
Make the Leader Work: Executive Deferred Update
Replication

Maciej Kokociński Tadeusz Kobus Paweł T. Wojciechowski
Institute of Computing Science, Poznań University of Technology

Email: {maciej.kokocinski, tadeusz.kobus, pawel.t.wojciechowski}@cs.put.edu.pl

Abstract—In this paper we propose executive deferred update
replication (EDUR), a novel algorithm for optimistic concurrency
control in distributed transactional memory and database sys-
tems. EDUR streamlines transaction certification (i.e., checking
for conflicts between concurrent transactions) with the broadcast
protocol. which improves scalability and overall performance
compared to deferred update replication based on total order
broadcast (TOB). EDUR uses executive order broadcast (EOB),
a novel protocol that can be seen as a generalization of TOB.
Compared to TOB, EOB features new primitives and properties
that enable the application to delegate some work to a leader—
a process inherently present in many TOB algorithms that is
responsible for coordination of message dissemination. The results
of experimental evaluation show significant performance gains
when using our approach.

I. INTRODUCTION

Replication is typically used for building dependable and
highly available services. It means deployment of a service on
multiple machines and coordination of their actions so that a
consistent state is maintained across all the service replicas. In
this paper, we focus on deferred update replication (DUR) [1]
which is a well known replication method used for optimistic
concurrency control in distributed transactional memory [2]
and database systems [3]. It requires every service replica
(process) to maintain a full copy of all shared data items
(objects). Transactions, which can be executed by any process,
operate on local copies of shared objects. Only upon commit
the processes synchronize so that they update their states in a
consistent manner. The update is finalized only if a transaction
is successfully certified (i.e., no conflicts with concurrent but
already committed transactions have been detected). Otherwise
the transaction is rolled back and restarted. DUR guarantees
globally serializable execution of transactions.

Many authors advocate implementing DUR on top of the
total order broadcast (TOB) (see e.g., [4][5]). Using TOB for
disseminating messages limits the number of costly network
communication steps and avoids the possibility of blocking.
However, this approach is not free of weaknesses. Limiting
the number of communication steps comes at the cost of
performing transaction certification by each process indepen-
dently. Moreover, the volume of data required to be exchanged
between the processes can be large. Both factors limit DUR’s
scalability, especially with workloads that are characterized by
long running transactions that access multiple shared objects.

In [6], we compared TOB-based DUR with state machine
replication (SMR) and eventually merged the two approaches
for better scalability and overall performance [2]. It turns out
that using DUR on modern multicore hardware often gives

worse results than executing the transactions sequentially on all
replicas, as in SMR. The reason for this is the overhead caused
by ensuring transactional semantics. In DUR this is especially
evident for small, short-lived transactions. Furthermore, large,
long-running transactions cause a lot of conflicts. It means that
a high percentage of the transactions must be rolled back and
restarted, thus diminishing the overall system performance. We
sought for a way to make DUR more scalable.

In this paper we propose executive deferred update repli-
cation (EDUR)—a novel concurrency control algorithm that
overcomes the limitations of TOB-based DUR. In EDUR trans-
action certification is streamlined with the broadcast protocol.
Transactions are certified only by a leader, a designated process
inherently present in some of TOB algorithms, responsible for
coordination of message dissemination. EDUR requires the
same number of communication steps as DUR but only one
process performs transaction certification. Additionally, EDUR
greatly reduces the network traffic compared to DUR, because
the data needed for transaction certification is sent only to the
leader. Moreover, a transaction’s updates are broadcast to all
processes only in case of successful certification.

However, as we show in this work, TOB is not sufficient
for EDUR to run correctly. A protocol with stronger guaran-
tees than TOB is necessary. For this purpose, we introduce
executive order broadcast (EOB), a novel protocol that can be
perceived as a generalization of TOB. Compared to TOB, EOB
features new primitives and properties necessary to capture the
special rôle of the (changeable) leader process. The application
can ask the leader to extract the semantic information from the
messages and transform them according to the application’s
logic before sending the messages to other processes. We show
that EOB can be efficiently used to implement EDUR.

