacity and �-linearizability
families allows us to compare the guarantees provided by the replicated systems
which do or do not provide transactional support. In particular, we showed that
when in a replicated �-opaque transactional system transactions are hidden from
clients, the system is �-linearizable. Also our result directly compares opacity
and linearizability in their original definitions.

Secondly, in Chapter 5, we directly compared the guarantees provided by
SMR and DUR using our new criteria. We also demonstrated the consequences
of introducing an important optimization of SMR which involves executing read-
only requests without any interprocess-synchronization.

Our comparison of semantics of SMR and DUR was complementary to the
experimental evaluation of both schemes (presented also in Chapter 5), which

92 7 Conclusions

showed that performance-wise neither scheme is superior in general. This result
is quite surprising, provided that only DUR is potentially scalable. Of course,
this result is valid, since we consider a wide spectrum of possible workload
types.

Finally, in Chapter 6, we combined SMR and DUR into a single replication
scheme called Hybrid Transactional Replication. This way we brought together
the best features of SMR and DUR. HTR offers powerful transactional semantics
similarly to DUR. Also HTR neither prohibits nondeterministic nor irrevocable
operations (in requests) as does SMR and DUR, respectively. HTR can dynam-
ically adopt to a changing workload by executing requests either in a way that
resembles the execution of a transaction in DUR or a request in SMR. The per-
formance of HTR, which, as we show, is at least as good as SMR’s or DUR’s can
be fine-tuned by specifying an application-specific policy. The policies are not
necessarily static. We showed that they can rely on a machine learning mech-
anism to enable automatic adaptation to changing conditions. Our ML-based
approach quickly adapts to changes in the workload and allows HTR to achieve
significant performance advantage over SMR and DUR. As we formally proved,
HTR offers similar guarantees to those of DUR.

In the future, we plan to further investigate transactional replication schemes.
We would like to research the eventually consistent ones, because strong consis-
tency is not a crucial requirement in many applications. Moreover, depending
on the considered notion of eventual consistency, the eventually consistent sys-
tems can provide different guarantees, which are neither well understood, nor
adequately formalized.

Streszczenie

Wraz z rosnącą popularnością przetwarzania w chmurze (ang. cloud com-
puting), gdzie usługi (ang. services) działające w chmurze muszą obsługiwać
ogromną liczbę użytkowników w tym samym czasie, nastąpił gwałtowny wzrost
zainteresowania różnymi podejściami do rozproszonej replikacji (ang. distributed
replication). Rozproszona replikacja poprawia dostępność (ang. availability) i
niezawodność (ang. reliability) usługi poprzez przechowywanie danych bliżej
klientów i przetwarzaniu wielu żądań klientów równolegle. W tym podejściu
usługa uruchomiona jest na wielu połączonych ze sobą serwerach zwanych re-
plikami (ang. replicas). Działania replik są koordynowane, tak by każda z replik
utrzymywała spójny obraz stanu systemu rozproszonego, pomimo awarii łączy
komunikacyjnych lub poszczególnych replik. Każda replika ma dostęp do lokal-
nej pamięci (ang. local memory), zaś synchronizacja replik odbywa się poprzez
pamięć współdzieloną lub współdzielony magazyn danych (ang. distributed memory,
distributed storage), tj. wysokopoziomową abstrakcję oferującą spójny dostęp do
replikowanych danych.

Kontekst

W tej dysertacji rozważamy szczególny rodzaj replikacji zwany replikacją trans-
akcyjną (ang. transactional replication), w której każde żądanie zgłoszone przez
klienta wykonywane jest jako atomowa transakcja (ang. atomic transaction). Ozna-
cza to, ze sekwencja operacji zdefiniowanych w żądaniu (transakcji) będzie wy-
konana przez zreplikowany system w semantyce wszystko-albo-nic (ang. all-
or-nothing semantics). Ponadto, system odpowiedzialny jest za wykrywanie i
rozwiązywanie konfliktów pomiędzy współbieżnie wykonującymi się transak-
cjami, które wykonują operacje na tych samych współdzielonych danych. Kod
transakcji może korzystać z dodatkowych konstrukcji składniowych takich jak
rollback czy retry, które pozwalają programiście na lepszą kontrolę przepływu
sterowania w transakcji (rollback wycofuje wszystkie zmiany dokonane przez

94 Streszczenie

transakcję, retry wycofuje transakcję i ponawia jej wykonanie od razu lub gdy
spełnione są określone warunki dodatkowo zdefiniowane przez programistę).

Replikację transakcyjną usługi najłatwiej osiągnąć poprzez zbudowanie tejże
usługi w oparciu o (rozproszoną) transakcyjną platformę programistyczną (ang. di-
stributed transactional programming framework). Dzięki takiemu podejściu, pro-
gramista nie musi ręcznie synchronizować współbieżnych dostępów do danych
współdzielonych w oparciu o np. mechanizm zamków (ang. locks) czy monito-
rów (ang. monitors), których użycie stwarza problemy nawet doświadczonym
programistom. Transakcyjna platforma programistyczna ukrywa całą tę złożo-
ność przed programistą i pozwala mu wnioskować o przepływie sterowania w
usłudze tak, jak gdyby wszystkie transakcje wykonywane byłyby sekwencyjnie
na jednym, niezawodnym serwerze. Dzięki zapewnieniu wsparcia dla przetwa-
rzania transakcyjnego można więc znacznie ułatwić projektowanie i rozwijanie
wysoko dostępnych usług.

Iluzja jaką daje transakcyjna platforma programistyczna, polegająca na tym,
że z punktu widzenia programisty transakcje wykonują się tak, jakby (logicznie)
wykonywały się sekwencyjnie, wiąże się z silnymi gwarancjami, jakie ta plat-
forma musi dawać. Gwarancje te, typowe dla tradycyjnych baz danych SQL,
oryginalnie zostały sformalizowane w postaci własności poprawności (ang. cor-
rectness property) zwanej (strict) serializability (pl. (ścisła) uszeregowalność). Często
też podejście do budowy systemów oferujących wspomniane gwarancje okre-
ślane jest mianem podejścia silnie spójnego (ang. the strongly consistent approach)
[14].

Uszeregowalność zazwyczaj osiągana była poprzez wykonanie wszystkich
modyfikujących transakcji (ang. updating transactions) przez wyróżnioną replikę
zwaną mistrzem (ang. master) i propagowanie modyfikacji wytworzonych wsku-
tek wykonania transakcji do reszty replik zwanych służącymi (ang. slaves). Za-
zwyczaj każda z replik przechowywała pełną kopię bazy danych. Transakcje
niemodyfikujące (ang. read-only transactions), które nie zmieniają stanu usługi,
były wykonywane współbieżnie na replikach-sługach. Awaria repliki-mistrza
wymagała zawieszenia przetwarzania do momentu wyłonienia nowej repliki-
mistrza spośród działających replik-służących. To podejście do replikacji zo-
stało usprawnione poprzez umożliwienie wykonania modyfikujących transak-
cji współbieżnie na replice-mistrzu, a później także i na różnych replikach rów-
nolegle. Wykonanie każdej transakcji koordynowane było przez jedną z replik,
dzięki czemu możliwe było zapewnienie poprawności wykonania transakcji i
jej późniejszego zatwierdzenia nawet w przypadku wystąpienia awarii serwe-
rów czy też łączy komunikacyjnych. Poprzez opóźnianie wykonania niektórych
operacji, bądź też wycofanie i ponowne wykonanie niektórych transakcji, pro-
tokół spójności (implementowany przez replikowany system) nie dopuszczał
do wystąpienia niespójności przy współbieżnym dostępnie do współdzielonych
danych. To podejście zwane jest zazwyczaj replikacją z opóźnioną aktualizacją (ang.
Deferred Update Replication, DUR) [15].

Alternatywnie, baza danych mogła być replikowana przy użyciu podejścia
zwanego replikacją maszyny stanowej (ang. State Machine Replication, SMR) [16]

Streszczenie 95

[17] [18]. W tym podejściu identyczne kopie bazy danych uruchomione były
na kilku maszynach i każda replika wykonywała wszystkie żądania przesyłane
przez klientów. W ten sposób każda z replik modyfikowała swój stan w ten
sam sposób, czyniąc awarie serwerów niewidocznymi dla klientów. Oczywiście
wszystkie żądania musiały być deterministyczne, a także musiały być dostar-
czane w tej samej kolejności do wszystkich replik. W przeciwnym wypadku stan
replik rozbiegłby się z czasem. W porównaniu do DUR, SMR jest dużo prost-
szym podejściem. Poważną wadą SMR jest jednak to, że nie pozwala na współ-
bieżne wykonanie żądań, a więc nie może się skalować (wydajność systemu nie
poprawia się wraz ze zwiększaniem liczby replik, procesorów lub rdzeni proce-
sora). Jakkolwiek SMR nie oferuje wsparcia dla przetwarzania transakcyjnego,
wykonanie pojedynczego żądania w SMR można traktować jak wykonanie pro-
stej transakcji, która ma gwarancję zatwierdzenia.

Na początku tego milenium, pojawiły się nowe systemy baz danych, zwane
bazami lub magazynami danych NoSQL, które powoli zaczęły zastępować tra-
dycyjne bazy danych SQL w niektórych zastosowaniach. Magazyny NoSQL
cechuje znacznie wyższa wydajność w porównaniu z tradycyjnymi bazami da-
nych SQL, ale odbywa się to kosztem osłabionych gwarancji spójności, co utrud-
nia programowanie. Dużo wyższa wydajność i skalowalność tego typu syste-
mów pozwoliła globalnie dostępnym usługom działającym w Internecie na ra-
dzenie sobie ze stale rosnącym ruchem (patrz np. [19] [20] [21] [22]).

Magazyny NoSQL zazwyczaj nie oferują wsparcia dla przetwarzania trans-
akcyjnego i są tylko słabo (ostatecznie) spójne (ang. weakly (eventually) consistent).
Oznacza to, ze klienci od czasu do czasu mogą zauważyć, że usługa działa nie-
zgodnie z przewidzianą przez usługodawcę logiką. Zakres obserwowalnych
anomalii jest szeroki: od zupełnie niegroźnych (np. kolejność wpisów na stronie
portalu społecznościowego jest nieco inna niż chwilę wcześniej) do tych całkiem
poważnych (klient odbiera potwierdzenie rezerwacji biletu lotniczego, po czym
po pewnym czasie okazuje się, że jednak miejsce w samolocie jest już zajęte i
konieczna jest rezerwacja innego lotu). Obserwowane niepożądane zachowa-
nie usługi (niezgodne z domyślną logiką usługi) może być dalej amplifikowane
przez awarie serwerów i łączy komunikacyjnych. W efekcie zapewnienie po-
prawnej realizacji żądań klientów wymaga od programistów więcej uwagi i im-
plementacji dodatkowej obsługi wszystkich szczególnych przypadków. Brak ja-
sno określonej semantyki jaką oferują magazyny NoSQL i wysoki stopień niede-
terminizmu, który jest charakterystyczny dla środowiska rozproszonego, prze-
kłada się na wysokie koszty tworzenia i utrzymywania usług zbudowanych w
oparciu o takie systemy.

Jasnym jest zatem, że brak silnych gwarancji spójności oraz wsparcia dla
przetwarzania transakcyjnego jest problematyczny nie tylko dla klientów, ale
także i programistów. Kierujący firmami, do których należą duże usługi działa-
jące w Internecie, cały czas poszukują nowych sposobów optymalizacji kosztów
działania usługi oraz poprawy jakości obsługi użytkowników (ang. user expe-
rience). Stąd też w ostatnich latach można obserwować wzrost zainteresowania
silnie spójnymi rozwiązaniami (patrz np. [24] [25]). W tej dysertacji skupiamy

96 Streszczenie

się właśnie na tego typu systemach.
W naturalny sposób silnie spójne schematy replikacji danych i usług, które

badamy, czerpią z rozwiązań znanych z systemów baz danych SQL, bowiem
one także są systemami rozproszonymi oferującymi semantykę transakcyjną.
Drugim źródłem inspiracji są badania nad pamięcią transakcyjną (ang. Transactio-
nal Memory, TM) [26], tj. podejściem, które wykorzystuje ideę transakcji znaną
z systemów bazodanowych jako mechanizm kontroli współbieżności w środo-
wisku lokalnym (na poziomie języka programowania). Niestety żadne z istnie-
jących rozwiązań nie może być bezpośrednio wykorzystane do rozważanych
przez nas celów. Jedną z głównych przyczyn, dla których jest to niemożliwe,
jest charakterystyka obciążeń (ang. workloads) typowa dla współczesnych repli-
kowanych usług. Na przykład, średni czas wykonania transakcji w rozważa-
nych przez nas systemach jest często rząd wielkości krótszy niż w w systemach
bazodanowych i rząd wielkości dłuższy niż w systemach pamięci transakcyj-
nej [27]. Także logika współczesnych replikowanych usług (lub fragment tejże
logiki) często nie może być łatwo wyrażona przy pomocy SQL, tj. języka trady-
cyjnych baz danych. Często lepszym podejściem jest wykorzystanie interfejsu
przypominającego interfejs systemów pamięci transakcyjnych, gdzie transakcja
traktowana jest jako wysokopoziomowa konstrukcja języka programowania, w
ramach której można definiować dowolny kod, a w szczególności taki, który
wywołuje złożone metody czy operacje na obiektach współdzielonych (patrz
np. [28] [29]). W naszej pracy skupiamy się na takim właśnie podejściu, gdyż
jest ono bardziej ogólne.

Z uwagi na różnice w oferowanych interfejsach, własności poprawności uży-
wane w kontekście systemów baz danych (takie jak recoverability, avoiding ca-
scading aborts, strictness [30] czy warianty wspomnianej już własności uszerego-
walności) nie mogą być stosowane do formalizacji gwarancji oferowanych przez
współczesne silnie spójne schematy replikacji. Niestety nie mają zastosowania
w naszej pracy także własności znane ze świata systemów pamięci transakcyj-
nych (takie jak różne warianty opacity [31] [32] [33], TMS1 [34] czy TMS2 [34]).
Jest tak, ponieważ własności te zostały zaprojektowane w kontekście lokalnego
środowiska, gdzie pewne gwarancje dotyczące uszeregowania transakcji (takie
jak uwzględnienie ograniczeń czasu rzeczywistego, ang. real-time) są naturalne i
relatywnie niedrogie do zapewnienia. Natomiast w środowisku rozproszonym
wspomniane gwarancje muszą często być osłabione w odniesieniu do niektó-
rych typów żądań (transakcji), np. żądań niemodyfikujących (ang. read-only).
Dlatego też formalizacja semantyki replikowanych systemów, które rozważane
są w tej dysertacji, wymaga zdefiniowania nowych własności poprawności.

Można zatem stwierdzić, że pomimo na powrót rosnącej popularności silnie
spójnych schematów replikacji, podstawy teoretyczne tego typu rozwiązań nie
są jeszcze dobrze poznane i potrzeba więcej badań w tej dziedzinie. Na przy-
kład brak w istniejącej literaturze szczegółowego porównania podstawowych
schematów replikacji takich jak SMR i DUR, zarówno pod kątem semantyki jak
i wydajności. Jest to zaskakujące, ponieważ zarówno SMR jak i DUR stanowią
podstawę wielu innych, bardziej skomplikowanych schematów replikacji (patrz

Streszczenie 97

np. [35] [36] [37] [38] [39] [40]). Dopiero gdy odkryjemy różnice między tymi
podejściami i jasno określimy ich silne i słabe strony, będziemy mogli zapropo-
nować nowe schematy replikacji, które będą odpowiadać aktualnym potrzebom
oraz w pełni wykorzystywać możliwości współczesnych, wysoce równoległych
architektur systemów komputerowych.

Cele i kontrybucje

Biorąc pod uwagę powyższe motywacje, w następujący sposób formułujemy
główną tezę dysertacji:

Jest możliwe stworzenie schematu replikacji usług i danych, który oferuje bogatą
semantykę transakcyjną, daje silne gwarancje spójności oraz cechuje go wysoka
wydajność dla różnych typów obciążeń.

Poniżej krótko podsumowujemy kontrybucje ujęte w dysertacji:

1. Nowe własności poprawności dla silnie spójnych replikowanych syste-
mów. Definiujemy �-opacity i �-linearizability, dwie rodziny własności po-
prawności zaprojektowane dla silnie spójnych replikowanych systemów.
Nasze własności wywodzą się z opacity (pl. nieprzezroczystości) i linearizabi-
lity (pl. liniowości)–dwóch dobrze znanych własności poprawności zdefi-
niowanych dla systemów transakcyjnych i systemów modelowanych jako
obiekty współdzielone [31] [41]. Dzięki zaproponowanym nowym wła-
snościom, możemy sformalizować gwarancje oferowane przez różne sche-
maty replikacji, które oferują (lub nie) semantykę transakcyjną oraz imple-
mentują różnego rodzaju optymalizacje, takie jak np. wykonanie żądań
niemodyfikujących przez pojedynczą replikę, bez dodatkowej synchroni-
zacji między replikami. Dowodzimy, że wszystkie własności z rodzin �-
opacity i �-linearizability są własnościami bezpieczeństwa (tzn. są niepu-
ste, prefiksowo-domknięte i domknięte, ang. non-empty, prefix-closed, limit-
closed). Określamy również formalny związek pomiędzy zaproponowa-
nymi rodzinami własności. Pokazujemy, że gdy żądania są wykonane w
systemie gwarantującym �-opacity i transakcje są niewidoczne dla klien-
tów (tzn. klienci nie widzą pośrednich wyników wykonania transakcji i
powiadamiani są o wyniku przetwarzania tylko przy zatwierdzaniu lub
wycofywaniu transakcji), wtedy system gwarantuje �-linearizability. W
szczególności pokazujemy związek pomiędzy opacity i linearizability w
ich oryginalnych definicjach (wg. naszej najlepszej wiedzy, jest to pierw-
szy rezultat tego typu).

2. Szczegółowe porównanie SMR i DUR. Porównujemy SMR i DUR za-
równo pod względem oferowanej semantyki jak i wydajności. Formalnie
dowodzimy poprawność obu podejść i pokazujemy, że SMR gwarantuje
real-time linearizability (własność z rodziny �-linearizability), podczas gdy

98 Streszczenie

DUR gwarantuje update-real-time opacity (własność z rodziny �-opacity).
Dowodzimy także, że DUR gwarantuje update-real-time linearizability, gdy
transakcje są ukryte przed klientami. Tym samym pokazujemy, że gwa-
rancje oferowane przez DUR są ściśle słabsze niż gwarancje oferowane
przez SMR. Rozważamy również SMR with Locks (LSMR), tj. SMR imple-
mentujące optymalizację polegającą na tym, że niemodyfikujące żądania
są wykonywane tylko przez pojedynczą replikę. Określamy dokładnie ja-
kie skutki dla oferowanych gwarancji ma wprowadzenie tej optymaliza-
cji i formalnie pokazujemy, że LSMR oferuje gwarancje ściśle słabsze niż
LSMR, ale ściśle silniejsze niż DUR. Wyniki przeprowadzonej przez nas
ewaluacji eksperymentalnej, pokazują silne i słabe strony SMR i DUR w
przypadku różnego rodzaju obciążeń. Głównym wnioskiem płynącym z
porównania wydajności obu podejść jest to, że żadne podejście nie jest ści-
śle lepsze od drugiego w ogólnym przypadku. Ten rezultat może zaskaki-
wać, ponieważ jedynie w przypadku DUR wydajność może potencjalnie
rosnąć wraz ze zwiększającą się liczbą replik biorących udział w przetwa-
rzaniu (SMR wykonuje wszystkie żądania sekwencyjnie, natomiast LSMR,
tj. zoptymalizowany wariant SMR, pozwala na równoległe przetwarzanie
żądań tylko w przypadku żądań niemodyfikujących).

3. Nowy, silnie spójny schemat replikacji transakcyjnej. Proponujemy no-
wy schemat replikacji zwany hybrydową replikacją transakcyjną (ang. Hybrid
Transactional Replication, HTR). HTR łączy SMR i DUR dla lepszej wydajno-
ści, skalowalności i bogatszej semantyki. Formalnie dowodzimy, że HTR
oferuje gwarancje podobne do DUR. Jak pokazujemy w testach ewaluacyj-
nych, HTR działa dobrze przy różnego rodzaju obciążeniach. W szczegól-
ności, HTR dobrze radzi sobie z obciążeniami, o których wiadomo, że są
problematyczne dla SMR czy DUR (np. obciążenia charakteryzujące się
długimi czasami wykonań żądań w przypadku SMR i obciążenia, w któ-
rych występuje wysokie współzawodnictwo w dostępie do tych samych
danych w przypadku DUR). W niektórych przypadkach, HTR pozwala
na osiągnięcie nawet 50% lepszej wydajności niż w przypadku urucho-
mienia HTR symulującego działanie DUR lub LSMR (wszystkie żądania
modyfikujące są wykonywane w sposób, który przypomina wykonanie
transakcji w DUR lub żądań w LSMR). HTR pozwala na definiowanie po-
lityk, dzięki którym możliwe jest dostosowanie działania systemu do spo-
dziewanego obciążenia i tym samym adaptacja do zmieniających się wa-
runków brzegowych. Przedstawiamy szereg technik przydatnych przy
tworzeniu polityk, a także proponujemy politykę wykorzystującą mecha-
nizmy uczenia maszynowego, która ułatwia pracę programiście i pozwala
na automatyczne dostosowywanie działania systemu do zmieniających się
warunków.

Powyższym kontrybucjom, które też opisujemy nieco bardziej szczegółowo
w dalszej części streszczenia, poświęcone są Rozdziały 4, 5 i 6 dysertacji. W po-
zostałych rozdziałach dysertacji przedstawiamy kontekst i tezę dysertacji (Roz-

Streszczenie 99

dział 1), przegląd literatury związanej z tematyką pracy (Rozdział 2), definiu-
jemy model rozważanych systemów (Rozdział 3). Podsumowujemy dysertację
w Rozdziale 7.

Nowe własności poprawności dla systemów zreplikowanych

Gwarancja wykonania żądań klientów z uwzględnieniem ograniczeń czasu rze-
czywistego (ang. real-time) jest często pożądaną cechą systemów rozproszonych.
Gwarancja czasu rzeczywistego oznacza, że gdy wykonanie jednego żądania
kończy się zanim rozpocznie się wykonanie innego żądania (porównując np.
czas zegarowy obu zdarzeń), efekty wykonania pierwszego żądania są zawsze
widoczne dla wykonania drugiego żądania. Zapewnienie takiej (intuicyjnej)
gwarancji w środowisku rozproszonym nie jest proste i często okazuje się bar-
dzo kosztowne. Jest tak dlatego, ponieważ uwzględnienie ograniczeń czasu
rzeczywistego wymaga synchronizacji między procesami (serwerami) w przy-
padku wykonania każdego żądania. Dlatego też replikowane usługi często osła-
biają ograniczenie czasu rzeczywistego w przypadku niektórych typów żądań,
na przykład żądań niemodyfikujących (żądań, które nie wykonały żadnych ope-
racji modyfikujących jak np. operacja zapisu, lub żądań wycofanych, ang. aborted,
rolled back). Wykonanie tego typu żądań nie wpływa na stan usługi, dlatego też
ich wykonanie nie musi uwzględniać ograniczeń czasu rzeczywistego wzglę-
dem reszty żądań, które zmieniają stan systemu. W ten sposób wydajność sys-
temu może znacznie wzrosnąć, w szczególności, gdy żądania niemodyfikujące
stanowią większość żądań przetwarzanych przez system.