To evaluate the performance of EDUR, we compare it to
TOB-based DUR. For this purpose we extended Paxos STM,
our DTM system featured earlier in [6][2], so that it can use
two different transaction certification modules: one employing
a classic DUR protocol built on top of TOB, and another
employing EDUR running on top of EOB. The comparison is
fair since in both cases we use JPaxos [7] as the basis for the
implementation of the broadcast protocols. In all tests, EDUR
achieves much better overall performance compared to DUR.

II. RELATED WORK

Due to limited space, we only discuss work most closely
related to ours (see [6][2] for more references).

Postgres-R [3] is another TOB-based protocol for opti-
mistic replication, originally proposed for database systems.

1

It was designed to solve the problem of high network traffic,
which is known to limit the scalability of DUR. Compared
to DUR, Postgres-R reduces the certification overhead and
the volume of data that need to be exchanged between the
processes at the price of a higher number of communication
steps. EDUR further improves over Postgres-R in terms of
certification overhead and network traffic. At the same time, it
maintains the low number of communication steps as in DUR
by streamlining certification with the broadcast protocol.

PO-broadcast [8] offers similar ordering guarantees as
EOB. However, PO-broadcast is inherently view-based and is
defined for primary-backup systems where only one process
can broadcast update messages. Hence, EOB is more general
than PO-broadcast, as it allows multiple processes to broadcast
messages. A similar, view-based abstraction is extended virtual
synchrony (EVS) [9]. EOB can be implemented with EVS. In
fact EVS is strictly stronger than EOB, because it includes
explicit group membership service. This feature of EVS has,
however, a detrimental impact on availability of a replicated
system (see §IV-C for more discussion).

Our implementation of TOB extends Paxos [10], a fast,
reliable and well researched distributed agreement protocol.
However, the EOB semantics can also be realized by extending
any sequencer-based TOB protocol (see [11] for a survey).

III. SYSTEM MODEL

We assume an asynchronous system that consists of a set
of processes. A process pi is said to be correct if there is
a time after which pi always correctly executes its program.
Otherwise pi is faulty, i.e., it fails by crashing and never
recovers, or crashes and recovers infinitely many times. No
assumption is made on the relative speeds of the processes. To
be able to solve distributed consensus, we assume the presence
of a failure detector Ω. Each process has access to volatile
memory and to stable storage (data stored in it survive crashes).
Processes form a network by maintaining bidirectional fair-loss
links between each pair of processes. They communicate only
by exchanging messages (equipped with system-wide unique
identifiers). Messages may be lost or dropped by the links and
no upper bound on message transmission is known. The failure
pattern of links is independent of the one of the processes.

IV. PROBLEM STATEMENT

The aim of this section is to show that EDUR requires
a coordination mechanism stronger than total order broadcast
(TOB) but weaker than some view-based solutions such as ex-
tended virtual synchrony (EVS). We assume all the discussed
broadcast protocols to be uniform.

A. The idea behind executive deferred update replication

Consider the TOB-based DUR protocol, discussed in [1]. In
this replication scheme, before a transaction can be committed,
the processes need to synchronize. A process that executed a
transaction broadcasts a message which contains the updates of
the transaction and metadata necessary for certification. Then,
each process independently certifies the transaction against the
concurrent, but already committed transactions. A transaction
is committed only if certification is successful. Otherwise the
transaction is rolled back and restarted. All processes change

their states in the same way since the certification procedure
is deterministic and each process receives messages in the
same order. TOB-based DUR limits the number of costly
communication steps because it requires only one broadcast
per transaction’s run. However, minimizing the number of
communication steps comes at the price of increased utilization
of resources. Firstly, certification has to be performed by
each process independently. Secondly, the volume of data
exchanged via network is high, mainly due to, usually large,
metadata that are broadcast alongside updates. Thus, DUR
scalability is limited, especially for long running transactions
that access multiple shared objects.

Many of the existing TOB algorithms are sequencer-based
(see [11] for a survey). It means that there is a designated
process called the sequencer (or the leader) which coordinates
message exchange between all processes. The leader is respon-
sible for establishing the final order of message delivery by,
essentially, stamping each message with a sequence number.
The key idea behind EDUR is to employ the leader to certify
transactions on behalf of other processes. To this end, the
leader processes and modifies the messages it receives before
sending them to the rest of processes. Upon receipt of a mes-
sage, the leader extracts the transaction metadata and uses them
to certify the transaction. Then, if certification is successful,
the leader forwards only transaction’s updates, as the rest of
the processes do not need to certify the transaction again. On
the other hand, if the transaction fails certification no data
need to be broadcast. The leader only sends an information
to the process that originally executed the transaction that the
transaction has to be re-executed.

Streamlining transaction certification with the broadcast
protocol has several advantages. Firstly, the total amount of
computation is reduced (transaction is certified only by a single
process). Secondly, once a transaction is certified, the metadata
which are often large, do not have to be forwarded to the rest
of the processes. The amount of data needed to be sent via
network is further reduced if a transaction fails certification.
Note that the load of the leader does not increase: both in DUR
and EDUR the leader has to certify transactions. In EDUR
certification happens earlier, before the leader establishes the
final order of message delivery and forwards the message to
the rest of the processes. EDUR requires the same number of
communication steps as DUR.

B. Anomalies in total order broadcast

In order to build EDUR one cannot just use a naive
extension of a sequencer-based TOB protocol that exposes the
leader to the application. The reason for this is twofold. Firstly,
the leader, by performing some additional work before sending
messages to the rest of the processes, imposes an implicit
dependency on the final message delivery order. Potentially
each message delivered to an application depends on the one
delivered previously. Secondly, to achieve high performance,
TOB protocols concurrently execute several rounds of the
protocol (called instances), each coordinating the exchange of
a batch of messages. As we demonstrate below, an erroneous
behaviour can occur when the leader changes.

In Figure 1 there is a valid execution of Paxos for five pro-
cesses p1, ..., p5. Each of the processes maintains a sequence

2

p1

p2

p3

p4

p5

5 p(6, a)

[6, a]

prepare p(6, b) p(7, b′)

[6, a]
[7, b′]

prepare p(6, a)

[6, a]

[6, a]

[6, a]
[7, b′] d(6, a)

[6, a]

[6, a]

p(7, b′)

[6, a]
[7, b′]

[6, a]
[7, b′]

[6, a]
[7, b′] d(7, b′)

[6, a]
[7, b′]

[6, a]
[7, b′]Fig. 1. A valid Paxos run.

where it records messages to be delivered to the application.
The value v and the position in the sequence i (often called
the instance number) for a given request is determined by the
leader (denoted [i, v]). A value is locked for a given instance
once processes reach an agreement and let the leader know
about it (a locked value v for a given instance i is denoted
[i, v]). In Paxos, reaching agreement requires the majority
(quorum) of processes to vote in the same way. Concurrent
execution of several instances means that a new instance can be
started before the previous one is finished (a value is locked).

In our example, p1 has been the sole leader up to instance
5, i.e., p1 succeeded in reaching agreement on all requests
it proposed in instances 1 through 5. Process p1 proposes
value a for instance 6 (sends message p(6, a)) but succeeds in
sending the proposition only to p3 and then crashes (therefore
not locking a for instance 6). Process p2 suspects that p1 has
crashed so p2 executes the prepare phase of Paxos in order
to become the leader. Upon gaining quorum of votes (p2 is
recognized to be the most recent leader process by the majority
of processes) p2 concurrently tries to propose values b and b′

for instances 6 and 7. However, p2 succeeds only in sending
a message with b′ to p3. After p2 crashes, process p3 executes
the prepare phase in order to become the leader. However,
for the already initiated instances 6 and 7 process p3 cannot
propose just any values. To guarantee safety in Paxos, once p3
knows that some other processes (previous leaders) proposed
some values for the given instances, it has to use them first for
those instances. Process p3 chooses then a for instance 6 and
b′ for instance 7. Eventually, those values are adopted by the
majority of processes, i.e., they agree to deliver messages a and
b′ for instances 6 and 7. This behaviour poses no problem if the
messages broadcast using TOB are self-contained and do not
depend on the messages previously agreed upon. Otherwise,
the message order established by Paxos (or any other TOB
protocol) may not be correct from the application’s point of
view. Evidently, locking b′ for instance 7 does not make any
sense if b′ is logically dependent on b.