Brak gwarancji uwzględnienia czasu rzeczywistego (dla chociażby niektó-
rych typów żądań) z pozoru wydaje się dość błahy. Jednak, jak pokazujemy w
Sekcji 4.1 na przykładzie DUR, brak owych gwarancji ma istotne konsekwencje.
Muszą one być być brane pod uwagę przez programistę replikowanej usługi,
gdy klienci usługi mogą komunikować się między sobą nie tylko poprzez zre-
plikowany system, ale także innymi kanałami (np. w szczególności poprzez
zewnętrzne usługi).

Jak się okazuje, semantyka takich schematów replikacji jak DUR, nie jest wła-
ściwie opisana przez żadną z istniejących własności poprawności (patrz Sek-
cja 2.2.1). Niektóre własności, które nie uwzględniają ograniczeń czasu rzeczy-
wistego są za słabe. Na przykład wspomniane już wcześniej serializability (pl.
uszeregowalność) [14] definiuje ograniczenia tylko dla zatwierdzonych transakcji
i nie określa gwarancji dla transakcji żywych lub wycofanych. Update serializa-
bility [52] czy extended update serializability [53] dopuszczają obserwowanie przez
różne procesy różnej historii zatwierdzeń modyfikujących transakcji w syste-
mie. Inne znane własności takie jak opacity (pl. nieprzezroczystość) [31] czy TMS1
[34] są zbyt silne, ponieważ wymagają by ograniczenie czasu rzeczywistego
było zawsze przestrzegane (dla wszystkich typów transakcji). Warto zauważyć,
że własności takie jak opacity czy TMS1 były zaproponowane dla systemów pa-

100 Streszczenie

mięci transakcyjnych (ang. transactional memory, TM systems), tj. mechanizmów
synchronizacji współbieżnego dostępu do danych mającego stanowić alterna-
tywę dla zamków, patrz np. [26]. Dlatego też ograniczenie czasu rzeczywistego
jest w tym wypadku naturalne. Jakkolwiek z uwagi na to, że systemy pamięci
transakcyjnej funkcjonują w środowisku lokalnym a nie rozproszonym, ograni-
czenie czasu rzeczywistego jest relatywnie proste do zagwarantowania.
�-opacity, które definiujemy w Sekcji 4.3, jest rodziną blisko powiązanych ze

sobą własności poprawności opartych na opacity. Własności te osłabiają w sys-
tematyczny sposób ograniczenie czasu rzeczywistego dotyczące uszeregowania
transakcji w opacity. Ogólnie mówiąc, system który gwarantuje którąkolwiek
własność z rodziny �-opacity, zachowuje się tak, jak gdyby wszystkie transakcje
(a więc również żywe i wycofane transakcje) były wykonywane sekwencyjnie.
Wymagania dotyczące uszeregowania transakcji, które to uszeregowanie obser-
wuje klient, zależą od rozważanej własności. W skrajnych przypadkach ograni-
czenie czasu rzeczywistego musi być zawsze przestrzegane (zgodnie z real-time
opacity) albo nigdy nie musi być brane pod uwagę (zgodnie z arbitrary order opa-
city). Oznacza to, że najsilniejsza własność z rodziny �-opacity jest tożsama z
oryginalną definicją opacity w jej prefiksowo-zamkniętej definicji [31]. Z dru-
giej strony, arbitrary order opacity przypomina serializability, ale jest zdefinio-
wane nie tylko dla zatwierdzonych transakcji, ale także dla transakcji żywych
i wycofanych. Obecnie �-opacity definiuje jeszcze cztery inne własności, słab-
sze od real-time opacity ale silniejsze niż arbitrary order opacity: commit-real-
time opacity, write-real-time opacity, update-real-time opacity i program order opacity.
Formalnie dowodzimy, że DUR spełnia update-real-time opacity. Własność ta
pozwala transakcjom niemodyfikującym oraz transakcjom wycofanym na dzia-
łanie na stanie systemu, który nie jest najświeższy, ale jest nadal spójny (patrz
Sekcja 5.3.3). Write-real-time opacity i commit-real-time opacity są pośrednimi
własnościami, dzięki którym możemy porównywać gwarancje oferowane przez
transakcyjne i nietransakcyjne schematy replikacji (patrz niżej). Program order
opacity jest własnością podobną do virtual time opacity [54], ale zdefiniowaną
w oparciu o zbiór pojęć podstawowych wykorzystanych w oryginalnej definicji
opacity (patrz także Sekcja 2.2.1).

Wraz z �-opacity, definiujemy rodzinę własności zwaną �-linearizability i ba-
zującą na linearizability (pl. liniowość) [41], czyli dobrze znanej własności zwykle
wykorzystywanej do formalizacji semantyki współbieżnych struktur danych.
Własności z rodziny �-linearizability pozwalają określić gwarancje oferowane
przez silnie spójne systemy, w których przetwarzanie transakcyjne następuje w
sposób niewidoczny dla klientów (klienci nigdy nie widzą pośrednich wyników
wykonania transakcji). Własności te mogą być również używane do zdefinio-
wania gwarancji systemów, które nie oferują semantyki transakcyjnej. W szcze-
gólności, nowe własności pozwalają opisać gwarancje różnych wariantów SMR.
W zależności od implementowanej optymalizacji, SMR spełnia real-time linea-
rizability lub też słabsze własności takie jak write-real-time linearizability (patrz
Sekcje 5.1.3 i 5.2.3). Ponadto, jak dowodzimy, �-linearizability zachowuje dwie
istotne własności linearizability: lokalność (ang. locality) i nieblokowanie (ang. non-

Streszczenie 101

blocking).
W Sekcji 4.5 przedstawiamy formalny rezultat dotyczący relacji pomiędzy

�-opacity i �-linearizability. Ogólnie mówiąc, pokazujemy, że jeśli transakcje
są niewidoczne dla klientów, replikowany system spełniający �-opacity, speł-
nia również �-linearizability. Rezultat ten ustanawia formalny związek między
opacity i linearizability (w ich oryginalnych definicjach) i pozwala bezpośred-
nio porównać gwarancje systemów takich jak DUR i SMR. Ponadto obiekt-brama
(ang. gateway object), który zdefiniowaliśmy w celu ustanowienia związku mię-
dzy dwiema rodzinami zaproponowanych własności, jest na tyle ogólny, że
może być używany do porównania innych (transakcyjnych lub nietransakcyj-
nych) własności poprawności.

Porównanie podstawowych schematów replikacji

Dwoma podstawowymi silnie spójnymi schematami replikacji są wspomniane
już wcześniej podejścia zwane replikacją maszyny stanowej (ang. State Machine
Replication, SMR) [16] [17] [18] i replikacją z opóźnioną aktualizacją (ang. Defer-
red Update Replication, DUR) [15]. Oba podejścia można implementować przy
użyciu różnych rozproszonych protokołów uzgadniania (ang. distributed agreement
protocols). My skupiamy się na implementacjach zbudowanych w oparciu o pro-
tokół rozgłaszania z globalnym uporządkowaniem (ang. Total Order Broadcast, TOB
[45]).

Fundamentalna różnica pomiędzy SMR i DUR polega na innej kolejności
synchronizacji serwerów (replik), na których uruchomiona jest replikowana us-
ługa, oraz wykonania żądań. W SMR repliki komunikują się przed wykona-
niem żądania poprzez rozgłoszenie żądania przy użyciu TOB. Następnie każda
z replik niezależnie wykonuje żądanie, tym samym uaktualniając swój stan w
podobny sposób (o ile wykonanie żądania jest deterministyczne). Natomiast w
DUR, jak już wspomnieliśmy wcześniej, żądanie jest wykonywane optymistycz-
nie jako atomowa transakcja na pojedynczej replice. Dopiero po zakończeniu
wykonania transakcji, modyfikacje utworzone w trakcie wykonania są rozgła-
szane przy pomocy TOB do wszystkich replik, tak by uaktualniły one swój stan
(ale tylko wtedy, gdy procedura certyfikacji transakcji zakończy się powodze-
niem).

Różnice w sposobie wykonania żądań w SMR i DUR skutkują znacznymi
rozbieżnościami w wydajności obu podejść wobec różnego rodzaju obciążeń.
Na przykład SMR jest bardzo wrażliwe na obciążenia charakteryzujące się dużą
liczbą żądań wymagających długiego czasu wykonania. Jest to zrozumiałe, po-
nieważ SMR wykonuje wszystkie żądania sekwencyjnie. DUR natomiast radzi
sobie z tego typu obciążeniami bardzo dobrze. Dzięki temu, że w DUR każde
żądanie wykonywane jest (jako transakcja) na pojedynczym serwerze, wykona-
nie żądań można zrównoleglić przetwarzając je na nowoczesnych wielordzenio-
wych procesorach i wielu replikach jednocześnie. Z drugiej strony DUR źle ra-

102 Streszczenie

dzi sobie z obciążeniami, w których można obserwować wysoki stopień współ-
zawodnictwa w dostępie do tych samych danych (ang. high contention levels). Do
takiej sytuacji dochodzi na przykład wtedy, gdy wiele transakcji w tym samym
momencie chce modyfikować te same dane. W takim wypadku wiele transakcji
musi być wycofanych i ponowionych, co odbija się negatywnie na wydajno-
ści i skalowalności DUR. Ponieważ w SMR wszystkie żądania wykonywane są
sekwencyjnie, to czy żądania często odwołują się do tych samych danych nie
wpływa zasadniczo na wydajność SMR.

Głównym wnioskiem płynącym z badań ewaluacyjnych SMR i DUR, któ-
rych wyniki przedstawiamy i omawiamy w Sekcji 5.4, jest to, że żadne z podejść
nie jest ściśle lepsze od drugiego. Jest to wniosek zaskakujący, ponieważ w prze-
ciwieństwie do DUR, SMR nie może skalować się wraz z rosnącą liczbą replik (a
więc także coraz większą dostępną mocą obliczeniową). Dla danego schematu
replikacji, obciążenia i rozmiaru klastra, niemal zawsze można jednoznacznie
wskazać czynnik decydujący o ograniczonej przepustowości systemu, tzn. re-
latywnie długie czasy wykonania żądań (które dominują czasy synchronizacji
replik) lub długie czasy synchronizacji replik (które dominują czasy wykonania
żądań). Niestety, jak pokazujemy, ów dominujący czynnik bywa różny nie tylko
dla różnego rodzaju obciążeń, ale czasami zmienia się wraz ze zmianą konfigu-
racji klastra (np. włączeniem do przetwarzania dodatkowych replik). Tak więc
wybór sposobu replikacji usługi powinien być uzależniony nie tylko od spo-
dziewanego obciążenia, ale i rozmiaru klastra.

W kwestii semantyki oba podejścia również znacznie się różnią. DUR ofe-
ruje semantykę transakcyjną, a zatem kod żądania (wykonywanego jako trans-
akcja) może korzystać z takich konstrukcji składniowych jak rollback czy retry,
które dają programiście kontrolę nad przepływem sterowania w transakcji. Po-
nieważ transakcje w DUR mogą zostać w dowolnym momencie przerwane i po-
wtórzone (ze względu na wykrywane przez system konflikty przy współbież-
nym dostępie do danych), kod takiej transakcji nie może zawierać tzw. operacji
niewycofywalnych (ang. irrevocable operations), a więc takich, których efektów nie
będzie można cofnąć, jak np. w przypadku wywołań systemowych czy operacji
wejścia/wyjścia. Kod transakcji może natomiast zawierać niedeterministyczne
operacje, ponieważ wykonanie transakcji odbywa w sposób optymistyczny na
pojedynczym serwerze. Nie jest tak w przypadku żądań wykonywanych przez
SMR. Ponieważ każde żądanie jest wykonywane niezależnie przez każdą re-
plikę, kod żądania musi być deterministyczny. W przeciwnym wypadku stan
replik uległby rozbiegnięciu.

Gwarancje oferowane przez SMR i DUR można sformalizować przy pomocy
własności własności należących do rodzin �-linearizability i �-opacity, tj. real-
time linearizability i update-real-time linearizability (patrz Sekcje 5.1.3 i 5.3.3). Zna-
jąc relację pomiędzy rodzinami własności, możemy pokazać, że DUR oferuje ści-
śle słabsze gwarancje niż SMR. W Sekcji 5.2.3 badamy gwarancje LSMR, a więc
SMR, który implementuje optymalizację polegającą na tym, że żądania, o któ-
rych z góry wiadomo, że nie zmienią stanu usługi, można wykonywać tylko na
pojedynczej replice, bez dodatkowej synchronizacji z innymi replikami. Jak po-

Streszczenie 103

kazujemy, LSMR gwarantuje write-real-time linearizability, a więc oferuje gwaran-
cje ściśle silniejsze niż DUR ale ściśle słabsze niż SMR. Widać zatem, że wybór
sposobu replikacji usługi nie tylko powinien uwzględniać kwestie wydajności,
ale także oczekiwanych gwarancji na wykonanie żądań (znacznie różniących się
między SMR i DUR).

Nowy silnie spójny transakcyjny schemat replikacji

W dysertacji opisujemy zaproponowane przez nas nowe podejście do replika-
cji zwane hybrydową replikacją transakcyjną (ang. Hybrid Transactional Replication,
HTR). W HTR każde żądanie jest wykonywane jako transakcja w jednym z
dwóch trybów: deferred update (DU) lub state machine (SM). W pierwszym przy-
padku wykonanie transakcji odbywa się dokładnie tak jak w DUR. Tym samym,
HTR wykonujący wszystkie żądania jako transakcje w trybie DU jest tożsamy z
DUR. W przypadku wykonania transakcji w trybie SM, najpierw transakcja jest
rozgłaszana przy pomocy TOB do wszystkich replik i wtedy każda z replik nie-
zależnie wykonuje transakcję. Tak więc wykonanie transakcji w trybie SM jest
bardzo podobne do wykonania żądania w SMR, ale z dodatkowym wsparciem
dla przetwarzania transakcyjnego (kod transakcji SM może zawierać konstruk-
cje składniowe takie jak rollback i retry). HTR pozwala na współbieżne wykony-
wanie wielu transakcji w trybie DU i jednej transakcji w trybie SM. W HTR wy-
konanie transakcji SM jest serializowane w jednym wątku z certyfikacją transak-
cji wykonanych w trybie DU i ewentualnym późniejszym uaktualnianiem stanu
repliki (gdy procedura certyfikacji transakcji zakończy się sukcesem).

Semantyka obu trybów wykonania transakcji jest podobna do semantyki
wykonania transakcji w DUR i żądań w SMR. Transakcje wykonywane w trybie
DU nie mogą zawierać operacji niewycofywalnych, ale mogą wykonywać nie-
deterministyczny kod. Natomiast transakcje wykonywane w trybie SM muszą
być deterministyczne, ale mogą zawierać operacje niewycofywalne, gdyż takie
transakcje mają gwarancję zatwierdzenia. W efekcie, HTR oferuje semantykę
bogatszą niż DUR i SMR.

Jak formalnie dowodzimy w Sekcji 6.4, HTR spełnia update-real-time opa-
city, a więc oferuje te same gwarancje spójności co DUR. Dodatkowo, jeśli wszyst-
kie transakcje wykonywane w HTR są wykonywane w trybie SM, to HTR speł-
nia real-time opacity, własność analogiczną do tej, którą gwarantuje SMR.

Wybór trybu wykonania transakcji nie musi być wyłącznie uzależniony od
tego, jakie gwarancje oczekiwane są w odniesieniu do wykonania transakcji.
Na przykład transakcje, które w trybie DU wielokrotnie musiałyby być wycofy-
wane z uwagi na wykrycie konfliktów przy współbieżnym dostępie do danych
(np. operacja zmieniania rozmiaru tablicy z haszowaniem), często lepiej jest wy-
konać w trybie SM. Wybór tego trybu wykonania transakcji daje pewność, że
zatwierdzenie transakcji powiedzie się. W trybie SM warto także wykonywać
transakcje, które dokonują wielu modyfikacji. W przypadku wykonania trans-

104 Streszczenie

akcji w trybie SM zmiany są tworzone niezależnie przez wszystkie repliki i nie
muszą być transmitowane przez sieć (tak jakby to było konieczne w przypadku
wykonania transakcji w trybie DU). Natomiast tryb DU sprawdza się lepiej w
przypadku transakcji, które sporadycznie odwołują się do tych samych danych
i których wykonanie trwa stosunkowo długo. Wtedy takie transakcje można
wykonywać w pełni równolegle.

Decyzja na temat tego, w którym trybie wykonać transakcję jest podejmo-
wana przed każdym wykonaniem transakcji przez tzw. wyrocznię (ang. oracle).
Naturalnie transakcja, o której z góry wiadomo, że nie zmodyfikuje stanu sys-
temu jest wykonywana w trybie DU przez pojedynczą replikę. W celu optyma-
lizacji wykorzystania zasobów, wyrocznia podejmuje decyzję dotyczącą trybu
wykonania potencjalnie modyfikującej transakcji w oparciu o aktualny stan sys-
temu, rodzaj wykonywanej transakcji oraz zdefiniowaną wcześniej politykę. W
szczególności wyrocznia bierze pod uwagę obciążenie serwerów, stopień na-
sycenia sieci, średnie czasy wykonania i zatwierdzania transakcji oraz stopień
współzawodnictwa transakcji w dostępie do tych samych danych. Polityka,
którą dostarcza programista, powinna odpowiadać oczekiwanemu obciążeniu
i może wykorzystywać mechanizmy uczenia maszynowego (ang. machine lear-
ning), dzięki czemu system może automatycznie dostosowywać się do zmienia-
jącego się obciążenia. Przykładową politykę korzystającą z mechanizmów ucze-
nia maszynowego przedstawiamy i ewaluujemy w rozprawie (patrz Sekcje 6.6
i 6.7). Zaprezentowane rozwiązanie inspirowane jest dobrze znanymi w środo-
wisku uczenia maszynowego algorytmami rozwiązującymi problem wielorękiego
bandyty (ang. multi-armed bandit problem) [92] [94].

Wyniki testów jasno demonstrują korzyści płynące z łączenia dwóch podejść
do replikacji w HTR. Nasz system radzi sobie dobrze z różnego rodzaju obcią-
żeniami, w tym z obciążeniami, o których wiadomo, że będą problematyczne
dla DUR czy SMR. Wydajność HTR jest co najmniej tak dobra jak wydajność
DUR czy SMR z osobna. Przy niektórych typach obciążeń wydajność oferowana
przez HTR jest nawet 50% lepsza niż w przypadku wykonania wszystkich mo-
dyfikujących transakcji w trybie DU czy SM (co odpowiada wykonaniu trans-
akcji w DUR czy wykonaniu żądań w LSMR, a więc zoptymalizowanej wersji
SMR). Przeprowadzone przez nas testy pokazują również, że wyrocznia wyko-
rzystująca mechanizmy uczenia maszynowego niemal natychmiast reaguje na
zmiany obciążenia i działa bardzo dobrze bez względu na rozmiar klastra, na
którym uruchomiona jest zreplikowana usługa.

Podsumowanie

Główna teza dysertacji dotyczyła zaproponowania nowego silnie spójnego sche-
matu replikacji o semantyce transakcyjnej, który oferowałby wysoką wydajność
dla różnych typów obciążeń. W celu dowiedzenia tezy dysertacji wykonaliśmy
badania, które podsumowujemy poniżej.

Streszczenie 105

Po pierwsze zaproponowaliśmy �-opacity i �-linearizability, dwie nowe ro-
dziny własności poprawności bazujące na dobrze znanych własnościach po-
prawności wykorzystywanych w kontekście systemów transakcyjnych i syste-
mów modelowanych jako obiekty współdzielone. Zaproponowane własności
systematyzują klasy różnych systemów replikacji, umożliwiają formalną analizę
oferowanych przez nich gwarancji, a także ich porównanie na płaszczyźnie se-
mantyki. W szczególności, dzięki zaproponowanym w dysertacji nowym wła-
snościom i udowodnionej formalnej relacji między nimi, możliwe jest porówna-
nie gwarancji oferowanych przez silnie spójne systemy, które oferują bądź nie
semantykę transakcyjną, a także możliwe jest porównanie bazowych własności
(tj. opacity i linearizability) w ich oryginalnych definicjach.

Po drugie dokonaliśmy dogłębnego porównania SMR i DUR, dwóch podsta-
wowych silnie spójnych schematów replikacji. W tym celu, korzystając z wcze-
śniej zdefiniowanych własności, formalnie udowodniliśmy oferowane przez te
podejścia gwarancje. Następnie nakreśliliśmy różnice w semantyce obu podejść
a także porównaliśmy SMR i DUR eksperymentalnie. Co ciekawe, żadne z po-
dejść nie okazało się ściśle lepsze od drugiego. Wybór schematu replikacji po-
winien zatem zależeć nie tylko od oczekiwanych gwarancji odnośnie wykony-
wanych żądań, ale także od spodziewanego rodzaju obciążenia.

Po trzecie zaproponowaliśmy nowe, silnie spójne podejście do replikacji zwa-
ne hybrydową replikacją transakcyjną, które łączy w jeden schemat SMR i DUR.
HTR zachowuje bogatą semantykę transakcyjną DUR i rozszerza ją o wspar-
cie dla operacji niewycofywalnych. Jak formalnie dowodzimy, HTR oferuje te
same gwarancje na wykonanie transakcji jak DUR (a w przypadku wykonania
wszystkich żądań w trybie SM oferowane gwarancje są nawet silniejsze). Po-
nadto, HTR cechuje bardzo dobra wydajność w szerokim zakresie obciążeń, w
tym obciążeń będących problematycznymi dla SMR czy DUR. Co więcej, moż-
liwość wykonania części transakcji w HTR w trybie DU a innych w trybie SM
pozwala niekiedy na poprawę przepustowości i skalowalności systemu nawet o
kilkadziesiąt procent. Wykorzystanie mechanizmów uczenia maszynowego w
HTR pozwoliło na automatyczne i niemal natychmiastowe dostosowywanie się
systemu do zmieniającego się obciążenia. Tym samym w opinii autora główna
teza dysertacji została udowodniona.

Bibliography

[1] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Introduction to trans-
actional replication,” in Transactional Memory. Foundations, Algorithms,
Tools, and Applications (R. Guerraoui and P. Romano, eds.), vol. 8913 of
Lecture Notes in Computer Science, Springer, 2015.

[2] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “State-machine and
deferred-update replication: Analysis and comparison,” IEEE Transactions
on Parallel and Distributed Systems, vol. PP, no. 99, 2016.

[3] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Relaxing real-time
order in opacity and linearizability,” Elsevier Journal on Parallel and Dis-
tributed Computing, vol. 100, 2017.

[4] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid transactional
replication: State-machine and deferred-update replication combined,” In
preparation for submission. arXiv:1612.06302 [cs.DC].

[5] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven compar-
ison of state-machine-based and deferred-update replication schemes,” in
Proceedings of SRDS ’12: the 31st IEEE International Symposium on Reliable
Distributed Systems, Oct. 2012.

[6] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid replica-
tion: State-machine-based and deferred-update replication schemes com-
bined,” in Proceedings of ICDCS ’13: the 33rd IEEE International Conference
on Distributed Computing Systems, July 2013.

[7] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “The correctness cri-
terion for deferred update replication,” in Program of TRANSACT ’15: the
10th ACM SIGPLAN Workshop on Transactional Computing, June 2015.

[8] T. Kobus and P. T. Wojciechowski, “A 90% RESTful group communica-
tion service,” in Proceedings of DCDP ’10: the 1st International Workshop on
Decentralized Coordination of Distributed Processes, June 2010.

108 Bibliography

[9] T. Kobus and P. T. Wojciechowski, “RESTGroups for resilient Web ser-
vices,” in Proceedings of SOFSEM ’12: the 38th International Conference on
Current Trends in Theory and Practice of Computer Science: Software & Web
Engineering Track, Lecture Notes in Computer Science, Jan. 2012.