Imagine that the messages above contain the modifications
that are the effects of transaction execution. EDUR must ensure
that the dependency order imposed by the leader is always
maintained. Clearly, TOB cannot be used to implement EDUR.
Note that causal order broadcast [11] is not suitable too, as it
only establishes precedence between the messages broadcast
and delivered by processes. It fails to reflect the precedence
imposed by the streamlined certification.

C. View-based broadcast solutions

EDUR can be built on top of view-based group communi-
cation protocols (see e.g., EVS [9]). This way, the execution
is organized in a sequence of views, each giving processes

a perception of the system as consisting of only correct pro-
cesses. Group membership service is responsible for triggering
a view change every time there is a process suspected to have
crashed or that wants to join or leave the group. Moreover, the
broadcast protocol guarantees a total order of message delivery
that respects the order of views. It is therefore safe to explicitly
elect a leader in every view. In EVS-based EDUR, upon
commit each process sends a unicast message to the current
leader which in turn certifies the transaction and forwards the
updates to the rest of the processes.

However, view-based solutions are not optimal for EDUR.
EDUR does not require a full group membership service.
Introducing view-based computation simplifies the recovery
process, however, recovery and fault-tolerance can be achieved
just as efficiently without it. In a large network false suspi-
cions regarding process crashes can be frequent, thus causing
unnecessary reconfigurations. Moreover, the computation has
to be paused during installation of a new view. To avoid such
issues the crash of any process other than the leader should
be transparent, similarly as in passive replication. In order to
overcome the limitations of both TOB and EVS we propose a
new broadcast protocol called executive order broadcast.

V. EXECUTIVE ORDER BROADCAST

In this section, we formalize the primitives and properties
of executive order broadcast (EOB). Our definition builds on
the specification of total order broadcast (TOB), as in [12].

A. The EOB primitives

The core primitives of EOB are similar to those from TOB:

• EO-Broadcast(m) broadcasts a message m to all pro-
cesses,

• EO-Deliver(m) delivers a message m broadcast by the
process sender(m).

Additionally four new primitives are introduced that cap-
ture the special role of the leader process:

• EO-LeaderElect(HI) informs a process, that it becomes a
leader; HI is a possibly empty sequence of messages soon
to be delivered which constitute the initial knowledge of
the leader,

• EO-LeaderRecall informs a process, that it is no longer
the leader,

• EO-LeaderDeliver(m) delivers message m to the leader
process, so m can be processed,

• EO-LeaderBroadcast(m) is used by the leader process to
forward a transformed message to all processes.

The EO-LeaderElect and EO-LeaderRecall primitives are
used by a local failure detector to inform the process when it
has to take on the duties of the leader. The EO-LeaderDeliver
and EO-LeaderBroadcast primitives express the streamlined
application logic intended to be performed by the leader. To
emphasize that a message sent by a process can change before
it is EO-Delivered by other processes we denote a message m
as a tuple m = (id,mc) where id is a system-wide unique
message identifier and mc is the message content which can
be modified .1

1It implies that if a process pi executes EO-Broadcast m = (id,mc) no
other process pj ever executes EO-Broadcast m′ = (id,mc′).

3

A typical sequence of actions is as follows. First, a process
pi EO-Broadcasts a message m = (id,mc). The message is
first forwarded to the current leader process pk (could be the
same process) and then pk EO-LeaderDelivers m. The leader
transforms the message m to m′ = (id,mc′) according to
the application’s logic using its unique knowledge about the
messages EO-Broadcast but not yet EO-Delivered by other
processes. The leader then EO-LeaderBroadcasts m′. Finally
m′ is EO-Delivered by all correct processes.

B. The complimentary definitions

Below we inroduce two auxiliary terms: a reign period and
message precedence:

Definition 1. The reign period r of a process pi begins
when pi executes the EO-LeaderElect(HI) event e for some
message history HI and lasts until either pi executes the first
EO-LeaderRecall event after event e, or until pi crashes. If
pi neither crashes nor executes EO-LeaderRecall then r is
unbounded. HI is the initial history of r and is denoted by
initialHistory(r).

Although the specification of EOB allows for multiple con-
current leaders, reign period gives a process an impression of
being a sole leader, capable of making authoritative decisions
on behalf of other processes. Before a process can take on the
role of a leader, it has to be up-to-date, as explained in §IV.
Otherwise the decisions made and EO-LeaderBroadcast by this
process must be considered by other processes as not valid
and can never be EO-Delivered. Becoming up-to-date means
making sure that all messages successfully forwarded by the
previous leader are EO-Delivered by the new leader, which
obviously can take some time. Providing the new leader with
the initial history allows the leader to immediately assume its
responsibilities. This optimization is best effort–sometimes the
given initial history can turn out to be incomplete or incorrect.
However, as we show later in this section, no inconsistency
can occur; in the worst-case scenario some messages EO-
LeaderBroadcast by the leader will have to be discarded upon
being received by the processes.

The order of message delivery imposed by the leader is
reflected by the notion of logical precedence of messages:

Definition 2. Let m = (id,mc) be a message EO-Leader-
Broadcast by some process pi in its reign period r, such that
initialHistory(r) = HI . A message mp = (idp,mcp) is the
precedent message of the message m, if:

1) mp is the last message EO-LeaderBroadcast by pi in r
before m, or if there is no such message,

2) mp is the last message from HI , or if HI = ∅,
3) mp is the last message EO-Delivered by pi before r

began, or if there is no such message,
4) mp = m⊥ = (⊥,⊥).

We use m ≺ m′ to denote that message m precedes m′.

C. The EOB specification

Definition 3. The properties of executive order broadcast are:

Leader reign: A process pi in its reign period r such that
initialHistory(r) = HI only EO-Delivers messages from HI

and those EO-LeaderBroadcast by pi in r;

Termination: If a process pi EO-Broadcasts a message m =
(id,mc) and then pi does not crash, then pi eventually EO-
Delivers m′ = (id,mc′);

Validity: For any message m = (id,mc):

1) every process pi that EO-Delivers m, EO-Delivers m only
if m was previously EO-LeaderBroadcast by some process
pj , and

2) every process EO-Delivers m∗ = (id, ∗)2 at most once;

Leader validity: For any message m = (id,mc):

1) a process pi EO-LeaderDelivers m only if m was previ-
ously EO-Broadcast by some process pj , and

2) a process pi in its reign period r EO-LeaderBroadcasts
m′ = (id,mc′) only if m was previously EO-LeaderDe-
livered by pi in r, and

3) a process pi EO-LeaderDelivers m and EO-LeaderBroad-
casts m∗ = (id, ∗) at most once within a given reign
period of pi;

Agreement: If a process EO-Delivers a message m, then every
correct process eventually EO-Delivers m;

Executive order: For any message m = (id,mc) EO-
LeaderBroadcast by a process pk in its reign period r, a
process pi EO-Delivers m only if:

1) pi did not EO-Deliver any other message so far and
m⊥ ≺ m, or

2) the last message pi EO-Delivered before m is the prece-
dent message of m.