[10] M. Kokociński, T. Kobus, and P. T. Wojciechowski, “Make the leader work:
Executive deferred update replication,” in Proceedings of SRDS ’14: the 33rd
IEEE International Symposium on Reliable Distributed Systems, Oct. 2014.

[11] M. Kokociński, T. Kobus, and P. T. Wojciechowski, “Brief announcement:
Eventually consistent linearizability,” in Proceedings of PODC ’15: the 34th
ACM Symposium on Principles of Distributed Computing, July 2015.

[12] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “A fault-tolerant data
processing computer system and method for implementing a distributed
two-tier state machine.” EPO patent application no. EP16461501.5, Jan 12.
2016.

[13] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “A fault-tolerant data
processing computer system and method for implementing a distributed
two-tier state machine.” USPTO patent application no. 14/995,211, Jan 14.
2016.

[14] C. H. Papadimitriou, “The serializability of concurrent database updates,”
Journal of the ACM, vol. 26, no. 4, 1979.

[15] B. Charron-Bost, F. Pedone, and A. Schiper, eds., Replication - Theory and
Practice, vol. 5959 of Lecture Notes in Computer Science. 2010.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed sys-
tem,” Communications of the ACM (CACM), vol. 21, July 1978.

[17] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: a tutorial,” ACM Computing Surveys (CSUR), vol. 22, Dec.
1990.

[18] F. B. Schneider, “Synchronization in distributed programs,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 4, Apr. 1982.

[19] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser,
“Managing update conflicts in Bayou, a weakly connected replicated stor-
age system,” in Proceeding of SOSP ’95: the 15th ACM Symposium on Oper-
ating Systems Principles, Dec. 1995.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Operating Systems
Review, vol. 41, Oct. 2007.

[21] A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” SIGOPS Operating Systems Review, vol. 44, Apr. 2010.

Bibliography 109

[22] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story,” Computer, vol. 45, Feb. 2012.

[23] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, exten-
sions, and beyond,” Queue, vol. 11, Mar. 2013.

[24] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Ko-
gan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao,
L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford,
“Spanner: Google’s globally-distributed database,” in Proceedings of OSDI
’12: the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, Oct. 2012.

[25] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte, “F1: A distributed SQL database that scales,”
Proceeding of Very Large Data Base (VLDB) Endowment, vol. 6, Aug. 2013.

[26] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural sup-
port for lock-free data structures,” in Proceedings of ISCA ’93: the 20th In-
ternational Symposium on Computer Architecture, June 1993.

[27] P. Romano, N. Carvalho, and L. Rodrigues, “Towards distributed software
transactional memory systems,” in Proceedings of LADIS ’08: the 2nd Work-
shop on Large-Scale Distributed Systems and Middleware, Sept. 2008.

[28] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory
transactions,” in Proceedings of OOPSLA ’05: Workshop on Synchronization
and Concurrency in Object-Oriented Languages (SCOOL), Oct. 2005.

[29] G. Korl, N. Shavit, and P. Felber, “Noninvasive concurrency with Java
STM,” in Proceedings of MULTIPROG ’10: the 3rd Workshop on Programma-
bility Issues for Multi-Core Computers, Jan. 2010.

[30] P. A., Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and
recovery in database systems. Addison-Wesley, 1987.

[31] R. Guerraoui and M. Kapalka, Principles of Transactional Memory. Synthesis
Lectures on Distributed Computing Theory, 2010.

[32] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky, “A programming lan-
guage perspective on transactional memory consistency,” in Proceedings of
PODC ’13: the 32nd ACM Symposium on Principles of Distributed Computing,
June 2013.

[33] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi, “Safety of deferred update
in transactional memory,” in Proceedings of ICDCS ’13: the 33rd IEEE Inter-
national Conference on Distributed Computing Systems, July 2013.

110 Bibliography

[34] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Towards formally
specifying and verifying transactional memory,” Formal Aspects of Com-
puting, vol. 25, no. 5, 2013.

[35] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Us-
ing optimistic atomic broadcast in transaction processing systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, July 2003.

[36] R. Palmieri, F. Quaglia, and P. Romano, “AGGRO: Boosting STM Replica-
tion via Aggressively Optimistic Transaction Processing,” in Proceedings of
NCA 2010: the 9th IEEE International Symposium on Network Computing and
Applications, Feb. 2010.

[37] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred update repli-
cation,” in Proceedings of DSN ’12: the 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2012.

[38] D. Sciascia and F. Pedone, “RAM-DUR: In-Memory Deferred Update
Replication.,” in Proceedings of SRDS ’12: the 31st IEEE International Sympo-
sium on Reliable Distributed Systems, Oct. 2012.

[39] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a new
way to implement database replication,” in Proceedings of VLDB 2000: the
26th International Conference on Very Large Data Bases, Sept. 2000.

[40] M. Couceiro, P. Romano, and L. Rodrigues, “PolyCert: Polymorphic self-
optimizing replication for in-memory transactional grids,” in Proceedings
of Middleware ’11: the 12th ACM/IFIP/USENIX International Conference on
Middleware, Dec. 2011.

[41] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 12, no. 3, 1990.

[42] F. B. Schneider, Replication management using the state-machine approach.
ACM Press/Addison-Wesley, 1993.

[43] L. Lamport, “The implementation of reliable distributed multiprocess sys-
tems,” Computer Networks, vol. 2, 1978.

[44] L. Lamport, “Using time instead of timeout for fault-tolerant dis-
tributed systems,” ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), vol. 6, Apr. 1984.

[45] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multi-
cast algorithms: Taxonomy and survey,” ACM Computing Surveys, vol. 36,
no. 4, 2004.

[46] R. Palmieri, F. Quaglia, and P. Romano, “OSARE: Opportunistic Specula-
tion in Actively REplicated transactional systems,” in Proceedings of SRDS

Bibliography 111

’11: the 30th IEEE International Symposium on Reliable Distributed Systems,
Oct 2011.

[47] S. Hirve, R. Palmieri, and B. Ravindran, “HiperTM: High performance,
fault-tolerant transactional memory,” in Proceedings of ICDCN’14: the
15th International Conference on Distributed Computing and Networking, Jan.
2014.

[48] F. Pedone, R. Guerraoui, and A. Schiper, “Exploiting atomic broadcast in
replicated databases,” in Proceedings of Euro-Par ’98: the 4th International
Conference on Parallel Processing, Sept. 1998.

[49] F. Pedone, R. Guerraoui, and André, “The database state machine ap-
proach,” Distributed and Parallel Databases, vol. 14, no. 1, 2003.

[50] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases (extended abstract),” in Proceedings of
Euro-Par ’97: the 3rd International Conference on Parallel Processing, Aug.
1997.

[51] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM: De-
pendable distributed software transactional memory,” in Proceedings of
PRDC ’09: the 15th IEEE Pacific Rim International Symposium on Dependable
Computing, Nov. 2009.

[52] R. Hansdah and L. Patnaik, “Update serializability in locking,” in Proceed-
ings of ICDT ’86: the 1st International Conference on Database Theory, Sept.
1986.

[53] A. Adya, Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. Ph.D., MIT, 1999. Also as Technical Report
MIT/LCS/TR-786.

[54] D. Imbs, J. R. G. De Mendivil Moreno, and M. Raynal, “On the consis-
tency conditions of transactional memories,” Research Report PI 1917, In-
ria, 2008.

[55] R. Guerraoui and M. Kapalka, “On the correctness of transactional mem-
ory,” in Proceedings of PPoPP ’08: the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Feb. 2008.

[56] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silberschatz,
“On rigorous transaction scheduling,” IEEE Transactions on Software Engi-
neering, vol. 17, no. 9, 1991.

[57] M. Raynal, G. Thia-Kime, and M. Ahamad, “From serializable to causal
transactions (abstract),” in Proceedings of PODC ’95: the 15th ACM Sympo-
sium on Principles of Distributed Computing, Aug. 1996.

112 Bibliography

[58] M. Raynal, G. Thia-Kime, and M. Ahamad, “From serializable to causal
transactions for collaborative applications,” in Proceedings of EUROMI-
CRO ’97: the 23rd Conference on New Frontiers of Information Technology,
Sept. 1997.

[59] C. E. Bezerra, F. Pedone, and R. V. Renesse, “Scalable state-machine repli-
cation,” Proceedings of DSN ’14: the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014.

[60] L. L. Hoang, C. E. B. Bezerra, and F. Pedone, “Dynamic scalable state ma-
chine replication,” in Proceedings of DSN ’16: the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2016.

[61] D. Mosberger, “Memory consistency models,” SIGOPS Operating Systems
Review, vol. 27, no. 1, 1993.

[62] L. Lamport, “How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs,” IEEE Transactions on Computers, vol. C-28,
no. 9, 1979.

[63] T. Crain, D. Imbs, and M. Raynal, “Towards a universal construction for
transaction-based multiprocess programs,” Theoretical Computer Science,
vol. 496, 2013.

[64] H. Attiya, R. Guerraoui, and P. Kouznetsov, “Computing with reads and
writes in the absence of step contention,” in Proceedings of DISC ’05: the
19th International Conference on Distributed Computing, Sept. 2005.

[65] M. K. Aguilera, S. Frolund, V. Hadzilacos, S. L. Horn, and S. Toueg,
“Abortable and query-abortable objects and their efficient implementa-
tion,” in Proceedings of PODC ’07: the 26th ACM Symposium on Principles of
Distributed Computing, Aug. 2007.

[66] V. Hadzilacos and S. Toueg, “On deterministic abortable objects,” in Pro-
ceedings of PODC ’13: the 32nd ACM Symposium on Principles of Distributed
Computing, July 2013.

[67] B. Alpern and F. B. Schneider, “Defining liveness,” Information Processing
Letters, vol. 21, no. 4, 1985.

[68] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
1996.

[69] R. M. Yoo, S. Viswanathan, V. Deshpande, C. J. Hughes, and S. Aundhe,
“Early experience on transactional execution of Java programs using Intel
Transactional Synchronization Extensions,” in Program of TRANSACT ’14:
the 9th ACM SIGPLAN Workshop on Transactional Computing, Mar. 2014.

[70] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and A. Schiper,
“JPaxos: State machine replication based on the Paxos protocol,” Tech.

Bibliography 113

Rep. EPFL-REPORT-167765, Faculté Informatique et Communications,
EPFL, July 2011.

[71] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, 1998.

[72] C. Kotselidis, M. Lujan, M. Ansari, K. Malakasis, B. Kahn, C. Kirkham,
and I. Watson, “Clustering JVMs with software transactional memory sup-
port,” in Proceedings of IPDPS ’10: the 24th IEEE International Parallel and
Distributed Processing Symposium, Apr. 2010.

[73] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Software transactional
memory for large scale clusters,” in Proceedings of PPoPP ’08: the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, Feb.
2008.

[74] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham, and I. Wat-
son, “DiSTM: A software transactional memory framework for clusters,”
in Proceedings of ICPP ’08: the 37th IEEE International Conference on Parallel
Processing, Sept. 2008.

[75] M. M. Saad and B. Ravindran, “HyFlow: A high performance distributed
transactional memory framework,” in Proceedings of HPDC ’11: the 20th
International Symposium on High Performance Distributed Computing, June
2011.

[76] A. Turcu, B. Ravindran, and R. Palmieri, “HyFlow2: A high performance
distributed transactional memory framework in scala,” in Proceedings of
PPPJ’13: the 10th International Conference on Principles and Practices of Pro-
gramming on JAVA platform: virtual machines, languages, and tools, Sept. 2013.

[77] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin, “Making the fast
case common and the uncommon case simple in unbounded transactional
memory,” in Proceedings of ISCA ’07: the 34th International Symposium on
Computer Architecture, June 2007.

[78] M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A dynamic binary-
rewriting approach to software transactional memory,” in Proceedings of
PACT ’07: the 16th International Conference on Parallel Architectures and Com-
pilation Techniques, Sept. 2007.

[79] M. F. Spear, M. Michael, and M. L. Scott, “Inevitability mechanisms for
software transactional memory,” in Program of TRANSACT ’08: the 3rd
Workshop on Transactional Computing, Feb. 2008.

[80] A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable transactions and
their applications,” in Proceedings of SPAA ’08: the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, June 2008.

114 Bibliography

[81] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis, “Adaptive locks: Com-
bining transactions and locks for efficient concurrency,” Journal of Parallel
Distributed Computing, vol. 70, no. 10, 2010.

[82] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, June 1981.

[83] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based
replication of software transactional memory,” in Proceedings of Middleware
’10: the 12th ACM/IFIP/USENIX International Middleware Conference, Dec.
2010.

[84] K. Siek and P. T. Wojciechowski, “Atomic RMI: A distributed transactional
memory framework,” International Journal of Parallel Programming, vol. 44,
June 2015.

[85] P. T. Wojciechowski and K. Siek, “Atomic RMI 2: Distributed transactions
for Java,” in Proceedings of AGERE ’16: the 6th International Workshop on
Programming Based on Actors, Agents, and Decentralized Control, 2016.

[86] A. Thomson and D. J. Abadi, “The case for determinism in database sys-
tems,” Proceeding of Very Large Data Base (VLDB) Endowment, vol. 3, Sept.
2010.

[87] M. Couceiro, P. Ruivo, P. Romano, and L. Rodrigues, “Chasing the opti-
mum in replicated in-memory transactional platforms via protocol adap-
tation,” in Proceedings of DSN’13: the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2013.

[88] M. M. Saad and B. Ravindran, “Supporting STM in distributed systems:
Mechanisms and a Java framework,” in Program of TRANSACT ’11: the 6rd
Workshop on Transactional Computing, June 2011.

[89] R. J. Dias, D. Distefano, J. C. Seco, and J. Lourenço, “Verification of snap-
shot isolation in transactional memory Java programs,” in Proceedings of
ECOOP ’12: the 26th European Conference on Object-Oriented Programming,
June 2012.

[90] A. Correia, J. Pereira, and R. Oliveira, “AKARA: A flexible clustering pro-
tocol for demanding transactional workloads,” in Proceedings of On the
Move to Meaningful Internet Systems: OTM 2008, Nov. 2008.

[91] A. Welc, A. L. Hosking, and S. Jagannathan, “Transparently reconcil-
ing transactions with locking for Java synchronization,” in Proceedings of
ECOOP ’06: the 20th European Conference on Object-Oriented Programming,
July 2006.

[92] H. Robbins, “Some aspects of the sequential design of experiments,” Bul-
letin of the American Mathematical Society, vol. 58, no. 5, 1952.

Bibliography 115

[93] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, Mar. 1985.

[94] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” Computing Research Repository, vol. abs/1402.6028, 2014.

[95] M. Couceiro, D. Didona, L. Rodrigues, and P. Romano, “Self-tuning in
distributed transactional memory,” in Transactional Memory. Foundations,
Algorithms, Tools, and Applications, vol. 8913 of Lecture Notes in Computer
Science, 2015.

[96] D. Rughetti, P. D. Sanzo, B. Ciciani, and F. Quaglia, “Machine learning-
based self-adjusting concurrency in software transactional memory sys-
tems,” in Proceedings of MASCOTS ’12: the 20th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems, 2012.

[97] M. Castro, L. F. W. Góes, C. P. Ribeiro, M. Cole, M. Cintra, and J. F. Méhaut,
“A machine learning-based approach for thread mapping on transactional
memory applications,” in Proceedings of HiPC ’11: the 18th International
Conference on High Performance Computing, Dec 2011.

[98] M. K. Aguilera, C. Wei, and S. Toueg, “Failure detection and consensus in
the crash-recovery model,” in Proceedings of DISC ’98: the 12th International
Symposium on Distributed Computing, Sept. 1998.

[99] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed Program-
ming. Springer-Verlag New York, Inc., 2006.

[100] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector
for solving consensus,” Journal of the ACM (JACM), vol. 43, July 1996.

[101] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Deconstructing
Paxos,” SIGACT News, vol. 34, no. 1, 2003.

[102] M. F. Spear, V. J. Marathe, W. N. Scherer, and M. L. Scott, “Conflict detec-
tion and validation strategies for software transactional memory,” in Pro-
ceedings of DISC ’06: the 20th International Symposium on Distributed Com-
puting, Sept. 2006.

[103] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in Proceed-
ings of DISC ’06: the 20th International Symposium on Distributed Computing,
Sept. 2006.

[104] R. Guerraoui and E. Ruppert, “Linearizability is not always a safety prop-
erty,” in Proceedings of NETYS ’14: the 4th International Conference on Net-
worked Systems, May 2014.

[105] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky, “Safety of live transac-
tions in transactional memory: TMS is necessary and sufficient,” in Pro-
ceedings of DISC ’14: the 28th International Symposium on Distributed Com-
puting, May 2014.

116 Bibliography

[106] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “State machine replica-
tion: variants and properties,” Tech. Rep. RA-7/16, Poznań Univ. of Tech-
nology, May 2016.

[107] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” in Proceedings of ICDCS ’14: the 34th IEEE In-
ternational Conference on Distributed Systems, June 2014.

[108] R. Van Renesse and D. Altinbuken, “Paxos made moderately complex,”
ACM Computing Surveys, vol. 47, Feb. 2015.

[109] P. A. Bernstein and N. Goodman, “Multiversion concurrency control—
theory and algorithms,” ACM Transactions on Database Systems (TODS),
vol. 8, Dec. 1983.

[110] N. Santos and A. Schiper, “Optimizing Paxos with batching and pipelin-
ing,” Theor. Comput. Sci., vol. 496, 2013.

[111] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer series in statistics,
Springer, 2009.

[112] K. Siek and P. T. Wojciechowski, “A formal design of a tool for static analy-
sis of upper bounds on object calls in Java,” in Proceedings of FMICS ’12: the
17th International Workshop on Methods for Industrial Critical Systems, 2012.

[113] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Bandit problems with side
observations.,” IEEE Transactions on Automatic Control, vol. 50, no. 3, 2005.

A
Proofs Regarding Traits of �-Opacity

and �-Linearizability

In this chapter we provide the detailed proofs for all the formal results related
to the �-opacity and �-linearizability families of properties.

A.1 �-Opacity is a Safety Property

Now we prove that �-opacity is a safety property [67] [68]. The use of order
relations other than real-time does not influence opacity’s prefix-closeness and
limit-closeness. Therefore, the proof of the following theorem is identical as for
the original definition of opacity [31].

Theorem 1. �-opacity is a safety property.

Proof. In order to prove that �-opacity is a safety property, it is necessary to show
that it is non-empty, prefix-closed and limit-closed.

Trivially an empty t-history H⊥ = 〈〉 is �-opaque. Therefore, �-opacity is
non-empty.

By the definition of �-opacity, if a t-history H is �-opaque, then every Hk, a
finite prefix of H , is final-state �-opaque. Since for every Hk, all its prefixes (Hi,
i < k) are final-state �-opaque,Hk is also �-opaque. Therefore, every finite prefix
of H is �-opaque, which means that �-opacity is prefix-closed.

Now, let us consider an infinite sequence H0, H1, H2, ... of finite t-histories,
such that each Hk is a prefix of Hk+1, and Hk is �-opaque. Let H be a t-history
which is the limit of this sequence. Since each Hk is finite and �-opaque, Hk is
final-state �-opaque. Therefore by definition of �-opacity H is �-opaque. Thus,
�-opacity is limit-closed.

To conclude, we have shown that �-opacity is non-empty, prefix-closed and
limit-closed. Therefore it is a safety property.

Corollary 1. A system (modelled as a TM object) is �-opaque if, and only if every finite
history it produces is final-state �-opaque.

118 A Proofs Regarding Traits of �-Opacity and �-Linearizability

Proof. The proof follows directly from Theorem 1.

A.2 �-Linearizability is a Safety Property

Theorem 2. �-linearizability is a safety property.

Proof. The proof is analogous to the proof of Theorem 1.

Corollary 2. A system (modelled as a set of shared objects) is �-linearizable, if and only
if every finite history it produces is final-state �-linearizable.

Proof. The proof follows directly from Theorem 2.

A.3 �-Linearizability is Non-blocking and Satisfies Local-
ity

The proof of Theorem 3, which we prove using the following two lemmas, is
inspired by the proof in [41].

Lemma 1. Let X ∈ X be a shared object with a sequential specification (Q, q0, INV ,

RES , δ). Let op ∈ INV be a total operation on X . If a finite �-linearizable history
H contains the invocation event X.inv l(op) of some pending operation execution ok
(for some process pl), then there exists a response v ∈ RES , such that the history H ′

obtained by appending the response event X.respl(v) to H is �-linearizable.

Proof. SinceH is a finite �-linearizable history,H is also final-state �-linearizable.
Let H̄ be some completion of H such that there exists S, a sequential history
equivalent to H̄ such that S is legal and S respects the �-order of H̄ (i.e.,<�

H̄
⊆<�S).

We have two cases to consider. If S contains X.inv l(op), then S also contains
X.respl(v), as S is complete. Therefore S is equivalent to H̄ and H̄ is �-lineari-
zable.

Now consider a case when S does not containX.inv l(op). BecauseX.inv l(op)

is an invocation of a total operation, a response to this operation is defined
for every state of X . Therefore, there exists a response v ∈ RES such that
S′ = S · 〈X.inv l(op), X.respl(v)〉 is legal. Let H̄ ′ be a completion of H con-
structed in the same way as H̄ but without removing X.inv l(op) and by ap-
pending X.respl(v) at the end of the history. Then S′ is equivalent to H̄ ′.

Now we have to show that S′ satisfies the �-order of H̄ ′. We give the proof
by a contradiction. Assume that S′ does not satisfy the �-order of H̄ ′. Then
there exist two operation executions oi and oj , i 6= j, such that oi <�H̄′ oj and
oi 6<�S′ oj . Since oi <�H̄′ oj , we know that <�

H̄′ 6=<a
H̄′ (<a

H̄′= ∅), and that oi <r
H̄′ oj

A.3 �-Linearizability is Non-blocking and Satisfies Locality 119

and oi 6<r
S′ oj (every order relation other than arbitrary order assumes real-time

precedence). Note that, since<�
H̄
⊆<�S and S′ = S · 〈X.inv l(op), X.respl(v)〉, then

<�
H̄
⊆<�S′ . Since oi <�H̄′ oj , then oi <�S′ oj .
Now we show that either oi = ok or oj = ok, which means that either oi

or oj appears in H̄ ′ but not in H̄ . Assume otherwise, i.e., oi and oj are some
two operation executions in H̄ . From our assumption, oi <�H̄′ oj . Therefore,
also oi <

�
H̄
oj . Because S respects the �-order of H̄ , oi <�S oj , Because S′ is

constructed by appending two evens to S, also oi <�S′ oj . However, we assumed
that oi 6<�S′ oj . Hence, either oi = ok or oj = ok.

In the former case, ok <r
H̄′ oj . By construction of H̄ ′ we know also that the

response event of ok is the last event in H̄ ′ and therefore no operation executions
can succeed ok in H̄ ′, a contradiction. In the latter case, we know that oi 6<r

S′ ok
(from the assumption). Therefore, ok <r

S′ oi because S′ is totally ordered. But
it is impossible, since ok is the last operation execution in S′, a contradiction.
Therefore the assumption was false and S′ respects the �-order of H̄ ′, what con-
cludes the proof.

Lemma 2. A history H is �-linearizable if and only if for every shared object X ∈ X ,
H|X is �-linearizable.

Proof. First we show that if H is �-linearizable then, for every shared object X ∈
X , H|X is �-linearizable. From the assumption we know that H is �-linearizable
and thus every finite prefix H ′ of H is final-state �-linearizable. Let H̄ ′ be a
completion of H ′ such that there exists a legal sequential history S′ equivalent
to H̄ ′, which respects the �-order of H̄ ′. Since S′ is legal, for each X , S′|X is
legal. Trivially, for every X , H̄ ′|X is a completion of H ′|X . Therefore, for each
X , S′|X is equivalent to H̄ ′|X , S′|X satisfies the �-order of X , H ′|X is final-state
�-linearizable. Obviously, H ′|X is a prefix of H|X . Since, every finite prefix of
H|X is final-state �-linearizable, by definition, H|X is �-linearizable.

Now we show that if H is a history such that for every shared object X ∈ X ,
H|X is �-linearizable then H is �-linearizable. Let H ′ be any finite prefix of H .
Now let us consider any X , and let H ′X = H ′|X . Then, H ′X is final-state �-
linearizable. Let H̄ ′X be a completion of H ′X such that S′X is a legal sequential
history equivalent to H̄ ′X and <�S′

X
be an order relation in S′X which respects the

�-order of H̄ ′X (<�
H̄′

X
⊆<�S′

X
).

Let H̄ ′ be a completion ofH ′ which contains all events of every H̄ ′X such that
X ∈ X , and satisfies the order <H̄′ which is defined as follows. Let ei and ej be
any two events in H̄ ′:

• if ei, ej ∈ H ′ and ei precedes ej in H ′ then ei precedes ej in H̄ ′ (ei <H̄′ ej),

• if ei ∈ H ′ and ej 6∈ H ′ then ei <H̄′ ej ,

• if ei, ej 6∈ H ′, then the order of ei and ej in H̄ ′ is arbitrary.

Let� be a transitive closure of
⋃

X(<r
S′
X

) and <�
H̄′ . Assuming that� is a partial

order, we can construct a sequential history S′ which is equivalent to H̄ ′ and
respects� (i.e., by performing a topological sort of�). Then S′ is legal, because

120 A Proofs Regarding Traits of �-Opacity and �-Linearizability

for everyX , S′|X = S′X (<r
S′
X
⊆� and<r

S′
X

is a total order) and we know that S′X
is legal. Also by construction, S′ respects the �-order of H̄ ′ (<�

H̄′⊆�). Therefore
H ′ is final-state �-linearizable. We now show that � is indeed a partial order,
i.e., no cycle exists in�. We give a proof by contradiction.

Assume that the cycle of minimal length in� is o1 � o2 � ... � on � o1.
Then each edge in the cycle follows either from the relation<r

S′
X

for some shared
object X or from the relation <�

H̄′ . Suppose that all operation executions in the
cycle pertain to the same object X . Since <r

S′
X

is a total order, the cycle must
contain two operation executions oi and oj such that oi <r

S′
X
oj and oj <

�
H̄′ oi.

Because oj <�H̄′ oi, we know that <�
H̄′ 6=<a

H̄′ (<a
H̄′= ∅), and oj <r

H̄′ oi (every order
relation other than arbitrary order assumes real-time precedence). Note that by
the construction of H̄ ′ and the fact that by definition H̄ ′X = H̄ ′|X , for any two
operation executions ok and ol on the same objectX , if ok <r

H̄′ ol then ok <r
H̄′

X
ol.

In turn oj <r
H̄′

X
oi and oj <r

S′
X
oi (because <�

H̄′
X
⊆<�S′

X
). Since <r

S′
X

is a total order,
both oi <r

S′
X
oj and oj <r

S′
X
oi cannot be true, a contradiction. Therefore the cycle

must contain operation executions on at least two different shared objects.
Let oj be an operation execution onX . Let ok be the first operation execution

after oj in the cycle, such that ok is an operation execution on Y 6= X . Also let oi
be the first operation execution before oj in the cycle, such that oi is an operation
execution on Z 6= X (possibly Y = Z). Then oi � oj � ok. Since oi and oj are
on different objects, oi <�H̄′ oj (by the construction of the cycle, if an edge does
not follow from the relation <r

S′
X

then it has to follow from the relation <�
H̄′).

Analogically, oj <�H̄′ ok. Therefore oi <�H̄′ ok. If oi = ok, then ok <�
H̄′ oj and

oj <
�
H̄′ ok, which is impossible. Therefore oi 6= ok. Since oi 6= ok, oi <�H̄′ ok and

<�
H̄′⊆�, there exists a shorter cycle o1 � o2 � ... � oi � ok � ... � on � o1

which contradicts the assumption that the original cycle was the shortest one.
Therefore, the assumption that� is not a partial order was false, thus reassuring
that H ′ is final-state �-linearizable.

Since, every prefix of H is final-state �-linearizable, H is �-linearizable, what
concludes the proof.

Theorem 3. �-linearizability is non-blocking and satisfies locality.

Proof. The proof follows directly from Lemma 1 and Lemma 2.

A.4 Commit-real-time Linearizability is Equivalent to Real-
time Linearizability

Lemma 3. Let S = 〈o1, o2, ...〉 be a sequential history and S′ = 〈o1, o2, ..., ok, oa,

ok+1, ...〉 be a sequential history constructed by inserting an aborted operation execution
oa = X.op →r ⊥ to S (for some process pr). S is legal if and only if S′ is legal.

A.4 Commit-real-time Linearizability is Equivalent to Real-time Linearizability 121

Proof. First let us assume that S is legal. By definition of legality, S|X satisfies
the sequential specification of X . Now let oi and oj be two operation executions
on X in S such that i is the largest possible number lower or equal k and oj is
the next operation execution after oi in S|X (j is greater or equal k+ 1; oi and oj
may or may not exist). It means that, if oi exists, it is the last operation execution
on X in S before ok, and oj , if it exists, is the operation execution in S|X , which
directly follows oi.

Now let qi be the state of X after execution of oi (or the initial state of X if oi
does not exist). Naturally, qi is also the state of X that oj operates on. Since oa is
aborted, the transition (qi, op,⊥, qi) belongs to the sequential specification of X
(by definition of aborted operation). Therefore, adding oa to S|X in between oi
and oj , and thus creating S′|X , does not break the sequential specification of X .
In turn S′ is also legal.

Now let us assume that S′ is legal. By the definition of legality, S′|X satisfies
the sequential specification of X . Now let oi be an operation execution which
directly precedes oa in S′|X and let oj be an operation execution which directly
succeeds oa in S′|X (oi and oj may or may not exist). Additionally, let qi be
the state of X after the execution of oi (or the initial state of X if oi does not
exist). Then the transition of oa is equal (qi, op,⊥, qi) (by definition of aborted
operation). It means that the state that oj operates on is equal to qi. Therefore,
removing oa from S′|X (and thus creating S|X) still satisfies the sequential spec-
ification of X . In turn, S is legal.

Since we proved implications in both directions, S is legal if and only if S′ is
legal.

Theorem 4. Commit-real-time linearizability is equivalent to real-time linearizability.

Proof. In order to prove that commit-real-time linearizability is equivalent to
real-time linearizability we have to show that every commit-real-time lineariz-
able history is real-time linearizable and vice versa.

Actually, it suffices to show that every final-state commit-real-time lineariz-
able history is final-state real-time linearizable and vice versa. Now we prove
by a contradiction why it is so.

Assume that for any history H , if H is final-state commit-real-time lineariz-
able then H is final-state real-time linearizable but (the contradiction part) it
is not true that if H is commit-real-time linearizable then H is real-time lin-
earizable. The latter implication is false if there exists a history H such that it
is commit-real-time linearizable and it is not real-time linearizable. From the
definition of commit-real-time linearizability, every history H ′, which is a pre-
fix of H , is final-state commit-real-time linearizable. But now, using the first
assumption, we know that every such H ′ is final-state real-time linearizable.
Then, H is real-time linearizable, because every its prefix H ′ is final-state real-
time linearizable (by definition). This contradicts the assumption that H is not
real-time linearizable thus completing the proof. An analogical reasoning can
be inferred to show that in order to prove that every real-time linearizable his-
tory H is commit-real-time linearizable it suffices to show that every final-state

122 A Proofs Regarding Traits of �-Opacity and �-Linearizability

real-time linearizable history is final-state commit-real-time linearizable.
Since, <c

H⊆<r
H , by the definition of final-state �-linearizability, every final-

state real-time linearizable history is trivially also final-state commit-real-time
linearizable. Now, we proceed to prove that every final-state commit-real-time
linearizable history is also final-state real-time linearizable.

Let H be any final-state commit-real-time linearizable history. We now show
how to construct a sequential history which is equivalent to some completion of
H , such that it is legal and respects the real-time order of that completion.

Part 1. Construction of the sequential history.
Let us denote by DSG(Ĥ) a directed graph which represents partial order

induced by operation execution precedence in some history Ĥ . Operation exe-
cutions constitute the vertices of the graph, which are connected by a directed
edge if and only if the operation execution oi represented by the first vertex pre-
cedes (in real-time) the operation execution oj represented by the second vertex,
i.e., oi <r

Ĥ
oj . Let oi and oj be any two operation executions in Ĥ such that

oi <
r
Ĥ
oj . Then, naturally, it is impossible that oj <r

Ĥ
oi (<r

Ĥ
is asymmetric). The

precedence relation (the precedence in real-time) is transitive and asymmetric,
therefore, we know that DSG(Ĥ) is acyclic.

Since H is final-state commit-real-time linearizable, we know that there ex-
ists a sequential history S equivalent to some completion of H called H̄ , such
that S is legal and S respects the commit-real-time order of H̄ .

Let us construct a history S′ by stripping all aborted operation executions
from S. This way S′ is a sequential history consisting of only committed op-
eration executions. Now let us construct a directed graph G′ by extending the
graph G = DSG(H̄) in the following way. For any two operation executions oi
and oj in S′ such that oi <r

S′ oj , we add an edge from oi to oj to G′.

Claim 1. G′ is acyclic.

Proof. Because G is acyclic we know that there are no two vertices u and v in
G, such that u is reachable from v and v is reachable from u (there exists a path
from u to v and from v to u). Let us call this the no mutual reachability invariant.
The condition is necessary and sufficient for a graph to be acyclic. We have to
show that G′ also exhibits this property.

Because S respects the commit-real-time order of H̄ , we know that for any
two committed operation executions oi and oj in S such that oi <r

S oj , either
oi <

r
H̄
oj , or oi and oj are concurrent in H̄ . Therefore, oj 6<r

H̄
oi.

S′ contains the same committed operation executions as S. Thus the above
also holds for operation executions in S′. Let as assume that S′ = 〈o1, o2, ...〉.
Then, for any two operation executions oi and oj in S′, such that i < j, oi is not
reachable from oj in G. We call this the path invariant.

Let us consider the one-by-one insertion of edges between vertices induced
by S′. We denote by Gk the modified graph G after k insertions. We start with
G0 = G, and assume that every Gk satisfies both, the no mutual reachability
invariant, and the path invariant. The graph G′ can be expressed as Gn, where
n is the total number of edges induced by S′. Let us take an arbitrary edge from

A.4 Commit-real-time Linearizability is Equivalent to Real-time Linearizability 123

oi to oj , where both oi and oj are in S′, and oi <r
S′ oj (i < j). We insert it into Gk.

Now we show that the resulting Gk+1 satisfies both invariants.
By the path invariant we know that oi is not reachable from oj in Gk. When

an edge from oi to oj is inserted inGk, then oj becomes reachable from oi inGk+1

(if it was not in Gk). However, the opposite is not true – oi is still not reachable
from oj . Adding this edge also does not change anything in mutual reachability
of other operation executions as we now show by contradiction. Assume op and
oq are not mutually reachable inGk (either oq is not reachable from op, or op is not
reachable from oq), but the new edge from oi to oj changes it in Gk+1. Without
loss of generality let us assume that oq is reachable from op in Gk, but that op
becomes reachable from oq only in Gk+1 due to the insertion of a new edge. It
means that there exists a directed path from oq to op in Gk+1 that includes the
new edge from oi to oj . For that to be possible, oi has to be reachable from oq
and op has to be reachable from oj . This would mean that also oq is reachable
from oj (since oq is reachable from op), and in consequence also oi is reachable
from oj . But we know that oi is not reachable from oj in Gk+1, a contradiction.
Therefore, the no mutual reachability invariant holds.

Now let us assume that op and oq belong to S′, and that p < q. By the path
invariant, op is not reachable from oq in Gk. By the same reasoning as above, the
insertion of an edge from oi to oj cannot make op reachable from oq. Therefore,
also the path invariant holds.

Since, every graph Gk satisfies the no mutual reachability invariant, G′ is
acyclic.

Since G′ is acyclic and includes an edge for every pair of preceding opera-
tion executions in H̄ , a topological sort of G′ can only yield a serialization which
maintains this precedence. Let SG′ be a history obtained by performing a topo-
logical sort on G′. Then SG′ is a sequential history that respects the real-time
order of H̄ . Additionally, since G′ contains all the operation executions of H̄ , so
does SG′ . Thus, SG′ is equivalent to H̄ .

Part 2. Proving the legality of SG′ .
We now show that the constructed history SG′ is legal. We do so in three

steps. First, we consider a history S′′, which is constructed by removing from
SG′ all the aborted operation executions, and show that it is equivalent to S′.
Then, we use Lemma 3 to prove that S′ is legal. In consequence S′′ is also legal.
Finally, we use Lemma 3 again to prove that SG′ is legal.

Claim 2. S′ and S′′ are identical histories.

Proof. First, we show that S′ and S′′ consist of the same operation executions.
S′ is constructed by removing all aborted operation executions from S. Since
S is equivalent to H̄ (a completion of H), S′ contains all committed operation
executions of H̄ . On the other hand, S′′ is constructed by removing all aborted
operation executions from SG′ , a history obtained by a topological sort of graph
G′. G′ is created by adding some edges to graph G = DSG(H̄). Therefore, both

124 A Proofs Regarding Traits of �-Opacity and �-Linearizability

G and G′ consist of all operation executions of H̄ . It means that S′′, similarly to
S′, consists of all committed operation executions of H̄ .

Now we have to show that the order of operation executions in S′ and S′′

is the same. Since both histories are sequential, there exist total orders <r
S′ and

<r
S′′ . We therefore have to prove that for any two (committed) operation execu-

tions oi and oj , oi <r
S′′ oj if oi <r

S′ oj .
We give a proof by a contradiction. Assume that oi <r

S′ oj and oi 6<r
S′′ oj .

Since G′ contains an edge from oi to oj , the result of a topological sort on G′

can only yield a serialization in which oi precedes oj . Therefore, oi <r
SG′ oj . S

′′

is constructed by removing aborted operation executions from SG′ , therefore it
contains the same committed operation executions as SG′ arranged in the same
order. As S′ contains only committed operation executions, both oi and oj are
committed. Therefore, oi <r

S′′ oj , a contradiction.
We have shown that S′ and S′′ consist of the same operation executions ar-

ranged in the same order. Therefore, S′ and S′′ are equal.

From the assumptions we know that S is legal. Since S′ is constructed by
removing all aborted operations executions from S, then S′ is legal as well (by
Lemma 3). In consequence, S′′ is also legal (from Claim 2). Since S′′ is legal
and S′′ contains all the committed operations executions of SG′ and none of its
aborted operation executions, then also SG′ is legal (by Lemma 3).

Since SG′ is a sequential history equivalent to H̄ (a completion of H), SG′ is
legal and SG′ respects the real-time order of H̄ ,H is final-state real-time lineariz-
able.

A.5 Relationship Between �-Opacity and �-Linearizability

Proposition 1. LetH be some implementation history and letG be a gateway shared ob-
ject of a TM object M . If an operation execution G.perform(progk)→i vk is completed
(for some process pi and transaction Tk) in H|G, then transaction Tk is t-completed in
H|M .

Proof. The execution of PERFORM(progk) ends through calling the return state-
ment in lines 8, 12, 15, or 16 of Algorithm 1. We now consider each case inde-
pendently. In the first case, Tk is forcefully aborted during execution of opera-
tion x.op (line 7). In the second case, Tk is aborted on demand as the result of
execution of M.tryA(Tk) in line 11. In the third and fourth cases, Tk is either
aborted or committed, depending on the result of execution of M.tryC (Tk) in
line 14. Therefore, in either case Tk is completed in H|M .

Proposition 2. Let H be some implementation history and let G be a gateway shared
object of a TM objectM . If transaction Tk is commit-pending inH|M , then the function
PERFORM(progk) completed execution of all steps of progk.

A.5 Relationship Between �-Opacity and �-Linearizability 125

Proof. Transaction Tk becomes commit-pending after executing M.tryC (Tk) in
line 14. It means that the function FETCHNEXTSTEP in line 4 returned ⊥, thus
signaling that there are no more steps left to complete in progk.

Proposition 3. LetH be some implementation history,G be a gateway shared object of a
TM objectM and progk be some algorithm executed by invoking an operation execution
ok = G.perform(progk) →i vk (for some process pi). The state of any t-object x ∈ Q
does not change if ok aborts.

Proof. Abort of ok is indicated by the return value⊥. Function PERFORM returns
⊥ in three cases:

1. when an operation on a t-object aborts (line 7),

2. when progk requests an abort on demand (line 11),

3. when progk’s request to commit the transaction Tk ends with failure (line
14).

In all three cases M aborts Tk, thus revoking any changes to any t-objects per-
formed by Tk.

Proposition 4. LetH be some implementation history,G be a gateway shared object of a
TM objectM and progk be some algorithm executed by invoking an operation execution
ok = G.perform(progk)→i vk (for some process pi). Then, for transaction Tk ∈ H|M
all events of Tk occur in H after the invocation event of ok and before the response event
of ok, if such an event exists in H .

Proof. Trivially, if Tk has no operations, i.e., (H|M)|Tk is empty, then the proposi-
tion is satisfied. Let us consider the case where (H|M)|Tk is not empty. The first
event of transaction Tk is the invocation of the first operation M.texec(Tk, x.op)

(line 7) executed within the function PERFORM(progk). Trivially, this event must
appear after the invocation of ok. Moreover, from Proposition 1, we know that Tk
must be completed in H|M before ok can return. From the definition of a trans-
action, we know that Tk cannot execute any other operations after it completes.
Therefore, all events of Tk always appear after invocation of ok and before the
response event of ok, if such a response event exists in a given execution.

Proposition 5. Let H be some implementation history and let G be a gateway shared
object of a TM object M . If there exists a (possibly pending) operation execution ok =

G.perform(progk) →i vk in H for some process pi and (H|M)|Tk is not empty then
Tk is executed by pi.

Proof. A process pi that invokes the function PERFORM(progk), executes it with-
out any help from other processes until the function returns. Since a transaction
Tk can only exist through execution of progk, all operations of Tk onM are issued
by pi.

Proposition 6. Let H be some implementation history and let G be a gateway shared
object of a TM object M . If there exists a committed operation execution ok = G.per -
form(progk) →i vk in H for some process pi, then transaction Tk is committed in
H|M .

126 A Proofs Regarding Traits of �-Opacity and �-Linearizability

Proof. Operation execution ok is committed if it returns a value vk 6= ⊥. That
only happens if operationM.tryC (Tk) (line 14) returnCk (Tk is successfully com-
mitted).

Proposition 7. Let H be some implementation history and let G be a gateway shared
object of a TM object M . If there exists a committed operation execution ok = G.per -
form(progk) →i vkin H for some process pi such that ok is potentially updating, then
transaction Tk is committed and potentially updating in H|M .

Proof. From Proposition 6 we know that Tk has to be committed since ok is com-
mitted. Since ok is potentially updating, there exist a state for which ok is up-
dating. It means that potentially ok may change the state of G. In this case,
Tk would perform some updating operations. It means that the program progk
which defines Tk may produce an execution in which Tk contains some updating
operations. Therefore, Tk cannot be declared-read-only, and thus it is potentially
updating in H|M .

Now let us introduce some auxiliary definitions that are necessary for the
following proposition and the proof of the theorem that comes after the propo-
sition.

Let H be an implementation history and let G be a gateway shared object of
M . If there exists a t-sequential t-history SM equivalent to some t-completion
of HM = H|M , such that SM respects the �-order of HM and every transaction
in SM is legal in SM , then we can construct a history SG of events on G in the
following way.

Let us first construct a completion H̄G of the history HG = H|G by complet-
ing every pending operation execution in HG with an appropriate response, as
follows. For every pending operation execution ok of operationG.perform(progk)

in HG, there are two cases possible:

1. if Tk is aborted in SM , then the response event for ok in H̄G is equal ⊥,
otherwise

2. the response value of ok in H̄G is equal to the final value of context from
the execution of progk in H (after pi executes M.tryC(Tk)).

Naturally, H̄G contains all the operation executions which are completed in
HG. Note that if ok is completed in HG, by Proposition 1, Tk is t-completed in
HM . On the other hand, if ok is pending, then Tk may be t-completed or not. If Tk
is live in HM , it is either aborted (case 1) or committed (case 2) in SM . However,
Tk may also be t-completed in HM but ok may simply lack a response event in
HG (cases 1 and 2, depending on whether Tk is aborted or committed). In case 2
we know that Tk is either commit-pending or committed in HM . Therefore, by
Proposition 2 we know that pi completed all steps of progk and ok can complete
successfully and return the final value of context .

Now, let us construct a sequential completed history SG equivalent to H̄G.
Let SG contain all operation executions of H̄G, but sequentially ordered accord-
ing to the order of the corresponding transactions in SM . An operation execu-

A.5 Relationship Between �-Opacity and �-Linearizability 127

tion ok = G.perform(progk)→i vk in H̄G corresponds to transaction Tl in SM , for
some process pi if k = l.

We say that SG is induced by SM .
For any transaction Tk let us denote by Vk the history visibleSM

(Tk) in case Tk
is committed. Otherwise, let Vk be equal the history visibleSM

(Tk) with Tk omit-
ted. Since, every transaction Tk in SM is legal in SM , the history visibleSM

(Tk) is
t-legal and so is Vk (by the definition of a t-legal history, each one of its prefixes is
also t-legal). For any t-object x the subhistory Vk|x satisfies the sequential spec-
ification of x. It means that there exists a sequence wk,x = 〈q0, q1, ...ql〉 of states
in Qx, where Qx is the set of all possible states of x, and ql is the last state that x
takes in Vk. Let us denote by stateSM

(Tk) the combined state that includes every
last state of all t-objects in Vk according to the sequence wk,x.

Let qi be the combined state of all the t-objects inM after the execution of the
i-th transaction in SM , i.e. qi = stateSM

(Tk), where Tk is the i-th transaction in
SM . We say that the sequence W = 〈q0, q1, ...〉 is state-induced by SM . It can be
shown (as we demonstrate later) that every such sequence is a witness history
of the induced history SG (witness history is defined in Section 4.4).

Proposition 8. Let H be some implementation history and let G be a gateway shared
object of a TM object M . Let SG be a sequential history equivalent to H̄G, a completion
of HG = H|G, such that SG is induced by some history SM , and let WG be its witness
history state-induced by SM . If there exists a committed operation execution ok =

G.perform(progk) →j vk in H̄G (for some process pj), such that ok is updating in SG
according to WG, then transaction Tk is committed and is updating in H|M .

Proof. From Proposition 6 we know that Tk has to be committed since ok is com-
mitted. Since ok is updating in SG according to WG, the states qi−1 and qi in WG,
which correspond to ok (ok is the i-th operation execution in SG) are different.
Since the states qi−1, qi in WG are the combined states of all the t-objects in M af-
ter the execution of transaction Tk, the state of some t-object x had to be changed
by Tk (according to the sequence wk,x). This can only happen if Tk executed a
not read-only operation in SM . This operation has to be also present in H|M .
Therefore, Tk is updating in H|M .

Theorem 5. Let M be a TM object and let G be a gateway shared object of M . If M is
�-opaque then G is �-linearizable.