The Agreement and Validity properties were adopted from
TOB. They state that each correct process EO-Delivers the
same set of messages. Additionally, the EO-Delivered mes-
sages are not created out of thin air and cannot be EO-
Delivered more than once. Termination is nearly identical to
its equivalent in TOB. The only difference lies in accounting
for a message being transformed from m = (id,mc) to m′ =
(id,mc′). Without Termination property any EOB algorithm
could trivially satisfy the rest of properties by not exchanging
any messages. Our specification lacks the Total Order property
present in TOB. In EOB the Total Order property is replaced
by a new stronger property called Executive Order. Execu-
tive Order ensures that each process EO-Delivers messages
according to the order imposed by the leader. The messages
form a sequence in which each message (except the first
one) is EO-Delivered only after the precedent message is EO-
Delivered. Additionally we specify two properties, necessary
to ensure correctness of algorithms such as EDUR. Firstly, the
Leader Reign property guarantees that a leader ends its reign
period once it detects that some other process, also acting as a
leader, successfully forwarded some messages. It implies that,
before becoming the leader again, a process has to know about
all the actions undertaken by the previous leader. Secondly,
Leader Validity restricts the actions of a leader, so it does not
process the same message multiple times, and it does not create
messages out of thin air.

Note that progress is not guaranteed by the above specifica-
tion of EOB. For instance, consider an EOB-based application
that drops some messages that it EO-LeaderDelivers. Then,

2(id, ∗) represents a message with a unique id and any message content.

4

all properties except Termination are guaranteed. Thus, some
additional requirements on the application are necessary, since
the application’s logic is part of the EOB broadcast protocol.
Below we give the Leader Termination property that requires
the application to eventually execute EO-LeaderBroadcast
m′ = (id,mc′) after EO-LeaderDelivering m = (id,mc) in a
given reign period.

Definition 4. Leader termination: If a process pi in its
reign period r EO-LeaderDelivers m = (id,mc) and r is
unbounded, then pi eventually EO-LeaderBroadcasts m′ =
(id,mc′).

D. The characteristic of EOB

Under stable conditions, i.e., when a leader does not
change, EOB behaves similarly to a sequencer-based TOB:
all messages pass through the leader, the leader transforms
them according to the application logic, and finally they are
EO-Delivered to all processes in the order established by the
leader. Let us reconsider the example from §IV. The process p3
was successful in locking values a and b′ for instances 6 and 7
(a and b′ were originally proposed by p1 and p2, respectively),
although b′ is logically dependent on b (unsucessfully proposed
by p2). In EOB such scenario is not possible: b would be the
precedent message of b′, thus b′ could not be EO-Delivered to
the application unless b is EO-Delivered first.

Note that, in EOB changes of the leader occur smoothly.
The initial history allows the new leader to immediately
assume its duties, thus the leader transition period is much
shorter compared to the view-based solutions, where the leader
first has to be elected and then gather the information about
all previously started instances. Moreover, the performance of
EOB in case of failures is at worst the same as in TOB, and
can be even better (when some messages are dropped due to
missing precedent ones).

VI. EXECUTIVE DEFERRED UPDATE REPLICATION

The pseudocode for EDUR is given in Algorithm 1. The
transaction’s execution phase proceeds in the same way as in
TOB-based DUR. Transactions, which consist of a series of
read and write operations, are executed concurrently by differ-
ent processes (or threads) on the copies of shared objects. Each
transaction has a unique id and maintains two sets: updates
and metadata. The former set is used to store the copies of
the shared objects modified by it. The latter set maintains
the information necessary for transaction certification, i.e.,
objects read and written by the transaction. Once COMMIT is
called, marking the transaction’s transition from the executing
to committing state, the transaction’s id with updates and
metadata are EO-Broadcast. The message is received by the
EOB leader process which then EO-LeaderDelivers it. Now,
the leader certifies the transaction on behalf of other processes.
The leader uses the metadata to check whether the transaction
has read some stale objects (i.e., modified by the concurrent
but already committed transactions or successfully certified by
the leader in its current reign period). If so, the transaction
has to be aborted. On the other hand, if the certification is
successful, each process has to update its state according to the
changes performed by the transaction. The leader transforms
the message depending on the certification outcome and then

EO-LeaderBroadcasts it. If the certification was successful,
the transformed message contains the transaction id and the
updates set, so each process that EO-Delivers the message,
can update its state. Otherwise only id is broadcast. Upon
receipt of such a message, the process that executed the
transaction rolls back and restarts it.