Proof. In order to show that G is �-linearizable, we need to prove that any finite
history produced by G is final-state �-linearizable (by Corollary 2). Therefore,
we assume some finite implementation history H , and show how to construct a
sequential history SG of events on G that is equivalent to H̄G, a completion of
HG = H|G. Next, we prove that SG is legal. Finally, we show that SG respects
the �-order of H̄G.

Part 1. Construction of a sequential history SG that is equivalent to a completion
of H|G.

Since M is �-opaque, there exists a t-sequential t-history SM such that SM is
equivalent to some t-completion of HM = H|M , SM respects the �-order of HM

128 A Proofs Regarding Traits of �-Opacity and �-Linearizability

and every transaction Tk in SM is legal in SM . Therefore, there exists a history
SG induced by SM .

Part 2. Proof of legality of SG.
From assumptions we know that every transaction in SM is legal, thus also

the last committed transaction Tl in SM is legal. Therefore, vis l = visibleSM
(Tl)

contains all the committed transactions in SM (see the definition of visibleS(Tk)

in Section 4.3). Moreover, vis l is t-legal. It means, that for any t-object x, visl|x
satisfies the sequential specification of x.

Let stepsH(ok), where H is any implementation history and ok is a (possi-
bly pending) operation execution of operation G.perform(progk), be a function
which returns all the events inH executed within the operation execution ok (ex-
cluding the operations on G itself), which are related to the execution of progk.
Therefore, stepsH(ok) contains all the steps of progk’s execution.

Let S′G be a history obtained from SG by removing all the aborted operation
executions and assume S′G is a sequence of operation executions 〈o1 · o2 · ...〉.
We construct a sequence α = 〈stepsH(o1) · stepsH(o2) · ...〉. Now we show that
α|M = vis l by a contradiction.

Assume thatα|M 6= vis l. It means that there exists ok = G.perform(progk)→i

vk in H such that stepsH(ok)|M 6= SM |Tk. There are two cases to consider:

1. ∃op ∈ H : op ∈ stepsH(ok)|M ∧ op 6∈ SM |Tk. It means that op was de-
fined in progk and was executed by pi through G and then M as part of
transaction Tk (by definition ofG). Therefore, op ∈ SM |Tk, a contradiction.

2. ∃op ∈ H : op ∈ SM |Tk∧op 6∈ stepsH(ok)|M . It means that op was executed
by pi on M within transaction Tk. The only possibility that it happened is
by specifying op as part of progk (by definition of G). Therefore, op ∈
stepsH(ok)|M , a contradiction.

Since both cases lead to a contradiction, the initial assumption was false and
α|M = vis l.

Since for any t-object x, vis l|x satisfies the sequential specification of x, so
does α|M . Note that any progk executed through G operates in isolation and
may interact with other processes only through t-objects (G allows only local
computation besides operations on M). However, all operations on t-objects
induced by executing G.perform(progk) in S′G satisfy the sequential specifica-
tions of these t-objects. Therefore, the execution of algorithms in S′G transitions
t-objects in M from some initial state q0 ∈ Q, through states q1, q2, ... to some
correct state q′ ∈ Q, thus satisfying the sequential specification of G. Therefore
S′G is legal and W ′G = 〈q0, q1...〉 is its witness history.

By Proposition 3, aborted operation executions removed from SG to produce
S′G do not change the state of G. Therefore, also SG is legal. If we extend the
sequence W ′G with a repeated state for every aborted operation execution, we
obtain WG, a witness history of SG.

Note that WG is state-induced by SM , because for each qi ∈ WG, qi is the
combined state of all the t-objects in M after the execution of the i-th transaction
in SM (and thus also after the execution of i-th operation execution in SG).

A.5 Relationship Between �-Opacity and �-Linearizability 129

Part 3. Proof that SG respects the �-order of H̄G.
To show that SG respects the �-order of H̄G, we have to show that for any

two operation executions oi and oj on G (oi invokes G.perform(prog i), while oj
invokes G.perform(progj)) such that oi <�H̄G

oj , the relation oi <
�
SG

oj holds as
well. In case of update-real-time, we have to show that there exists a witness
history WG, such that for all oi and oj such that oi <u

H̄G
(SG,WG)oj , the relation

oi <
u
SG

(SG,WG)oj holds (WG was given in the previous part of the proof).
If <�

H̄G
=<a

H̄G
then there are no operation executions oi and oj , such that

oi <
a
H̄G

oj (by definition <a
H̄G

is equivalent to ∅).
Now we consider <�

H̄G
6=<a

H̄G
. Note that every order definition apart from

arbitrary order assumes precedence in real-time between the two operation ex-
ecutions (besides making some additional requirements on the operation exe-
cutions). Therefore, we now assume that oi <r

H̄G
oj . By definition of real-time

order, it means that the response event of oi precedes the invocation event of oj
in H̄G. By Proposition 4, all events of Ti precede all events of Tj in H . In particu-
lar, the last event of Ti precedes the first event of Tj inH . Therefore Ti completed
in HM before Tj started in HM . It means that if <�

H̄G
=<r

H̄G
then Ti ≺r

H̄G
Tj . In

case <�
H̄G
6=<r

H̄G
, additionally:

• if <�
H̄G

=<c
H̄G

then both oi and oj are committed or both are executed by
the same process. It means that both Ti and Tj are committed or both are
executed by the same process (by Propositions 5 and 6). Thus Ti ≺c

HM
Tj .

• if <�
H̄G

=<w
H̄G

then both oi and oj are potentially updating and committed
or both are executed by the same process. It means that both Ti and Tj are
committed and are potentially updating or both are executed by the same
process (by Propositions 5 and 7). Thus Ti ≺w

HM
Tj .

• if<�
H̄G

=<u
H̄G

(SG,WG) then both oi and oj are updating in SG according to
WG and are committed, or both are executed by the same process. It means
that both Ti and Tj are committed and updating or both are executed by
the same process (by Propositions 5 and 8). Thus Ti ≺u

HM
Tj .

• if <�
H̄G

=<p
H̄G

then both oi and oj are executed by the same process. It
means that both Ti and Tj are executed by the same process (by Proposi-
tion 5). Thus Ti ≺p

HM
Tj .

Since there is no ambiguity between naming convention of orders in �-opacity
and �-linearizability, we can simply write that Ti ≺�HM

Tj .
Since SM respects the �-order of HM then also Ti ≺�SM

Tj . In turn, the re-
sponse event of oi precedes the invocation event of oj in SG, because the con-
struction of SG requires an order of operation executions in SG that directly fol-
lows the order of transactions in SM . Therefore, SG respects the �-order of H̄G

(we proved the case for <a
H̄G

earlier). This way we conclude the proof.

Corollary 3. Let M be a TM object and let G be a gateway shared object of M . If M is
commit-real-time opaque, then G is real-time linearizable.

Proof. The proof follows directly from Theorems 4 and 5.

B
Proofs of algorithm correctness

In this chapter we give the proofs of correctness for all replication schemes dis-
cussed in this dissertation.

B.1 Correctness of State Machine Replication

In order to reason about the correctness of a SMR/LSMR system (or the SM-
R/LSMR algorithm in short), we model it as a shared object, which exports a set
of operations (i.e., it has a well defined sequential specification), and consider
its history H . A client request issued to any replica is mapped into an oper-
ation invocation. Analogically, a client response is mapped into an operation
response. A pair of request submission (by a client) and return of a response (to
the client) we treat as a (completed) operation execution executed by the process
that received the request. For easier comprehension, we sometimes refer to ex-
ecution of an operation on SMR/LSMR as to execution of a request (submitted
by a client). A request (operation) r is read-only, if r.prog is read-only (see also
Section 3.5). Otherwise r is potentially updating. Note that in SMR/LSMR all
(or some) requests are executed by all processes but an operation execution of a
request is always executed by one process (i.e., the process which received the
client request).

In the following discussion by Si
k, a (local) state of some process pi, we under-

stand the service state qk of pi, i.e., the combined state of all objects maintained
by pi and related to the replicated service itself, and the current values of addi-
tional variables maintained by pi, such as LC . Note that in case of SMR, which
does not feature additional variables, a state of a process is the service state of
this process.

Let r be a request executed by some process p. Then, let timestamp(p, r) be a
function that returns a value (integer) corresponding to the number of messages
delivered through TOB by p, i.e., if r is the k-th request delivered by p (in line 5)

132 B Proofs of algorithm correctness

then timestamp(p, r) = k. Later we show that for a request r, and for any two
processes pi and pj that executed r, timestamp(pi, r) = timestamp(pj , r). There-
fore, later, when it is not ambiguous, we use simpler notation timestamp(r).

Proposition 9. Let both K1 and K2 be executions of any two requests by SMR (line 6)
but K1 and K2 pertain to different operation executions (i.e., K1 and K2 pertaining to
different requests). For any process pi executing SMR, K1 and K2 never interleave.

Proof. Every request is processed as a non-preemptable event (line 6). Therefore,
the execution of K1 and K2 on any process never interleaves.

Proposition 10. Let pi be a process executing SMR. Let r be a request delivered by pi
using TOB, let S be the state of pi at the moment of delivery of r and S′ be the state of
pi after execution of r. For every process pj in state S, if pj delivers r using TOB then
execution of r by pj transfers pj to state S′.

Proof. By Proposition 9, the state of pk does not change throughout the execution
of r.

Since SMR assumes that only a request with deterministic prog can be exe-
cuted, r.prog must be deterministic. Both processes execute r.prog with the same
r.args (line 6) and operate on the same state S which does not change throughout
the execution of r.prog .

Thus both processes move to the same state, i.e., S′.

Proposition 11. Let S(i) = (Si
0, S

i
1, ...) be a sequence of states of a process pi executing

SMR, where Si
0 is the initial state (comprising of the initial state of all objects managed

by SMR) and Si
k is the state after the k-th request was delivered using TOB and pro-

cessed by pi. For every pair of processes pi and pj , either S(i) is a prefix of S(j), or S(j)

is a prefix of S(i).

Proof. We prove the proposition by a contradiction. Let us assume that S(i) and
S(j) differ on position k (and k is the lowest number for which Si

k 6= Sj
k), thus

neither is a prefix of another.
If k = 0, then the initial state of pi is different from the initial state of pj .

Since all processes start with same objects with the same initial values, that is a
contradiction. Therefore k > 0, and the difference between Si

k and Sj
k must stem

from some later change to the state.
Since Si

k−1 = Sj
k−1, the receipt of the k-th request rk (which is equal for both

processes due to the properties of TOB) and processing it resulted in a different
change of values of some (or all) objects managed by SMR. Since both processes
are in the same state Sk−1 and execute the same request, by Proposition 10, both
processes move to the same state Sk, a contradiction. Therefore the assumption
is false and either S(i) is a prefix of S(j), or S(j) is a prefix of S(i).

Proposition 12. Let H be a history of SMR. Let o be a completed operation execution
in H of some request r. Then, for any two processes pi and pj which delivered r using
TOB and subsequently executed r, timestamp(pi, r) = timestamp(pj , r).

B.1 Correctness of State Machine Replication 133

Proof. State of any process p can change only as a result of execution of a re-
quest (line 6). By properties of TOB, both pi and pj must have delivered using
TOB the same set of requests prior to delivery of r. Therefore timestamp(pi, r) =

timestamp(pj , r) (the timestamp function maps a request to the number of mes-
sages so far delivered through TOB by the process).

From now on, we can use simplified notation timestamp(r).

Theorem 6. State Machine Replication satisfies real-time linearizability.

Proof. In order to prove that SMR satisfies real-time linearizability, we have to
show that every finite history produced by SMR is final-state real-time lineariz-
able (by Corollary 2). In other words, we have to show that for a finite history H
produced by SMR, there exists a sequential legal history S equivalent to some
completion H̄ of H , such that S respects the real-time order of H̄ .

Part 1. Construction of a sequential history S that is equivalent to a completion
of H .

Let us first construct a completion H̄ of H . We start with H̄ = H . For every
operation execution o resulting from an invocation of some request r, we com-
plete o in H̄ , only if there exists a replica which finished the execution of line 6.
Because of this requirement, we know that there exists an appropriate response
that can be returned to the client. We use this value to complete o in H̄ . On the
other hand, if there does not exist a replica which completed execution of line 6,
we remove o from H̄ .

By Proposition 12, we know that the value of timestamp(r) of some request
r is the same across all processes that delivered r. Now we show that timestamp

can be used to uniquely identify all operation executions in H̄ . We conduct the
proof by a contradiction. Let oi and oj be two (completed) operation executions
in H̄ which result from delivery of some requests ri and rj , respectively. Assume
that oi 6= oj , and timestamp(ri) = timestamp(rj). Since both operation execu-
tions are completed, both ri and rj had to be delivered by some processes. By
properties of TOB, we know that there exists a process p that delivers both ri and
rj . Without loss of generality, let us assume that p delivers ri before rj . By Propo-
sition 9, we know that processing of ri and rj cannot interleave and the execution
of ri.prog and rj .prog on p happens in the order of delivery of ri and rj . Naturally
then by definition of the timestamp function, timestamp(ri) 6= timestamp(rj), a
contradiction. Therefore, timestamp(r) uniquely identifies request r.

LetR be a set comprising all operation executions in H̄ . Now let us construct
the following function update . Let update : N→ R be an inverse function to the
function timestamp. In other words, update maps timestamp(r), i.e., the num-
ber of requests so far delivered through TOB by the process, to the operation
execution pertaining to said request r.

Now we construct a sequential history S. Let S = 〈update(1) · update(2) · ...〉.
This way S includes the operations of all operation executions in H̄ . The order
of operation executions in S directly corresponds to the order in which every
process executes requests (pertaining to said operation executions).

134 B Proofs of algorithm correctness

Part 2. Proof that S respects the real-time order of H̄ .
Let oi and oj be any two operation executions of some requests ri and rj such

that oi <r
H̄
oj (the invocation event of oj appears in H̄ after the response event

of oi). By Proposition 17, we know that timestamp(ri) < timestamp(rj). Then,
by construction of S, oi has to appear in S before oj . Therefore, oi <r

S oj . This
way S respects the real-time order of H̄ (trivially, for any operation execution ok
executed by process pi in H̄ , ok is executed by pi in S).

Part 3. Proof that S is legal.
Let (Q, q0, INV ,RES , δ) be the sequential specification of the replicated ser-

vice. In order to show that S is legal, we have to show that there exists a
witness history W = 〈q0, q1, ...〉 of service states in Q such that for every k

(qk−1, rk, vk, qk) ∈ δ, where rk is some request and vk is a response obtained
as a result of executing rk.

Let ok be any operation execution of some request rk in S. Then we can
make two observations about ok. The first observation is that by Proposition 9
we know that throughout the execution of rk the changes to the state of (any)
process that executes rk may result only from execution of rk. It means that the
response computed as a result of execution of rk depends only on two things:
(1) on the state of the process that executes rk just prior to execution of rk,1 and
(2) on rk itself. Since by Proposition 11 all processes change their states in the
same way, we can say that the response computed as a result of the execution of
rk depends on qk−1 and rk itself.

The second observation regards H̄ which is equivalent to S. By construction
of H̄ , any operation execution ok of a request rk in H̄ is either completed in
H or there exists a process which finished the execution of rk. Therefore there
exists an appropriate response vk to rk. Also by Proposition 9 we know that
throughout the execution of rk, the state of the process that executed rk does not
change for reasons other than the execution of rk itself. Therefore there exists a
service state qk which solely depends on the execution of rk on state qk−1 (qk is
equal to the service state of the process that finished execution of rk, line 6).

Now let us construct the witness history W . Let W = 〈q0〉, where q0 is the
initial service state of any process pi (processes share the initial service state).
Then, for any operation execution ok in S of request rk, let us append to W the
service state qk which is equal to the service state of any process that finished
the execution of rk.2

Because for all operation executions in S we have requests, matching re-
sponses, the sequence of the service states before and after requests’ execution,
and we know that all these requests were executed sequentially (by Proposi-
tion 9), then for every k such that rk is a potentially updating request (qk−1, rk, vk,

qk) ∈ δ. Hence W is the witness history of S and S is legal. This way we con-
clude the proof that SMR satisfies real-time linearizability.

1Naturally there there are multiple such processes and each executes rk independently.
2By Proposition 11 all processes change their states in the same way as a result of execution of

requests. Hence also their service states change in the same way, because a service state is a part
of a state of a process. Therefore in this reasoning we can consider the service state of any process
after the execution of rk.

B.2 Correctness of State Machine Replication with Locks 135

B.2 Correctness of State Machine Replication with Locks

Theorem 7. State Machine Replication with Locks does not satisfy real-time lineariz-
ability.

Proof. We give a proof by a contradiction. Let us assume that LSMR satisfies
real-time linearizability. It means that every history produced by LSMR is real-
time linearizable. Now consider an example in Figure B.1, which shows a valid
execution of LSMR implementing a simple banking system which processes two
client requests: r1 (handled by p1) and r2 (handled by p3). Prior to the execution
of r1 and r2, the balances of accounts A and B are equal $1000.

Request r1 is potentially updating (it realizes a transfer of $100 between ac-
countsA andB) and therefore it is first broadcast to all processes using TOB (line
8). Subsequently, p1 and p2 deliver r1 (line 10) and execute it (line 12).3 After the
execution of r1 the balance of account A is $900 and the balance of account B is
$1100.

Request r1 sent from p1 to p3 takes more time to reach its destination. Before
the reception of the message (but after p1 and p2 finished the execution of r1), p3

receives and executes a read-only request r2 which checks the balance of account
A which is equal $1000. Since r2 is read-only, it can be executed without inter-
process synchronization (line 6).

Naturally, r1 precedes r2 in real-time. However, the only legal serialization
of r1 and r2 is 〈r2, r1〉. It means that this execution is not real-time linearizable
and thus LSMR does not satisfy real-time linearizability.

p1

p2

p3

r1 : transfer $100 between
account A and account B

end balance : A = $900 , B = $1100

r1r2 : check balance
of account A

end balance : A = $1000

to-broadcast

Figure B.1: A valid execution of LSMR which is not real-time lineariz-
able: r1 is a potentially updating request, whereas r2 is a read-only re-
quest.

Corollary 8. State Machine Replication with Locks does not satisfy commit-time lin-
earizability.

3Typically a message broadcast using TO-BROADCAST (e.g., based on the Paxos algorithm
[62]) can be delivered once the majority of processes receive the message.

136 B Proofs of algorithm correctness

Proof. The proof follows directly from Theorem 7 and definitions of real-time
linearizability and commit-real-time linearizability.

Let r be a request executed by some process p. Then, let timestamp(p, r)

equal the value of LC during the execution of r on some process p. Later we
show that for a potentially updating request r, and any two processes pi and
pj who executed r, timestamp(pi, r) = timestamp(pj , r). Therefore, later, when
it is not ambiguous, we use a simpler notation timestamp(r). We also use it
for read-only requests (naturally, then there is only a single process pi such that
timestamp(pi, r) = timestamp(r)).

Proposition 13. Let ka and kb be such that:

1. ka is an execution of a potentially updating request by LSMR,

2. kb is an execution of a read-only request by LSMR.

Let K1 and K2 be either ka or kb but K1 and K2 are not both kb. Also let K1 and K2

pertain to different operation executions (i.e., to different requests). For any process pi
executing LSMR, K1 and K2 never interleave.

Proof. We have three cases to consider:

1. Both K1 and K2 pertain to two different potentially updating requests rk
and rl. Since the execution of a potentially updating request is guarded
with a readers-writer lock used in the writers mode (line 12), pi cannot
execute rk and rl concurrently.

2. K1 pertains to a potentially updating request rk and K2 pertains to a read-
only request rl. Execution of the requests is protected with a readers-writer
lock. However, the lock is used in different modes to execute rk and rl
(lines 12 and 6). By properties of readers-writer lock, pi cannot execute rk
and rl concurrently.

3. K1 pertains to a read-only request rk and K2 pertains to a potentially up-
dating request rl. Analogically as in case 2, pi cannot execute rk and rl
concurrently.

Therefore, the execution of K1 and K2 on any process never interleaves.

Proposition 14. Let pi be a process executing LSMR. Let r be a potentially updating
request delivered by pi using TOB, let S be the state of pi at the moment of delivery of
r and S′ be the state of pi after the execution of r. For every process pj in state S, if pj
delivers r using TOB then the execution of r by pj yields state S′ of pj .

Proof. By Proposition 13, the state of pk does not change throughout the execu-
tion of r.

Since both pi and pj start the execution of r from the same state, the current
values of their LC variables are equal. Then both processes increment LC and
so both LC variables have still the same value.

Since LSMR assumes that only a request with deterministic prog can be exe-
cuted, r.prog must be deterministic. Both processes execute r.prog with the same

B.2 Correctness of State Machine Replication with Locks 137

r.args (line 12) and operate on the same state S which does not change through-
out the execution of r.prog .

Thus both processes move to the same state, i.e., S′.

Proposition 15. Let S(i) = (Si
0, S

i
1, ...) be a sequence of states of a process pi executing

LSMR, where Si
0 is the initial state (comprising of the initial state of all objects managed

by LSMR and LC = 0) and Si
k is the state after the k-th (potentially updating) request

was delivered using TOB and processed by pi. For every pair of processes pi and pj ,
either S(i) is a prefix of S(j), or S(j) is a prefix of S(i).

Proof. We prove the proposition by a contradiction. Let us assume that S(i) and
S(j) differ on position k (and k is the lowest number for which Si

k 6= Sj
k), thus

neither is a prefix of another.
If k = 0, then the initial state of pi is different from the initial state of pj . Since

all processes start with the same values of LC (line 1) and maintain the same
objects with the same initial values, that is a contradiction. Therefore k > 0, and
the difference between Si

k and Sj
k must stem from some later change to the state.

Since Si
k−1 = Sj

k−1, the receipt of the k-th request rk (which is equal for both
processes due to the properties of TOB) and processing it resulted in a different
change to LC at both processes or a different change of values of some (or all)
objects managed by LSMR. Since both processes are in the same state Sk−1 and
execute the same request, by Proposition 14, both processes move to the same
state Sk, a contradiction. Therefore the assumption is false and either S(i) is a
prefix of S(j), or S(j) is a prefix of S(i).

Proposition 16. Let H be a history of LSMR. Let o be a completed potentially up-
dating operation execution in H of some request r. Then, for any two processes pi
and pj which delivered r using TOB and subsequently executed r, timestamp(pi, r) =

timestamp(pj , r).

Proof. State of any process p can change only as a result of the execution of a
potentially updating request (line 12). By properties of TOB, both pi and pj must
have delivered using TOB the same set of potentially updating requests prior to
the delivery of r. Therefore, by Proposition 15, both pi and pj are in the same
state prior the execution of r. It means that the value of LC on both processes
is the same. Then, both processes increment their LC variables (in line 11) and
subsequently execute r. It means that timestamp(pi, r) = timestamp(pj , r) (the
timestamp function maps a request to the value of LC during the execution of
the request on a given process).

From now on, we can use simplified notation timestamp(r).

Proposition 17. Let H be a history of LSMR. For any two completed potentially up-
dating operation executions oi and oj (in H) of some requests ri and rj , if oi <r

H oj
then timestamp(ri) < timestamp(rj).

Proof. Since both operation executions are completed and potentially updating,
both ri and rj had to be delivered by some processes. By properties of TOB, we

138 B Proofs of algorithm correctness

know that there exists a process p that delivers both ri and rj . Since oi <r
H oj ,

we know that oi is completed and the invocation event of oj appears in H after
the response event of oi. Therefore, ri had to be broadcast using TOB before
rj was broadcast. It means that p first incremented LC as a result of delivery
of ri thus changing the value of LC to timestamp(p, ri) (the timestamp function
maps a request to the value of LC during the execution of the request on a given
process). Later p incremented LC again as a result of delivery of rj thus chang-
ing the value of LC to timestamp(p, rj). LC increases monotonically, therefore
timestamp(p, ri) < timestamp(p, rj). Then, by Proposition 16 and using a sim-
pler notation, we can stipulate that timestamp(ri) ≤ timestamp(rj).

Proposition 18. Let H by a history of LSMR. For any two operation executions oi
and oj (in H) of some requests ri and rj such that both ri and rj are executed by some
process pl, if oi <r

H oj then timestamp(ri) ≤ timestamp(rj).

Proof. From the assumption that oi <r
H oj and both are executed by the same

process pl, we know that oi is completed and the invocation event of oj ap-
pears in H after the response event of oi. Since the value of LC increases mono-
tonically (line 11) and the timestamp function maps a request to the value of
LC during the execution of the request on a given process, timestamp(pl, ri) ≤
timestamp(pl, rj). Then, by Proposition 16 and using simpler a notation, we can
stipulate that timestamp(ri) ≤ timestamp(rj).

Theorem 8. State Machine Replication with Locks satisfies write-real-time lineariz-
ability.

Proof. In order to prove that LSMR satisfies write-real-time linearizability, we
have to show that every finite history produced by LSMR is final-state write-
real-time linearizable (by Corollary 2). In other words, we have to show that for
a finite history H produced by LSMR, there exists a sequential legal history S

equivalent to some completion H̄ of H , such that S respects the write-real-time
order of H̄ .

Part 1. Construction of a sequential history S that is equivalent to a completion
of H .

Let us first construct a completion H̄ of H . We start with H̄ = H . Next, we
remove from H̄ any pending read-only operation executions, as they could not
possibly modify the local or replicated state. Now, for every potentially updat-
ing pending operation execution o resulting from an invocation of some request
r, we complete o in H̄ , only if there exists a replica which released the lock af-
ter the execution of r (line 12). Because we require that the lock is released, we
know that r was successfully finished and there exists an appropriate response
that can be returned to the client. We use this value to complete o in H̄ . On
the other hand, if there does not exist a replica which released the lock after
executing r, we remove o from H̄ .

By Proposition 16 we know that the value of timestamp(r) of some request
r is the same across all processes. Now we show that timestamp can be used to
uniquely identify potentially updating operation executions in H̄ . We conduct

B.2 Correctness of State Machine Replication with Locks 139

the proof by a contradiction. Let oi and oj be two (completed) potentially up-
dating operation executions in H̄ which result from delivery of some requests ri
and rj , respectively. Assume that oi 6= oj , and timestamp(ri) = timestamp(rj).
Since both operation executions are completed, both ri and rj had to be deliv-
ered by some processes. By properties of TOB, we know that there exists a pro-
cess p that delivers both ri and rj . Without loss of generality, let us assume that
p delivers ri before rj . By Proposition 13, we know that processing of ri and rj
cannot interleave and execution of ri.prog and rj .prog on p happens in the order
of delivery of ri and rj . Every time p executes a request, p first increments LC

(line 11). Therefore, in the course of the execution of ri and rj , p increments LC
twice, timestamp(ri) 6= timestamp(rj), a contradiction. Therefore, timestamp(r)

uniquely identifies request r.
LetR be a set comprising all operation executions in H̄ . Now let us construct

the following function update . Let update : N→ R be an inverse function to the
function timestamp but defined only for potentially updating operation execu-
tions. In other words, update maps timestamp(r), i.e., the value of LC when a
potentially updating request r is executed, to the operation execution pertaining
to said request r.

Now we construct a sequential history S. Let S = 〈update(1) · update(2) ·
...〉. This way S includes the operations of all completed potentially updating
operation executions in H̄ . Let us add the rest of operation executions from H̄ to
S in the following way. For every such an operation execution ok of some request
rk (with timestamp(rk)), find in S a completed potentially updating operation
execution ol of a request rl, such that timestamp(rk) = timestamp(rl), and insert
ok immediately after ol’s response in S. If there is no such an operation execution
ol (timestamp(rk) = 0), then add ok to the beginning of S. If there are multiple
operation executions with the same timestamp value of LC , then insert them in
the same place in S. Their relative order is irrelevant unless they are executed
by the same process. In such a case, rearrange them in S according to the order
in which they were executed by the process.

Part 2. Proof that S respects the write-real-time order of H̄ .
Let oi and oj be any two operation executions of some requests ri and rj such

that oi <w
H̄
oj . Then, oi <r

H̄
oj and

1. oi and oj are potentially updating and committed, or

2. oi and oj are executed by the same process.

In case 1, since oi <
r
H̄

oj (the invocation event of oj appears in H̄ after
the response event of oi), by Proposition 17, we know that timestamp(ri) <

timestamp(rj). Then, by construction of S, oi has to appear in S before oj . There-
fore, in this case oi <w

S oj .
Now let us consider case 2. We have several subcases to consider:

1. oi is a committed potentially updating operation execution and oj is a read-
only operation execution. Since we assume that oi <r

H̄
oj and oi and oj are

executed by the same process, naturally timestamp(ri) ≤ timestamp(rj)

140 B Proofs of algorithm correctness

(the value of LC , which corresponds to values of the timestamp function,
increases monotonically). By construction of S, oj (which is a read-only
operation execution) appears in S after a committed potentially updating
operation execution ok (of some request rk), such that timestamp(rk) =

timestamp(rj). Therefore ok <r
S oj and timestamp(ri) ≤ timestamp(rk). If

timestamp(ri) = timestamp(rk), then oi = ok and oi <
r
S oj . If ti.end <

tk.end , by construction of S, Ti <r
S Tk, and thus Ti <r

S Tj .

2. oi is a read-only operation execution and oj is a committed potentially
updating operation execution. By Proposition 18, timestamp(ri) ≤ time-
stamp(rj). However, since oj is a committed potentially updating opera-
tion execution, timestamp(ri) < timestamp(rj) (LC is always incremented
prior to execution of a potentially updating request). Since oi is a read-
only operation execution, by construction of S, oi appears in S after some
committed potentially updating operation execution ok (of some request
rk) such that timestamp(rk) = timestamp(ri) and before some commit-
ted potentially updating operation execution o′k (of request r′k) such that
timestamp(r′k) = timestamp(rk) + 1. ok may exist or may not exist. We
consider both cases:

a) ok exists. It means that ok <r
S oi <

r
S o′k. Since timestamp(rk) =

timestamp(ri) and timestamp(rk)+1 = timestamp(r′k), timestamp(r′k) ≤
timestamp(rj). If timestamp(r′k) = timestamp(rj), then o′k = oj and
oi <

r
S oj . If timestamp(r′k) < timestamp(rj), by construction of S,

o′k <
r
S oj , and thus oi <r

S oj .

b) ok does not exist. It means that there is no committed potentially up-
dating operation execution in S before oi (timestamp(ri) = 0). By
construction of S, oi is placed at the beginning of S, before any com-
mitted potentially updating operation execution. Therefore oi <r

S oj .

3. Both oi and oj are read-only. From Proposition 18 we know that time-
stamp(ri) ≤ timestamp(rj). If timestamp(ri) = timestamp(rj) (and both
oi and oj are executed by the same process), then the construction of S
explicitly requires that oi and oj are ordered in S according to the or-
der in which they were executed by this process. On the other hand, if
timestamp(ri) < timestamp(rj) then by the construction of S:

a) oi and oj appear in S after some committed potentially updating op-
eration executions o′i and o′j (of requests r′i and r′j) such that time-
stamp(ri) = timestamp(r′i)and timestamp(rj) = timestamp(r′j). It
means that timestamp(r′i) < timestamp(r′j), therefore o′i appears in
S before o′j (by the construction of S). Moreover, between o′i and oi in
S there is no other committed potentially updating operation execu-
tion, since, by the construction of S, oi is inserted immediately after
o′i. In turn, the four operation executions appear in S in the following
order: o′i, oi, o

′
j , oj . Thus oi <r

S oj .

b) If such o′i does not exist (timestamp(ri) = 0; there is no committed po-
tentially updating operation execution in S before oi), we know that

B.2 Correctness of State Machine Replication with Locks 141

o′j has to exist since timestamp(r′j) = timestamp(rj) > timestamp(ri) =

0. Then, the three operation executions appear in S in the following
order: oi, o′j , oj . Thus also oi <r

S oj .

This way S respects the write-real-time order of H̄ (trivially, for any opera-
tion execution ok executed by process pi in H̄ , ok is executed by pi in S).

Part 3. Proof that S is legal.
Let (Q, q0, INV ,RES , δ) be the sequential specification of the replicated ser-

vice.4 In order to prove that S is legal, it is sufficient to show that there exists a
witness history W = 〈q0, q1, ...〉 of service states in Q such that for every k > 0

(qk−1, rk, vk, qk) ∈ δ, where rk is some request and vk is a response obtained as a
result of executing rk.

Let ok be any operation execution of some request rk in S. Then we can
make two observations about ok. The first observation is that by Proposition 13
we know that throughout the execution of rk the changes to the state of (any)
process that executes rk may result only from the execution of rk. It means that
the response computed as a result of the execution of rk depends only on two
things: (1) on the state of the process that executes rk just prior to the execution
of rk5 and (2) on the rk itself. Since by Proposition 15, all processes change their
states in the same way and the state comprises some service state qk−1 and the
current value of the LC variable, which is equal between the replicas, we can
say that the response computed as a result of the execution of rk depends on
qk−1 and rk itself. Note that if rk is a read-only request, the state of the process
that executes rk does not change.

The second observation regards H̄ which is equivalent to S. By construction
of H̄ , if rk is read-only then ok must have been completed in H and so there is
an appropriate response vk to rk. Moreover the service state of the process that
executes rk does not change throughout the execution of rk, thus qk (the service
state of the process that executes rk after execution of rk is finished) is equal to
qk−1. On the other hand if rk is potentially updating (and thus rk was broad-
cast using TOB to be executed by all replicas) then ok appears in H̄ only if ok
is completed in H or there exists a process which released a lock after the exe-
cution of rk. It means that if rk is potentially updating then there also exists an
appropriate response vk to rk. Also by Proposition 13, we know that throughout
the execution of rk, the state of the process that executed rk does not change for
reasons other than the execution of rk itself. Therefore there exists a service state
qk which solely depends on the execution of rk on state qk−1 (qk is equal to the
service state of the process that executed rk and subsequently released the lock).

Now let us construct the witness history W . We do so in two steps. First we
start from a witness history W ′ = 〈q0〉, where q0 is the initial service state of any

4Note that any state Si
k of some process pi does not belong to Q. It is because by definition Si

k

consists of some service state qk ∈ Q as well as the current value of the LC variable of maintained
by pi.

5If rk is potentially updating then there are multiple such processes and each one executes rk
independently.

142 B Proofs of algorithm correctness

process pi (processes share the initial service state) and consider only potentially
updating operation executions in S.

Let S′ be a sequential history created by removing from S all read-only op-
eration executions. Then, for any operation execution ok of request rk in S′, let
us append to W ′ the service state qk which is equal to the service state of any
process that executed rk and subsequently released the lock.6

Because for all operation executions in S′ we have requests, matching re-
sponses, the sequence of service states before and after requests’ execution, and
we know that all these requests were executed sequentially (by Proposition 13),
for every k such that rk is a potentially updating request (qk−1, rk, vk, qk) ∈ δ.

Now we account for the read-only operation executions in S. We create a
witness history W in the following way. Let W be an empty sequence. Let
us remove the first service state from W ′ (q0) and append it to W . Then, for
any operation execution ok in S of request rk, starting from the first operation
execution in S:

1. if ok is a potentially updating operation execution then remove the first
service state qk from W ′ and append it to W .

2. if ok is a read-only operation execution, append to W the duplicate of the
last service state in W .

Naturally the order of service states in W ′ (which corresponds to the updating
operation executions in S) is maintained in W . Hence also for every k such that
rk is a potentially updating request (qk−1, rk, vk, qk) ∈ δ still holds.

Let us consider any read-only operation execution ok of some request rk in
S. We have two cases to consider:

1. There does not exist a potentially updating operation execution before ok
in S. It means that ok operates on the initial state. This fact is reflected by
W because for all read-only operation executions which appear prior to ok
in S there are copies of q0 inW . Since ok is read-only itself, the service state
of the process that executes rk just after the execution of rk is finished, also
equals q0. This is reflected by W because q0 was appended to W for ok.

2. There exists a potentially updating operation execution before ok in S. Let
oi be the last such an operation execution of some request ri and let qi be
the service state of any process just after the execution of ri. Since between
oi and ok there are only read-only operation executions, by construction of
W we know that for every such a read-only operation execution there is a
copy of qi after qi in W . It means that rk operates on qi. Since ok is read-
only itself, the service state of the process that executes rk just after the
execution of rk is finished, also equals qi. This is reflected by W because qi
was appended to W for ok.

6By Proposition 15 all processes change their states in the same way as a result of the execution
of potentially updating requests. Hence also their service states change in the same way, because
a service state is part of a state of a process. Therefore in this reasoning we can consider the service
state of any process after the execution of rk.

B.3 Correctness of Deferred Update Replication 143

For all read-only operation executions in S′ we have requests, matching re-
sponses (by the second observation), and the sequence of service states before
and after requests’ execution. Moreover, by the first observation we know that
during the execution of any read-only request the state of the process does not
change. It means that even though LSMR allows multiple read-only requests to
be executed in parallel, the effects of their execution are as if all these requests
were executed sequentially on the service state. Therefore for every k, such that
rk is a read-only request, (qk−1, rk, vk, qk) ∈ δ. Hence W is the witness history of
S and S is legal. This way we conclude the proof that LSMR satisfies write-real-
time linearizability.

B.3 Correctness of Deferred Update Replication

In this section we use the simplified notation which we have already used in
Figures: 4.1, 4.2, 4.3 and 4.4.

Theorem 9. Deferred Update Replication does not satisfy write-real-time opacity.

Proof. We give a proof by a contradiction. Let us assume that DUR satisfies
write-real-time opacity. It means that every history produced by DUR is write-
real-time opaque. Now let us consider an example in Figure B.2, which shows
a valid execution of DUR with two transactions T1 (executed by p1) and T2

(executed by p3) such that neither T1 nor T2 is declared-read-only, i.e. neither
DRO(T1) nor DRO(T2) is true.

Transaction T1 first reads the current value of a shared object x, next writes
a new value to it and finally calls the COMMIT procedure (line 37) which corre-
sponds to the tryC 1 event in the example. Since T1 modified x, and there are no
concurrent transactions with which T1 may conflict (lines 39 and 42), transaction
descriptor of T1 is broadcast using TO-BROADCAST. Subsequently, p1 and p2 de-
liver the transaction descriptor of T1 (line 50), successfully certify it and apply
the updates stored in the transaction descriptor.7

The message with the transaction descriptor of T1 sent from p1 to p3 takes
more time to reach its destination. Before the receipt of the message (but after p1

and p2 commit T1, i.e., apply the updates T1 produced), p3 executes transaction
T2 which only performs a read operation on x. Since T2 did not perform any
updating operations it can commit without inter-process synchronization (line
39).

Since both T1 and T2 are committed, T1 precedes in real-time T2 (i.e., T1

ended before T2 started) and T2 is not declared read-only, by definition of write-
real-time opacity, the history from the example is not write-real-time opaque.
Therefore, the assumption was false and DUR does not satisfy write-real-time
opacity.

7Typically a message broadcast using TO-BROADCAST (e.g., based on the Paxos algorithm
[62]) can be delivered once the majority of processes receive the message.

144 B Proofs of algorithm correctness

p1

p2

p3

x.rd1 → 0 x.wr1(1)→ ok tryC1 → C1

x.rd2 → 0 tryC2 → C2

to-broadcast

Figure B.2: A valid execution of DUR which is not write-real-time
opaque. Neither DRO(T1) nor DRO(T2) is true.

Corollary 5. Deferred Update Replication does not satisfy real-time opacity.

Proof. The proof follows directly from Theorem 9 and definitions of write-real-
time opacity and real-time opacity (real-time opacity is strictly stronger than
write-real-time opacity).

In the following propositions by state of some process pi we understand the
combined state of all t-objects maintained by pi and the current values of LC
and Log that pi holds (but excluding statistics held in transaction descriptors,
which do not count as part of the state).

Proposition 19. Let ka ·kb a part of DUR execution on a single process be such that ka
is a certification of a transaction whose transaction descriptor has been delivered using
TOB (line 51) and kb is modifying the local state afterwards (lines 52–55). Let K1 and
K2 be both ka · kb but K1 and K2 pertain to different transactions. For any process
pi executing DUR, K1 and K2 never interleave, and changes to the state of pi happen
atomically only after kb.

Proof. The state of any pi changes only if the value of LC , Log or any t-object
changes (within kb). This can happen only when pi delivers through TOB a mes-
sage, i.e., when pi processes a transaction descriptor (ka · kb, lines 51–55). pi
can process only one message at a time (these messages are processed as non-
preemptable events). Therefore, bothK1 andK2 happen atomically and sequen-
tially to each other.

Proposition 20. Let pi be a process executing DUR. Let t be a transaction descriptor
of a transaction delivered by pi using TOB and let S be the state of pi at the moment of
delivery. Let S′ be the state of pi after pi certifies and (possibly) updates its state, Log i be
the log of pi in state S′, and ti be the value of t such that ti ∈ Log i in case of successful
certification of the transaction. Then for every process pj in state S, if pj delivers t using
TOB, then pj moves to state S′.

Proof. By Proposition 19, the state of pk does not change throughout certification
of a transaction and applying the updates produced by the transaction.

Since the certification procedure (line 9) is deterministic and the values of the
Log variables are equal between processes (except for the statistics field which is
not used by the procedure), the procedure yields the same result. If the outcome
is negative, neither process changes its state (line 51). Otherwise, both processes
increment LC to the same value (line 52), assign LC ’s current value to the end

B.3 Correctness of Deferred Update Replication 145

field of the transaction descriptors (line 53, the value of LC could not change
during processing of the transaction descriptor). Next, processes append the
transaction descriptors to the Log (line 54) and then apply t.updates (line 55).
Therefore both processes move to the same state S′.

Proposition 21. Let S(i) = (Si
0, S

i
1, ...) be a sequence of states of a process pi executing

DUR, where Si
0 is the initial state (comprising of the initial state of t-objects, LC = 0

and Log = ∅) and Si
k is the state after the k-th message was delivered using TOB and

processed by pi. For every pair of processes pi and pj either S(i) is a prefix of S(j) or
S(j) is a prefix of S(i).

Proof. We prove the proposition by a contradiction. Let us assume that S(i) and
S(j) differ on position k (and k is the lowest number for which Si

k 6= Sj
k), thus

neither is a prefix of another.
If k = 0, then the initial state of pi is different from the initial state of pj . Since

all processes start with the same values of LC , Log (lines 1–2) and maintain the
same t-objects with the same initial values, that is a contradiction. Therefore
k > 0, and the difference between Si

k and Sj
k must stem from some later change

to the state.
Since Si

k−1 = Sj
k−1, the receipt of the k-th message mk (which is equal for

both processes thanks to the use of TOB) and processing it must have resulted
in a different change to LC , Log or values of some (or all) t-objects at both pro-
cesses. Message mk is a transaction descriptor (line 50). Both processes are in
the same state Sk−1 and process the same transaction descriptor. Therefore, by
Proposition 20, both processes move to the same state Sk, a contradiction. It
means that the assumption is false, therefore either S(i) is a prefix of S(j), or
S(j) is a prefix of S(i).

Proposition 22. Let H by a t-history of DUR. Let Tk be an updating committed trans-
action in H such that tk is the transaction descriptor of Tk. Then, any process replicates
tk (excluding the statistics field) in its Log as the value of LC on this process is set to
tk.end (both actions happen atomically, i.e., within a lock statement).

Proof. From Proposition 21 we know that all processes move through the same
sequence of states as a result of delivering messages using TOB. Let S be the
state of any (correct) process immediately before delivering and processing a
message m such that processing of m results in applying updates produced by
Tk to the local state (we know that Tk is an updating committed transaction, thus
tk.updates 6= ∅). By Proposition 20, upon delivery of m any process pi updates
its state in the same way and the new state includes a transaction descriptor t′k
which is identical with tk and such that t′k is in Log of pi. The value of t′k.end is
equal to the current value of LC on pi because LC is first incremented and then
its current value is assigned to t′i.end in the same lock statement (lines 52–55).
This way we gather that tk is stored in the Log of every process as the value of
LC on this process is set to tk.end .

146 B Proofs of algorithm correctness

Proposition 23. Let H be a t-history of DUR. For any two updating committed trans-
actions Ti, Tj ∈ H and their transaction descriptors ti and tj , if Ti ≺r

H Tj then
ti.end < tj .end .

Proof. From the assumption that Ti ≺r
H Tj , we know that Ti is committed and

the first event of Tj appears in H after the last event of Ti (the commit of Ti).
It means that tryC (Tj) was invoked after the commit of Ti. Since tryC (Tj) is
invoked after the commit of Ti, tj was broadcast (using TOB) after ti is delivered
by the process that executed Ti. Hence, any process can deliver tj only after
ti. Since LC increases monotonically (line 52) and its current value is assigned
to the end field of a transaction descriptor (line 53), on every process ti.end <

tj .end .

Proposition 24. Let H by a t-history of DUR. Let Ti and Tj be two transactions in
H executed by some process pl and let ti and tj be transaction descriptors of Ti and Tj ,
respectively. If Ti ≺r

H Tj then ti.start ≤ tj .start .

Proof. From the assumption that Ti ≺r
H Tj and both are executed by the same

process pl, we know that Ti is completed and the first event of Tj appears in H
after the last event of Ti. Therefore pl assigns the current value of LC to ti.start
before it does so for tj .start (in line 25). The value of LC increases monotoni-
cally (line 52, the values of LC correspond to commits of updating transactions).
Therefore ti.start ≤ tj .start .

Proposition 25. Let H be a t-history of DUR and let r = x.read → v be a read
operation on some t-object x ∈ Q performed by some transaction Tk in H . If Tk did
not perform any write operations on x prior to r then either there exists a transaction Ti
that performed x.write(v)→ ok and committed before r returns, or (if there is no such
transaction Ti) v is equal to the initial value of x.

Proof. From the assumption that Tk did not perform any write operations on x
prior to r, we know that the value of x is retrieved from the local state (line 7).
The value of x is updated on the process that executes Tk only when a transaction
descriptor t′i of a committed updating transaction T ′i is delivered using TOB.
Then t′i.updates are used to modify x in the local state of the process that executes
Tk (line 55). Before commit, T ′i stores the modified values of t-objects in the
updates set of the transaction descriptor of T ′i . The only possibility that a new
value of x is stored in the updates set is upon write operation on x (line 36). Then
Ti = T ′i thus satisfying the Proposition.

On the other hand, if the value of x in the system was never updated (through
line 55), the initial value of x is returned (line 7).

Proposition 26. Let H be a t-history of DUR and Tk (with a transaction descriptor tk)
be some transaction in H . If there exists a t-object x ∈ Q, such that Tk performs a read
operation r = x.read → v and Tk executed earlier at least one write operation on x,
where w = x.write(v′)→ ok is the last such an operation before r, then v = v′.

B.3 Correctness of Deferred Update Replication 147

Proof. Upon the execution of w, if there were no prior write operations on x in
Tk then a pair (x, v′) is added to tk.updates ; otherwise, the current pair (x, v”)

is substituted by (x, v′) in tk.updates (line 36). Then v′ would be returned upon
the execution of r (line 34 and then 5), unless Tk aborts. This may only happen
if Tk aborted due to a conflict with other transaction (line 31). However, then r
would not return any value. Therefore v = v′ and indeed v′ was assigned to x
by the last write operation on x in Tk before r.

Theorem 10. Deferred Update Replication satisfies update-real-time opacity.