It is easy to see why EDUR works during stable periods,
(when a leader process does not change). All messages pass
through the leader which certifies, transforms and finally
forwards them to all processes. It means that an implicit order
on message delivery is introduced. The leader does not wait for
a transaction it successfully certified to be committed before it
certifies other transactions. Since the leader does not change,
each process EO-Delivers messages in the order the leader sent
them. The consistency is therefore preserved. During unstable
periods the consistency is preserved as well. The order in
which the leader EO-LeaderBroadcasts messages corresponds
to the relation of precedence between the certified transactions.
EOB guarantees that the precedence order is always respected,
thus no inconsistencies can arise. The performance under
failures is comparable to DUR’s since changes of the leader
occur smoothly (as described in section V-D).

EDUR improves upon TOB-based DUR in several ways.
Firstly, certification of each transaction is performed only once,
not by every replica as in DUR. EDUR does not increase
the load of the leader compared to DUR, where each process
(including the TOB leader) has to certify transactions either
way. Secondly, EDUR greatly reduces network traffic. It is
because the metadata set, which in DUR is broadcast to all
replicas, in EDUR is sent only to the leader. Thirdly, in case a
transaction fails certification, only its id has to be broadcast,
thus saving on sending both the updates and metadata sets. In
total, then, compared to DUR, EDUR reduces the overall cost
of performing certification by the factor of n and the volume
of exchanged data by at least (n− 1)× size(metadata). This
allows EDUR to scale much better than DUR (as evidenced
in §VII). Several futher optimizations are possible that are not
applicable to DUR, which can further improve scalability and
lower the burden of the leader process.

VII. EVALUATION OF EDUR

We compare the performance of EDUR and TOB-based
DUR using the hashtable microbenchmark. It features a simple
hashtable that can be managed through three operations: get,
put and remove. The hashtable stores a fixed number of key-
value integer elements from a defined range. A single run of the
microbenchmark consists of a series of requests issued to the
hashtable. Each request is either an RO or RW transaction. An
RO transaction performs 100 get operations with a randomly
chosen set of keys. An RW transaction also performs 100
operations but two of them modify the hashtable. The decision
whether to insert a new element to the hashtable or remove an
existing one depends on results of the earlier get operations.
This way the original saturation of the hashtable that is set
to 50% can be maintained. Our test can be performed with a
varying mix of RO and RW transactions. Due to lack of space,
we only present one of the scenarios, namely 50/50. We run
this benchmark on a cluster of 10 nodes with two setups. In the
first one (called Hashtable: high contention) the hashtable’s
size is set to 10000. In the second one (called Hashtable:

5

Algorithm 1 The executive deferred update replication algorithm for process pi

1: committedTx← ∅; processedTx← ∅
2: function COMMIT(transaction t)
3: EO-BROADCAST (t.id, t.updates, t.metadata)

4: upon EO-LEADERDELIVER(m = (id, updates,metadata))
5: result← CERTIFY(m)
6: if result = success then
7: processedTx← processedTx ∪ {(id, updates)}
8: m′ ← (id, updates)
9: else

10: m′ ← (id,⊥)
11: EO-LEADERBROADCAST m′

12: function CERTIFY(m)
13: check m for conflicts ∀t ∈ committedTx ∪ processedTx
14: return { success, failure }

15: upon EO-DELIVER(m = (id, updates))
16: if updates 6= ⊥ then
17: committedTx← committedTx ∪ {(id, updates)}
18: if pi is leader then
19: processedTx← {(id′, u) ∈ processedTx : id′ 6= id}
20: atomically apply updates
21: else
22: if transaction with id executed locally then
23: restart transaction with id
24: upon EO-LEADERELECT(initialHistory)
25: for all (m = (id, updates)) ∈ initialHistory : updates 6= ⊥ do
26: processedTx← processedTx ∪ {(id, updates)}
27: upon EO-LEADERRECALL
28: processedTx← ∅