Proof. In order to prove that DUR satisfies update-real-time opacity, we have to
show that every finite t-history produced by DUR is final-state update-real-time
opaque (by Corollary 1). In other words, we have to show that for every finite
t-history H produced by DUR, there exists a t-sequential t-history S equivalent
to some completion of H , such that S respects the update-real-time order of H
and every transaction Tk in S is legal in S.

Part 1. Construction of a t-sequential t-history S that is equivalent to a comple-
tion of H .

Let us first construct a t-completion H̄ of H . We start with H̄ = H . Next, for
each live transaction Tk in H performed by process pi, we append some event to
H̄ according to the following rules:

• if Tk is not commit-pending and the last event of Tk is an invocation of
some operation, append respi(Ak),

• if Tk is not commit-pending and the last event of Tk is a response event to
some operation, append 〈tryA(Tk)→i Ak〉,

• if Tk is commit pending and its transaction descriptor tk was delivered
using TOB by some process pj and pj successfully certified Tk, then append
respi(Ck), otherwise append respi(Ak).

Now we show that for each committed updating transaction Tk there exists
a unique value which corresponds to this transaction. This value is equal to
the value of the end field of Tk’s transaction descriptor when the updates of Tk
are applied (on any process). We show that it is true by a contradiction. Let Ti
and Tj be two updating committed transactions with transaction descriptors ti
and tj , respectively. Let us assume that Ti 6= Tj , ti.end = v, tj .end = v′, but
v = v′. We also assume that ti and tj are broadcast (using TOB) to all processes
in messages mi and mj , respectively (line 44). Since both transactions are up-
dating committed, both mi and mj had to be delivered by some processes. By
properties of TOB, we know that there exists a process p that delivers both mi

and mj . Without loss of generality, let us assume that p delivers mi before mj .
By Proposition 19, we know that processing of mi and mj cannot interleave and
the updates of ti and tj on p are applied in the order of delivery of mi and mj .
Every time p updates its state, p first increments LC (line 52) and then assigns
its value to the end field of the currently processed transaction descriptor (line
53). Moreover, this occurs atomically. Therefore v 6= v′, a contradiction. More-
over, by Proposition 21, all processes deliver mi while being in the same state

148 B Proofs of algorithm correctness

and then deliver mj while also being in the same state. Therefore the values of
LC (and matching end fields of transaction descriptors of updating committed
transactions) are the same on every process when processing updates of Ti and
Tj . Thus, the value of the end field of a transaction descriptor of a committed
updating transaction uniquely identifies the transaction.

We can now construct the following function update . Let update : N → T
be a function that maps the end field of a transaction descriptor of a committed
updating transaction to the transaction. Let S = 〈H̄|update(1) · H̄|update(2) · ...〉.
This way S includes the operations of all the committed updating transactions
in H . Now, let us add the rest of transactions from H̄ to S in the following
way. For every such a transaction Tk with a transaction descriptor tk, we find
a committed updating transaction Tl (with transaction descriptor tl) in S, such
that tk.start = tl.end , and insert H̄|Tk immediately after Tl’s operations in S. If
there is no such transaction Tl (tk.start = 0), then add H̄|Tk to the beginning of S.
If there are multiple transactions with the same value of the start timestamp (in
the transaction’s transaction descriptor), then insert them in the same place in S.
Their relative order is irrelevant unless they are executed by the same process.
In such a case, rearrange them in S according to the order in which they were
executed by the process.

Part 2. Proof that S respects the update-real-time order of H .
Let Ti and Tj be any two transactions such that Ti ≺u

H Tj and let ti and tj be
transaction descriptors of Ti and Tj , respectively. Then, Ti ≺r

H Tj and

1. Ti and Tj are updating and committed, or

2. Ti and Tj are executed by the same process.

In case 1, by Proposition 23 we know that ti.end < tj .end . Both ti.end and
tj .end correspond to the values assigned to LC when ti and tj are processed
(lines 52 and 53). Then, by the construction of S, Ti must appear in S before Tj .
Therefore, Ti ≺r

S Tj . Moreover, the construction requires that for any transaction
Tk ∈ H , S includes all events of H|Tk. In turn both Ti and Tj are updating and
committed in S. Therefore, in this case, Ti ≺u

S Tj .
Now let us consider case 2. We have several subcases to consider:

1. Ti is a committed updating transaction and Tj is a read-only or an aborted
transaction. Since Ti ≺r

H Tj and both Ti and Tj are executed by the same
process, naturally ti.end ≤ tj .start (the value of LC , which is assigned to
the start and end fields of transaction descriptor, increases monotonically).
By construction of S, Tj (which is a read-only or an aborted transaction)
appears in S after a committed updating transaction Tk (with transaction
descriptor tk), such that tk.end = tj .start . Therefore Tk ≺r

S Tj and ti.end ≤
tk.end . If ti.end = tk.end , then Ti = Tk and Ti ≺r

S Tj . If ti.end < tk.end , by
construction of S, Ti ≺r

S Tk, and thus Ti ≺r
S Tj .

2. Ti is a read-only or an aborted transaction and Tj is a committed updating
transaction. By Proposition 24, ti.start ≤ tj .start . Since Tj is a committed
updating transaction, tj .start < tj .end (LC is always incremented prior to

B.3 Correctness of Deferred Update Replication 149

assigning it to the end field of the transaction descriptor upon transaction
commit). Therefore ti.start ≤ tj .start < tj .end , and thus ti.start < tj .end .
Since Ti is a read-only or an aborted transaction, by construction of S, Ti
appears in S after some committed updating transaction Tk (with trans-
action descriptor tk) such that tk.end = ti.start and before some com-
mitted updating transaction T ′k (with transaction descriptor t′k) such that
t′k.end = tk.end +1. Tk may exist or may not exist. We consider both cases:

a) Tk exists. It means that Tk ≺r
S Ti ≺r

S T ′k. Since ti.start < tj .end

and tk.end = ti.start , tk.end < tj .end . Because tk.end + 1 = t′k.end ,
t′k.end ≤ tj .end . If t′k.end = tj .end , then T ′k = Tj and Ti ≺r

S Tj . If
t′k.end < tj .end , by construction of S, T ′k ≺r

S Tj , and thus Ti ≺r
S Tj .

b) Tk does not exist. It means that there is no committed updating trans-
action in S before Ti (ti.start = 0). By construction of S, Ti is placed
at the beginning of S, before any committed updating transaction.
Therefore Ti ≺r

S Tj .

3. Both Ti and Tj are read-only or aborted transactions. From Proposition 24
we know that ti.start ≤ tj .start . If ti.start = tj .start (and both Ti and
Tj are executed by the same process), then the construction of S explicitly
requires that Ti and Tj are ordered in S according to the order in which
they were executed by this process. On the other hand, if ti.start < tj .start

then by the construction of S:

a) Ti and Tj appear in S after some committed updating transactions T ′i
and T ′j with transaction descriptors t′i and t′j such that ti.start = t′i.end

and tj .start = t′j .end . It means that t′i.end < t′j .end , therefore T ′i
appears in S before T ′j (by the construction of S). Moreover, between
T ′i and Ti in S there is no other committed updating transaction, since,
by the construction of S, Ti is inserted immediately after T ′i . In turn,
the four transactions appear in S in the following order: T ′i , Ti, T

′
j , Tj .

Thus Ti ≺r
S Tj .

b) If such T ′i does not exist (ti.start = 0; there is no committed updating
transaction in S before Ti), we know that T ′j has to exist since t′j .end =

tj .start > ti.start = 0. Then, the three transactions appear in S in the
following order: Ti, T ′j , Tj . Thus also Ti ≺r

S Tj .

This way S respects the update-real-time order of H (trivially, for any trans-
action Tk executed by process pi in H , Tk is executed by pi in S).

Part 3. Proof that every transaction Tj in S is legal in S.
We give the proof by contradiction. Let us assume that there exists a trans-

action Tj (with a transaction descriptor tj and executed by some process p) such
that Tj is the first transaction that is not legal in S. It means that there exists
x ∈ Q such that vis = visibleS(Tj)|x does not satisfy the sequential specification
of x.

The only type of t-object considered in DUR are simple registers (see Sec-
tion 4.2). Sequential specification of a register x is violated when a read opera-

150 B Proofs of algorithm correctness

tion r = x.read → v returns a value v that is different from a value most recently
written to this register using the write operation, or its initial value if there was
no such operation.

Therefore, vis does not satisfy the sequential specification of x, if there exists
an operation r = x.read → v in Tj such that v is not the most recently written
value to x in vis . Then, either v′ 6= v is the initial value of x or there exists
an operation w = x.write(v′) → ok in vis such that w is the most recent write
operation on x in vis prior to r.

By definition of visibleS(Tj), instead of considering t-history vis , we can sim-
ply operate on S while excluding from consideration any write operations per-
formed by all aborted transactions in S.

Let us first assume that x was not modified prior to r, i.e., there is no write
operation execution on x in S (and in vis) prior to r. Then, trivially, v has to be
equal to the initial value of x (by Proposition 25), a contradiction.

Therefore, there exists a transaction Ti (with transaction descriptor ti) which
executes w. First, let us assume that Ti = Tj . Given that w is executed prior to r,
from Proposition 26, v = v′, a contradiction. Therefore Ti 6= Tj .

Since we require thatw is in vis , Ti must be a committed updating transaction
and Ti ≺r

S Tj .
Now we show that ti.end ≤ tj .start . We have two cases to consider:

1. Tj is an aborted or read-only transaction in S. By construction of S, there
exists a committed updating transaction Tl (with transaction descriptor tl)
such that Tl ≺r

S Tj and tl.end = tj .start . Because both Ti and Tl are com-
mitted updating transactions in S, either Tl ≺r

S Ti, Ti ≺r
S Tl or Ti = Tl. By

construction of S, between Tl and Tj there must be no committed updating
transactions. If Tl ≺r

S Ti then Ti must appear after Tj in S. However, it is
impossible since Ti ≺r

S Tj , a contradiction. Then, either Ti = Tl or Ti ≺r
S Tl.

In the first case, ti.end = tl.end . In the second case, ti.end < tl.end (by
Proposition 23). Since tl.end = tj .start , ti.end ≤ tj .start .

2. Tj is a committed updating transaction in S. By Proposition 23, ti.end <

tj .end . By Proposition 22, we know that ti is stored in Log of p (process
that executes Tj) by the time the value of LC on that process reaches ti.end .
Since Tj is a committed updating transaction, it has to pass the certification
test (line 9). This test takes place as late as the commit of Tj (line 51). Since
the commit sets the value of LC to tj .end (line 53), the certification takes
place when LC = tj .end − 1. Since ti.end < tj .end , ti.end ≤ tj .end −
1. This means that ti is already stored in the Log of p when certification
happens. We know that x ∈ tj .readset and (x, v′) ∈ ti.updates , where v′

is some value. If we had ti.end > tj .start , then the certification procedure
would compare the Tj ’s readset against the Ti’s updates and return failure,
thus aborting Tj . But we know that Tj is committed. Therefore, ti.end ≤
tj .start .

By Proposition 22 and the fact that ti.end ≤ tj .start , we know that ti is stored
in Log of p (process that executes Tj) before Tj starts. It means that inside the

B.4 Correctness of Hybrid Transactional Replication 151

same lock statement, LC is incremented (line 52) and its value is assigned to
ti.end (line 53), ti is appended to Log (line 54) and ti.updates are applied to the
local state (line 55). Therefore, the updates of Ti are applied to the local state of
p before Tj starts.

Now, unless there is some transaction Tk (with transaction descriptor tk),
such that Tk modified x, tk.updates are applied to the local state of p after ti.up-
dates are applied but before r returns, r would have to return v′. But it is impos-
sible, because we assumed that r returns v 6= v′. Therefore we now consider such
Tk. If tk.updates are indeed applied by p after ti.updates are, then tk.end > ti.end

(p increments LC each time p applies updates of some transaction, line 52). By
construction of S, Tk would have to appear in S after Ti and before r returns.
However, then w would not be the most recent write operation on x prior to r in
S, a contradiction.

From the contradiction we know that the assumption that there exists such
a transaction Tk is false. Therefore r has to return v = v′, thus concluding the
proof. Therefore DUR guarantees update-real-time opacity.

Corollary 6. Let G be a gateway shared object implemented using Deferred Update
Replication. Then, G satisfies update-real-time linearizability.

Proof. The proof follows directly from Theorem 5 and Theorem 10.

B.4 Correctness of Hybrid Transactional Replication

Below we only consider t-histories of HTR, i.e., histories limited to events that
are related to operations on t-objects (texec operations) and controlling the flow
of transactions such as commit and abort events (tryC and tryA operations, re-
spectively). In this sense, we treat the implementation of HTR as some TM object
M , and reason about t-histories H|M .

Theorem 11. Hybrid Transactional Replication does not satisfy write-real-time opacity.

Proof. Trivially, every t-history of DUR is also a valid t-history of HTR since
transactions in DUR are handled in exactly the same way as DU transactions in
HTR. Since DUR does not satisfy write-real-time opacity (by Theorem 9), neither
does HTR.

Corollary 7. Hybrid Transactional Replication does not satisfy real-time opacity.

Proof. The proof follows directly from Theorem 11 and definitions of write-real-
time opacity and real-time opacity (real-time opacity is strictly stronger than
write-real-time opacity).

In the following propositions by state of some process pi we understand the
combined state of all t-objects maintained by pi and the current values of LC

152 B Proofs of algorithm correctness

and Log that pi holds (but excluding statistics held in transaction descriptors,
which do not count as part of the state).

The following proofs in many places are analogous to the proofs of the cor-
rectness of DUR (see Section 5.3.3), where we showed that DUR satisfies update-
real-time opacity.

Proposition 27. Let ka · kb and k′a · k′b be parts of HTR execution on a single process
be such that:

1. ka is the certification of a DU transaction whose transaction descriptor has been
delivered using TOB (line 62) and kb is modifying the local state afterwards (lines
63–66),

2. k′a is an execution of an SM transaction (lines 77–80) and k′b is modifying the
local state afterwards (lines 88–91).

Let K1 be either ka · kb or k′a · k′b, and K2 also be either ka · kb or k′a · k′b but K1 and K2

pertain to different transactions. For any process pi executing HTR, K1 and K2 never
interleave, and changes to the state of pi happen atomically only after kb or k′b.

Proof. The state of any pi changes only if the value of LC , Log or any t-object
changes (within kb or k′b, which are semantically identical and are guarded by
the same lock). This can happen only when pi delivers a message through TOB,
i.e., either when pi processes a transaction descriptor of a DU transaction (ka ·kb,
lines 62–66) or when pi processes a request (line 69) which then pi executes as an
SM transaction (k′a · kb, lines 77–80 and 88–91). pi can process only one message
at a time (these messages are processed as non-preemptable events). Therefore,
both K1 and K2 happen atomically and sequentially to each other.

Proposition 28. Let pi be a process executing HTR. Let t be a transaction descriptor of
a DU transaction delivered by pi using TOB and let S be the state of pi at the moment
of delivery. Let S′ be the state of pi after pi certifies and (possibly) updates its state, Log i
be the log of pi in state S′ and ti be the value of t such that ti ∈ Log i in case of successful
certification of the transaction. Then for every process pj in state S, if pj delivers t using
TOB, then pj moves to state S′.

Proof. By Proposition 27, the state of pk does not change throughout certifica-
tion of a DU transaction (whose transaction descriptor has been delivered) and
applying the updates produced by the transaction.

Since the certification procedure (line 9) is deterministic and the values of the
Log variables are equal between processes (except for the statistics field which is
not used by the procedure), the procedure yields the same result. If the outcome
is negative, neither process changes its state (line 62). Otherwise, both processes
increment LC to the same value (line 63), assign LC ’s current value to the end

field of the transaction descriptors (line 64, the value of LC could not change
during processing of the transaction descriptor). Next, processes append the
transaction descriptors to the Log (line 65) and then apply t.updates (line 66).
Therefore both processes move to the same state S′.

B.4 Correctness of Hybrid Transactional Replication 153

Proposition 29. Let pi be a process executing HTR. Let r be a request delivered by pi
using TOB, let S be the state of pi at the moment of delivery of r and S′ be the state of
pi after the execution of r as an SM transaction Tk with transaction descriptor tk. For
every process pj in state S, if pj delivers r using TOB then the execution of r as an SM
transaction Tl (with transaction descriptor tl) by pj yields state S′ of pj and tk = tl
(except for the statistics field).

Proof. By Proposition 27, the state of pk does not change throughout an execu-
tion of an SM transaction and applying the updates produced by the transaction.

The values of tk.id and tl.id are equal, since processes assign to the id field a
value which deterministically depends on r.id (line 77).

Since both pi and pj start the execution of r from the same state, the current
values of their LC variables are equal. Hence, tk.start = tl.start (line 78).

During the execution of an SM transaction nothing is ever added to readset

(line 82). Therefore tk.readset = tl.readset = ∅.
Since HTR assumes that only a request with deterministic prog can be exe-

cuted as an SM transaction, r.prog must be deterministic. Both processes exe-
cute r.prog with the same r.args (line 80) and operate on the same state S which
does not change throughout the execution of r.prog . Moreover, all updates pro-
duced by the transactions are stored in the updates sets (line 84). Therefore
tl.updates = tk.updates .

Also tk.end = tl.end . If Tk and Tl are read-only (tk.updates = tl.updates = ∅),
the initial values of tk.end and tl.end do not change. Otherwise, both processes
increment LC and assign its current value to the end fields (line 88, the value of
LC could not change during the execution of SM transactions).

Because tk.id = tl.id , tk.start = tl.start , tk.readset = tl.readset , tk.updates =

tl.updates , and tk.end = tl.end , we gather that tk = tl (except for the statistics
field). If both transactions are updating, pi adds tk to pi’s Log and pj adds tl to
pj ’s Log . Then, both processes apply all updates from the respective transaction
descriptors. Thus both processes move to the same state, i.e., S′.

Proposition 30. Let S(i) = (Si
0, S

i
1, ...) be a sequence of states of a process pi executing

HTR, where Si
0 is the initial state (comprising the initial state of t-objects, LC = 0 and

Log = ∅) and Si
k is the state after the k-th message was delivered using TOB and

processed by pi. For every pair of processes pi and pj either S(i) is a prefix of S(j) or
S(j) is a prefix of S(i).

Proof. We prove the proposition by a contradiction. Let us assume that S(i) and
S(j) differ on position k (and k is the lowest number for which Si

k 6= Sj
k), thus

neither is a prefix of another.
If k = 0, then the initial state of pi is different from the initial state of pj . Since

all processes start with the same values of LC , Log (lines 1–2) and maintain the
same t-objects with the same initial values, that is a contradiction. Therefore
k > 0, and the difference between Si

k and Sj
k must stem from some later change

to the state.
Since Si

k−1 = Sj
k−1, the receipt of the k-th message mk (which is equal for

both processes thanks to the use of TOB) and processing it must have resulted

154 B Proofs of algorithm correctness

in a different change to LC , Log or values of some (or all) t-objects at both pro-
cesses. We have two cases to consider:

1. Message mk is a transaction descriptor of a DU transaction (line 61). Both
processes are in the same state Sk−1 and process the same transaction de-
scriptor. Therefore, by Proposition 28, both processes move to the same
state Sk, which is a contradiction.

2. Message mk is a request to be executed as an SM transaction (line 69).
Both processes are in the same state Sk−1 and execute the same request as
SM transactions. Therefore, by Proposition 29, both processes move to the
same state Sk, which is a contradiction.

Since both cases yield a contradiction, the assumption is false. Therefore
either S(i) is a prefix of S(j), or S(j) is a prefix of S(i).

We know that all communication between processes in HTR happens through
TOB. It means that all processes deliver all messages in the same order. If the
message is a request forwarded by some process to be executed as an SM trans-
action, then every process delivers this request while being in the same state (by
Proposition 30). Then, all processes execute the request as different SM transac-
tions but end up with transaction descriptors of the same exact value (except for
the statistics field, by Proposition 29). Therefore, processes need not to dissem-
inate the transaction descriptors after they complete the transaction execution
(as in case of a DU transaction). Instead, processes may promptly apply the up-
dates from the transaction descriptors to their state. It all means that executing
a request as multiple SM transactions across the whole system is equivalent to
the execution of the request only once and then distributing the resulting up-
dates to all processes. Also, unless a request must be executed in the SM mode
(because it performs some irrevocable operations), the client has no knowledge
which execution mode was chosen to execute his request.

The way HTR handles SM transactions means that HTR does not exactly fit
the model of (update-real-time) opacity which requires that updates produced
by every committed transaction must be accounted for. Therefore, unless the SM
transactions resulting from the execution of the same request did not perform
any modifications or are rolled back on demand, it is impossible to construct
a t-sequential t-history S in which every transaction is t-legal. However, since
we proved that the execution of multiple SM transactions regarding the same re-
quest is equivalent to the execution of a single one, we can propose the following
mapping of t-histories, which we call SMreduce. Roughly speaking, under the
SMreduce mapping of some t-history of HTR, for any group of SM transactions
regarding the same request r, such that the processes that executed the transac-
tions applied the updates produced by the transactions, we only allow the first
transaction of the group in the t-history to commit; other transactions appear
aborted in the transformed t-history.

Now let us give a formal definition of the SMreduce mapping. Let H be a t-

B.4 Correctness of Hybrid Transactional Replication 155

history of HTR and let SMmode be a predicate such that for any transaction Tk in
H , SMmode(Tk) is true if Tk was executed as an SM transaction in H . Otherwise
SMmode(Tk) is false. Then, let H ′ = SMreduce(H) be a t-history constructed by
changing H in the following way. For any event e in H such that:

• e = respi(Ck) is a response event of an operation executionM.tryC (Tk)→i

Ck for some transaction Tk and process pi, and

• SMmode(Tk) is true (and r is the request whose execution resulted in Tk),
and

• Tk is not the first completed transaction in H which resulted from the exe-
cution of r in the SM mode,

replace e in H ′ with e′ = respi(Ak). We say that H ′ is an SMreduced t-history of
HTR.

Proposition 31. Let H be an SMreduced t-history of HTR. Let Tk be an updating
committed transaction in H such that tk is the transaction descriptor of Tk. Then, any
process stores tk (excluding the statistics field) in its Log as the value of LC on this
process is set to tk.end (both actions happen atomically, i.e., within a lock statement).

Proof. From Proposition 30 we know that all processes move through the same
sequence of states as a result of delivering messages using TOB. Let S be the
state of any (correct) process immediately before delivering and processing a
message m such that processing of m results in applying updates produced by
Tk to the local state (we know that Tk is an updating committed transaction, thus
tk.updates 6= ∅). We have two cases to consider:

1. Tk is a DU transaction. Then, by Proposition 28, upon delivery of m any
process pi updates its state in the same way and the new state includes
a transaction descriptor t′k = tk such that t′k is in Log of pi. The value
of t′k.end is equal to the current value of LC held by pi because LC is
first incremented and then its current value is assigned to t′i.end atomically
within a single lock statement (lines 63–66).

2. Tk is an SM transaction. Then, upon delivery of m any process pi executes
the request received in m as an SM transaction T ′k (T ′k may or may not be
equal Tk) with transaction descriptor t′k. After T ′k finishes its execution, in-
side the same lock statement pi increments the value of its LC , appends t′k
to its Log and applies the updates produced by T ′k (lines 88–91). By Propo-
sition 29, t′k = tk (except for the statistics field). Note that by definition
of SMreduce, every transaction T ′k 6= Tk, which is executed as a result of
receipt of m, is aborted (which means that updates of a committed SM
transaction are in fact applied by every process only once).

This way for both cases we gather that tk is stored in the Log of every process as
the value of LC on this process is set to tk.end .

Proposition 32. Let H be an SMreduced t-history of HTR. For any two updating
committed transactions Ti, Tj ∈ H and their transaction descriptors ti and tj , if Ti ≺r

H

Tj then ti.end < tj .end .

156 B Proofs of algorithm correctness

Proof. From the assumption that Ti ≺r
H Tj , we know that Ti is committed and

the first event of Tj appears in H after the last event of Ti (the commit of Ti).
It means that tryC (Tj) was invoked after the commit of Ti. Now we have four
cases to consider:

1. Ti and Tj are DU transactions. Since tryC (Tj) is invoked after the commit
of Ti, tj was broadcast (using TOB) after ti is delivered by the process that
executed Ti. Hence, any process can deliver tj only after ti. Since LC

increases monotonically (line 63) and its current value is assigned to the
end field of a transaction descriptor (line 64), on every process ti.end <

tj .end .

2. Ti is a DU transaction and Tj is an SM transaction (whose execution re-
sulted from delivery of request r using TOB). Since Tj is committed, by
definition of SMreduce, Tj is the first SM transaction in H to complete and
such that Tj ’s execution resulted from delivery of r. It means that there
does not exist an SM transaction T ′j on the process that executes Ti, whose
execution resulted from delivery of request r and which completed before
Tj did. Since Ti commits before Tj , Ti has to commit before any transaction
T ′′j (whose execution also results from delivery of r) completes. By Propo-
sition 27, Ti’s certification and commit and T ′′j ’s execution do not inter-
leave. It means that T ′′j must have started after Ti committed. Then Ti must
have incremented LC before T ′′j started (line 63) and so ti.end < t′′j .end ,
where t′′j is the transaction descriptor of T ′′j . By Proposition 29, t′′j = tj .
Therefore ti.end < tj .end .

3. Ti is an SM transaction (whose execution resulted from delivery of request
r using TOB) and Tj is a DU transaction. Since tryC (Tj) was invoked after
the commit of Ti, tj was broadcast (using TOB) later than r was delivered
by the process that executes Ti. Therefore, this process can only deliver
tj after handling r and executing Ti. By properties of TOB, the process
that executes Tj can also deliver tj after delivery of r. Therefore, the pro-
cess that executes Tj had to deliver r, execute an SM transaction T ′i (with
transaction descriptor t′i) and modify the local state afterwards but before
Tj started (by Proposition 27). Since LC increases monotonically (line 88),
t′i.end < tj .end . By Proposition 29, t′i = ti, thus t′i.end = ti.end . Therefore
ti.end < tj .end .

4. Ti and Tj are SM transactions (whose execution resulted from delivery of
requests r and r′ using TOB, respectively). By properties of TOB, r and r′

had to be delivered by any process in the same order. We now show that r
must be delivered before r′. Let us assume the opposite. Then, the process
that executes Ti delivers r′ prior to the execution of Ti. As a result, the pro-
cess executes an SM transaction T ′j which produces the same results as Tj
(by Proposition 29). By Proposition 27, T ′j must complete before Ti starts.
Then, T ′j ≺r

H Ti. By definition of SMreduce, we know that Tj is the first
SM transaction to complete in H , such that Tj ’s execution resulted from
delivery of r′. Therefore Tj must have completed before T ′j . It means that

B.4 Correctness of Hybrid Transactional Replication 157

Tj ≺r
H Ti, a contradiction. Therefore r must be delivered by TOB prior

to r′. Since the process that executes Tj must have delivered r before de-
livering r′, the process must have executed an SM transaction T ′i prior to
Tj such that the execution of T ′i resulted from delivery of r. By Proposi-
tion 27, T ′i completes before Tj starts. Since LC increases monotonically
(line 88), t′i.end < tj .end , where t′i is the transaction descriptor of T ′i . By
Proposition 29, t′i = ti, thus t′i.end = ti.end . Therefore ti.end < tj .end .

Proposition 33. LetH by an SMreduced t-history of HTR. Let Ti and Tj be two trans-
actions in H executed by some process pl and let ti and tj be transaction descriptors of
Ti and Tj , respectively. If Ti ≺r

H Tj then ti.start ≤ tj .start .

Proof. From the assumption that Ti ≺r
H Tj and both are executed by the same

process pl, we know that Ti is completed and the first event of Tj appears in
H after the last event of Ti. Therefore pl assigns the current value of LC to
ti.start before it does so for tj .start (in line 29 and line 78, if Ti is a DU or SM
transaction, respectively). The value of LC increases monotonically (lines 63 and
88, the values of LC correspond to commits of updating transactions). Therefore
ti.start ≤ tj .start .

Proposition 34. Let H be an SMreduced t-history of HTR and let r = x.read → v be
a read operation on some t-object x ∈ Q performed by some transaction Tk in H . If Tk
did not perform any write operations on x prior to r then either there exists a transaction
Ti that performed x.write(v) → ok and committed before r returns, or (if there is no
such transaction Ti) v is equal to the initial value of x.

Proof. From the assumption that Tk did not perform any write operations on x
prior to r, we know that the value of x is retrieved from the local state (line 7).
The value of x is updated on the process that executes Tk only in two cases:

1. A transaction descriptor t′i of a committed updating DU transaction T ′i is
delivered using TOB. Then t′i.updates are used to modify x in the local
state of the process that executes Tk (line 66). Before commit, T ′i stores the
modified values of t-objects in the updates set of the transaction descriptor
of T ′i . The only possibility that a new value of x is stored in the updates

set is upon write operation on x (line 42). Then Ti = T ′i thus satisfying the
Proposition.

2. An updating SM transaction T ′i (whose execution resulted from delivery of
a request ri using TOB) modified x upon applying the updates it produced
(line 91); T ′i is executed by the same process that executes Tk. Before that,
during execution, T ′i stores the modified values of t-objects in the updates

sets of Ti’s transaction descriptor. The only possibility that a new value of
x is stored in the updates set is upon write operation on x (line 84). Now,
becauseH is SMreduced there are two cases to consider. In the first case T ′i
is committed. Then Ti = T ′i thus satisfying the Proposition. In the second
case T ′i is aborted. However, from the definition of SMreduce, we know

158 B Proofs of algorithm correctness

that there exists a committed SM transaction Ti whose execution resulted
from delivery of ri, such that Ti committed before T ′i completed (and there-
fore also prior to r). The transaction descriptor of Ti is equivalent to the
transaction descriptor of T ′i (except for the statistics, by Proposition 29).
Then, when Tk performs r, the local state of the process that performed T ′k
contains the updates produced by Ti, i.e., it contains also v as the current
value of x.

On the other hand, if the value of x in the system was never updated (through
line 66 or 91), the initial value of x is returned (line 7).

Proposition 35. LetH be an (SMreduced) t-history of HTR and Tk (with a transaction
descriptor tk) be some transaction in H . If there exists a t-object x ∈ Q, such that Tk
performs a read operation r = x.read → v and Tk executed earlier at least one write
operation on x, where w = x.write(v′)→ ok is the last such an operation before r, then
v = v′.

Proof. Upon the execution of w, if there were no prior write operations on x in
Tk then a pair (x, v′) is added to tk.updates ; otherwise, the current pair (x, v”) is
substituted by (x, v′) in tk.updates (line 42 or line 84, if Tk is a DU or an SM trans-
action, respectively). Then v′ would be returned upon execution of r (line 40 and
then 5), unless Tk aborts. This may only happen if Tk is a DU transaction and
Tk aborted due to a conflict with other transaction (line 37). However, then r

would not return any value (the execution of the transaction would be stopped).
Therefore v = v′ and indeed v′ was assigned to x by the last write operation on
x in Tk before r.

Theorem 12. Under the SMreduce mapping, Hybrid Transactional Replication satis-
fies update-real-time opacity.

Proof. In order to prove that HTR satisfies update-real-time opacity under SMre-
duce, we have to show that every SMreduced finite t-history produced by HTR
is final-state update-real-time opaque (by Corollary 1). In other words, we have
to show that for every SMreduced finite t-history H produced by HTR, there
exists a t-sequential t-history S equivalent to some completion of H , such that S
respects the update-real-time order of H and every transaction Tk in S is legal
in S.

Part 1. Construction of a t-sequential t-history S that is equivalent to a comple-
tion of H .

Let us first construct a t-completion H̄ of H . We start with H̄ = H . Next, for
each live transaction Tk in H performed by process pi, we append some event to
H̄ according to the following rules:

• if Tk is not commit-pending and the last event of Tk is an invocation of
some operation, append respi(Ak),

• if Tk is not commit-pending and the last event of Tk is a response event to
some operation, append 〈tryA(Tk)→i Ak〉,

B.4 Correctness of Hybrid Transactional Replication 159

• if Tk is commit pending and Tk is an SM transaction, then append respi(Ak),

• if Tk is commit pending and Tk is a DU transaction with a transaction de-
scriptor tk, then if tk was delivered by some process pj using TOB and
pj successfully certified Tk, then append respi(Ck). Otherwise append
respi(Ak).

Now we show that for each committed updating transaction Tk there exists
a unique value which corresponds to this transaction. This value is equal to the
value of the end field of Tk’s transaction descriptor when the updates of Tk are
applied (on any process), as we now prove by a contradiction. Let Ti and Tj
be two updating committed transactions with transaction descriptors ti and tj ,
respectively. Ti and Tj result from delivery of some requests ri and rj (Ti and
Tj may be DU or SM transactions). Let us assume that Ti 6= Tj , ti.end = v,
tj .end = v′, but v = v′. If Ti is a DU transaction, then ti is broadcast using TOB
to all processes in a message mi (line 50). If Ti is an SM transaction, then the
request ri is broadcast using TOB prior to the execution of Ti in a message mi

(line 32). Analogically, for Tj , message mj contains either tj or rj . Since both
transactions are updating committed, both mi and mj had to be delivered by
some processes. By properties of TOB, we know that there exists a process p
that delivers both mi and mj . Without loss of generality, let us assume that p
delivers mi before mj . By Proposition 27, we know that processing of mi and
mj cannot interleave (irrespective of the modes of the transactions) and the up-
dates of ti and tj on p are applied in the order of delivery of mi and mj . Every
time p updates its state, p first increments LC (line 63 or 88) and then assigns its
value to the end field of the currently processed transaction descriptor (line 64
or 89). Therefore v 6= v′, a contradiction. Moreover, by Proposition 30, all pro-
cesses deliver mi while being in the same states and then deliver mj while also
being in the same states. Therefore the values of LC (and matching end fields
of transaction descriptors of updating committed transactions) are the same on
every process when processing updates of Ti and Tj . Thus, the value of the end

field of a transaction descriptor of a committed updating transaction uniquely
identifies the transaction.

We can now construct the following function update . Let update : N → T
be a function that maps the end field of a transaction descriptor of a committed
updating transaction to the transaction. Let S = 〈H̄|update(1) · H̄|update(2) · ...〉.
This way S includes the operations of all the committed updating transactions
in H . Now, let us add the rest of transactions from H̄ to S in the following
way. For every such a transaction Tk with a transaction descriptor tk, find a
committed updating transaction Tl (with transaction descriptor tl) in S, such
that tk.start = tl.end , and insert H̄|Tk immediately after Tl’s operations in S. If
there is no such transaction Tl (tk.start = 0), then add H̄|Tk to the beginning of
S. If there are multiple transactions with the same value of start timestamp, then
insert them in the same place in S. Their relative order is irrelevant unless they
are executed by the same process. In such a case, rearrange them in S according
to the order in which they were executed by the process.

160 B Proofs of algorithm correctness

Part 2. Proof that S respects the update-real-time order of H .
Let Ti and Tj be any two transactions such that Ti ≺u

H Tj and let ti and tj be
transaction descriptors of Ti and Tj , respectively. Then, Ti ≺r

H Tj and

1. Ti and Tj are updating and committed, or

2. Ti and Tj are executed by the same process.

In case 1, by Proposition 32 we know that ti.end < tj .end . Both ti.end and
tj .end correspond to the values assigned to LC when ti and tj are processed
(lines 63 and 64). Then, by the construction of S, Ti must appear in S before Tj .
Therefore, Ti ≺r

S Tj . Moreover, the construction requires that for any transaction
Tk ∈ H , S includes all events of H|Tk. In turn both Ti and Tj are updating and
committed in S. Therefore, in this case, Ti ≺u

S Tj .
Now let us consider case 2. We have several subcases to consider:

1. Ti is a committed updating transaction and Tj is a read-only or an aborted
transaction. Since Ti ≺r

H Tj and both Ti and Tj are executed by the same
process, naturally ti.end ≤ tj .start (the value of LC , which is assigned to
the start and end fields of transaction descriptor, increases monotonically).
By construction of S, Tj (which is a read-only or an aborted transaction)
appears in S after a committed updating transaction Tk (with transaction
descriptor tk), such that tk.end = tj .start . Therefore Tk ≺r

S Tj and ti.end ≤
tk.end . If ti.end = tk.end , then Ti = Tk and Ti ≺r

S Tj . If ti.end < tk.end , by
construction of S, Ti ≺r

S Tk, and thus Ti ≺r
S Tj .

2. Ti is a read-only or an aborted transaction and Tj is a committed updating
transaction. By Proposition 33, ti.start ≤ tj .start . Since Tj is a committed
updating transaction, tj .start < tj .end (LC is always incremented prior to
assigning it to the end field of the transaction descriptor upon transaction
commit). Therefore ti.start ≤ tj .start < tj .end , and thus ti.start < tj .end .
Since Ti is a read-only or an aborted transaction, by construction of S, Ti
appears in S after some committed updating transaction Tk (with trans-
action descriptor tk) such that tk.end = ti.start and before some com-
mitted updating transaction T ′k (with transaction descriptor t′k) such that
t′k.end = tk.end +1. Tk may exist or may not exist. We consider both cases:

a) Tk exists. It means that Tk ≺r
S Ti ≺r

S T ′k. Since ti.start < tj .end

and tk.end = ti.start , tk.end < tj .end . Because tk.end + 1 = t′k.end ,
t′k.end ≤ tj .end . If t′k.end = tj .end , then T ′k = Tj and Ti ≺r

S Tj . If
t′k.end < tj .end , by construction of S, T ′k ≺r

S Tj , and thus Ti ≺r
S Tj .

b) Tk does not exist. It means that there is no committed updating trans-
action in S before Ti (ti.start = 0). By construction of S, Ti is placed
at the beginning of S, before any committed updating transaction.
Therefore Ti ≺r

S Tj .

3. Both Ti and Tj are read-only or aborted transactions. From Proposition 33
we know that ti.start ≤ tj .start . If ti.start = tj .start (and both Ti and
Tj are executed by the same process), then the construction of S explicitly

B.4 Correctness of Hybrid Transactional Replication 161

requires that Ti and Tj are ordered in S according to the order in which
they were executed by this process. On the other hand, if ti.start < tj .start

then by the construction of S:

a) Ti and Tj appear in S after some committed updating transactions T ′i
and T ′j with transaction descriptors t′i and t′j such that ti.start = t′i.end

and tj .start = t′j .end . It means that t′i.end < t′j .end , therefore T ′i
appears in S before T ′j (by the construction of S). Moreover, between
T ′i and Ti in S there is no other committed updating transaction, since,
by the construction of S, Ti is inserted immediately after T ′i . In turn,
the four transactions appear in S in the following order: T ′i , Ti, T

′
j , Tj .

Thus Ti ≺r
S Tj .

b) If such T ′i does not exist (ti.start = 0; there is no committed updating
transaction in S before Ti), we know that T ′j has to exist since t′j .end =

tj .start > ti.start = 0. Then, the three transactions appear in S in the
following order: Ti, T ′j , Tj . Thus also Ti ≺r

S Tj .

This way S respects the update-real-time order of H (trivially, for any trans-
action Tk executed by process pi in H , Tk is executed by pi in S).

Part 3. Proof that every transaction Tj in S is legal in S.
We give the proof by contradiction. Let us assume that there exists a trans-

action Tj (with a transaction descriptor tj and executed by some process p) such
that Tj is the first transaction that is not legal in S. It means that there exists
x ∈ Q such that vis = visibleS(Tj)|x does not satisfy the sequential specification
of x.

The only type of t-object considered in HTR are simple registers. Sequential
specification of a register x is violated when a read operation r = x.read → v

returns a value v that is different a value most recently written to this register
using the write operation, or its initial value if there was no such operation.

Therefore, vis does not satisfy the sequential specification of x, if there exists
an operation r = x.read → v in Tj such that v is not the most recently written
value to x in vis . Then, either v′ 6= v is the initial value of x or there exists
an operation w = x.write(v′) → ok in vis such that w is the most recent write
operation on x in vis prior to r.

By definition of visibleS(Tj), instead of considering t-history vis , we can sim-
ply operate on S while excluding from consideration any write operations per-
formed by all aborted transactions in S.

Let us first assume that x was not modified prior to r, i.e., there is no write
operation execution on x in S (and in vis) prior to r. Then, trivially, v has to be
equal to the initial value of x (by Proposition 34), a contradiction.

Therefore, there exists a transaction Ti (with transaction descriptor ti) which
executes w. First, we assume that Ti = Tj . Given that w is executed prior to r,
from Proposition 35, v = v′, a contradiction. Therefore Ti 6= Tj .

Since we require thatw is in vis , Ti must be a committed updating transaction
and Ti ≺r

S Tj .
Now we show that ti.end ≤ tj .start . We have two cases to consider:

162 B Proofs of algorithm correctness

1. Tj is an aborted or read-only transaction in S. By construction of S, there
exists a committed updating transaction Tl (with transaction descriptor tl)
such that Tl ≺r

S Tj and tl.end = tj .start . Because both Ti and Tl are com-
mitted updating transactions in S, either Tl ≺r

S Ti, Ti ≺r
S Tl or Ti = Tl. By

construction of S, between Tl and Tj there must be no committed updating
transactions. If Tl ≺r

S Ti then Ti must appear after Tj in S. However, it is
impossible since Ti ≺r

S Tj , a contradiction. Then, either Ti = Tl or Ti ≺r
S Tl.

In the first case, ti.end = tl.end . In the second case, ti.end < tl.end (by
Proposition 32). Since tl.end = tj .start , ti.end ≤ tj .start .

2. Tj is a committed updating transaction in S. By Proposition 32, ti.end <

tj .end . Now we have additional two cases to consider:

a) Tj is a DU transaction. By Proposition 31, we know that ti is stored in
Log of p (process that executes Tj) by the time the value of LC on that
process reaches ti.end . Since Tj is a committed updating transaction,
it has to pass the certification test (line 9). This test takes place as late
as the commit of Tj (line 62). Since the commit sets the value of LC
to tj .end (line 64), the certification takes place when LC = tj .end − 1.
Since ti.end < tj .end , then ti.end ≤ tj .end−1. This means that ti is al-
ready stored in the Log of pwhen certification happens. We know that
x ∈ tj .readset and (x, v′) ∈ ti.updates . If we had ti.end > tj .start , then
the certification procedure would compare the Tj ’s readset against
the Ti’s updates and return failure, thus aborting Tj . But we know
that Tj is committed. Therefore, ti.end ≤ tj .start .

b) Tj is an SM transaction. For any committed updating SM transaction
T (with transaction descriptor t) the following holds: t.start + 1 =

t.end (by Proposition 27, execution of T cannot interleave with the
execution of another SM transaction or processing a transaction de-
scriptor of a DU transaction after it is delivered). Since ti.end < tj .end

we know that ti.end < tj .start + 1. Thus ti.end ≤ tj .start .

By Proposition 31 and the fact that ti.end ≤ tj .start , we know that ti is stored
in Log of p (process that executes Tj) before Tj starts. It means that inside the
same lock statement, LC is incremented (lines 63 and 88) and its value is as-
signed to ti.end (lines 64 and 89), ti is appended to Log (lines 65 and 90) and
ti.updates are applied to the local state (lines 66 and 91). Therefore, the updates
of Ti are applied to the local state of p before Tj starts.

Now, unless there is some transaction Tk (with transaction descriptor tk),
such that Tk modified x, tk.updates are applied to the local state of p after ti.up-
dates are applied but before r returns, r would have to return v′. But it is impos-
sible, because we assumed that r returns v 6= v′. Therefore let us assume that
there is such Tk. We have two cases to consider:

1. Tk is a committed updating DU transaction or a committed updating SM
transaction executed by p. If tk.updates are indeed applied by p after ti.up-
dates are, then tk.end > ti.end (p increments LC each time p applies up-
dates of some transaction, line 63 or 88). By construction of S, Tk would

B.4 Correctness of Hybrid Transactional Replication 163

have to appear in S after Ti and before r returns. However, then w would
not be the most recent write operation on x prior to r in S, a contradiction.

2. Tk is an aborted SM transaction executed by p, such that Tk’s execution
resulted from delivery of some request rk using TOB. Since p applies tk.up-
dates after ti.updates , tk.end > ti.end (lines 63 and 88). By the definition of
SMreduce, the updates of Tk are applied to the local state of p only if there
exists a committed updating transaction T ′k (with transaction descriptor
t′k) whose execution also resulted from delivery of rk. By Proposition 29,
tk = t′k, and thus tk.end = t′k.end . Hence, t′k.end > ti.end . By construction
of S, it means that T ′k appears in S after Ti and before r returns. However,
then w would not be the most recent write operation on x prior to r in S, a
contradiction.

Since both cases yield contradiction, the assumption that there exists such trans-
action Tk is false. Therefore r has to return v = v′ thus concluding the proof by
contradiction. Therefore HTR guarantees update-real-time opacity under SMre-
duce.

	Dedication
	Quote
	Introduction
	Context
	Aims and Contributions
	Thesis Outline

	State of the Art
	Replication Schemes
	Correctness Properties for Replicated Systems
	Correctness Properties for Transactional Systems
	Correctness Properties for Non-transactional Systems
	Safety and Liveness Properties

	Distributed Transactional Memory Systems
	Other Related Work
	Transactional Semantics
	Protocol Switching
	Machine Learning Techniques

	System model
	Server Processes
	Inter-processes Communication
	Fault Tolerance
	Client Processes
	Requests and Transactions

	New Correctness Properties for Replication Schemes
	Intuition Behind -Opacity and -Linearizability
	Base Definitions
	The -Opacity Family of Properties
	Formal Definition
	Discussion

	The -Linearizability Family of Properties
	Formal Definition
	Discussion

	Relationship Between -Opacity and -Linearizability

	Basic Replication Schemes
	State Machine Replication
	Specification
	Characteristics
	Correctness

	State Machine Replication with Locks
	Specification
	Characteristics
	Correctness

	Deferred Update Replication
	Specification
	Characteristics
	Correctness
	The Multiversioning Optimization

	Evaluation
	Software and Environment
	Benchmarks
	Benchmark Results
	Evaluation Summary

	Comparison

	Hybrid Transactional Replication
	Transaction Oracle
	Specification
	Characteristics
	Expressiveness
	Irrevocable Operations
	Performance

	Correctness
	Tuning the Oracle
	Machine-Learning-based Oracle
	Requirements and Assumptions
	Approach inspired by Multi-armed Bandit Problem
	Implementation Details

	Evaluation
	Software and Environment
	Benchmarks
	Benchmark Results
	Evaluation Summary

	Conclusions
	Streszczenie
	Bibliography
	Proofs Regarding Traits of -Opacity and -Linearizability
	-Opacity is a Safety Property
	-Linearizability is a Safety Property
	-Linearizability is Non-blocking and Satisfies Locality
	Commit-real-time Linearizability is Equivalent to Real-time Linearizability
	Relationship Between -Opacity and -Linearizability

	Proofs of algorithm correctness
	Correctness of State Machine Replication
	Correctness of State Machine Replication with Locks
	Correctness of Deferred Update Replication
	Correctness of Hybrid Transactional Replication