4

6

8

10

12

14

16

 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(x

1
0

0
0

 t
x
/s

)

Number of nodes

Hashtable: high contention

DUR
EDUR

0

10

20

30

40

50

60

70

 2 3 4 5 6 7 8 9 10

Number of nodes

Hashtable: no contention

DUR

EDUR

Fig. 2. Throughput for the Hashtable microbenchmark.

no contention), the hashtable’s size is increased to 100000.
Additionally, the key range is partitioned between the worker
threads to eliminate conflicts between transactions altogether.

The evaluation results for both the high contention and
no contention setups are given in Figure 2. In the the high
contention setup the abort rate (i.e., the ratio between the
number of aborted transactions to all transaction runs) ranges
from 28% for 2 nodes to 69% for 10 nodes. DUR achieves
the highest performance for 6 nodes and then the throughput
diminishes. This can be attributed to the increased number
of aborted transactions. The more nodes take part in the
computation, the more concurrently executed transactions fall
into conflicts and have to be rolled back and restarted. For 6
nodes, the output traffic from the leader exceeds 480 Mb/s, i.e.,
nearly the half of the maximum network throughput (1 Gb/s).
For 10 nodes, the network is nearly saturated. On the other
hand, EDUR continues to scale with the increasing number of
nodes. It is because EDUR greatly reduces the network traffic.
For 6 nodes the output traffic from the leader is about 48 Mb/s
and raises to about 96 Mb/s for 10 nodes–10 times less than
in case of DUR. Additionally, EDUR is able to greatly reduce
the size of messages it broadcasts (from 550 B to 150 B).

Obviously, in the no contention setup EDUR cannot benefit
from dropping updates of aborted transactions. However, this
setup well demonstrates the benefits that result from perform-
ing the certification only on one node and the fact that metadata
need not to be broadcast to all the processes. For these very
reasons EDUR scales nearly linearly all the way up to 10
nodes. For 10 nodes EDUR uses only about half of the network
bandwidth. On the other hand, the network is fully saturated
for 9 nodes when using DUR. Adding more nodes would only
diminish DUR’s performance.

VIII. CONCLUSIONS

In this paper we presented executive deferred update repli-
cation, a novel optimistic concurrency control algorithm for
replication in distributed transactional systems. EDUR uses
executive order broadcast, a novel protocol which we specified
in this paper alongside EDUR. EOB integrates closely with
EDUR and allows for streamlining transaction certification
with message broadcast. As we demonstrated, EDUR provides
much better scalability and overall throughput than Deferred
Update Replication based on Total Order Broadcast.

Acknowledgment This work was funded in part by National
Science Centre grant 2011/01/N/ST6/06762.

REFERENCES

[1] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replication: Theory
and Practice, ser. LNCS, vol. 5959. Springer, 2010.

[2] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Hybrid Replication:
State-Machine-based and Deferred-Update Replication Schemes Com-
bined,” in Proc. of ICDCS ’13, Jul. 2013.

[3] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication,” in Proc. VLDB ’00, 2000.

[4] F. Pedone, R. Guerraoui, and A. Schiper, “Exploiting atomic broadcast
in replicated databases,” in Proc. of Euro-Par ’98, Sep. 1998.

[5] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases,” in Proc. of Euro-Par ’97, Aug. 1997.

[6] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven
comparison of state-machine-based and deferred-update replication
schemes,” in Proc. of SRDS ’12, Oct. 2012.

[7] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and
A. Schiper, “JPaxos: State machine replication based on the Paxos
protocol,” Faculté I&C, EPFL, Tech. Rep. 167765, Jul. 2011.

[8] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Proc. of DSN’11, 2011.

[9] M. Amir, L. E. Moser, Y. Amir, P. M. Melliar-smith, and D. A. Agarwal,
“Extended virtual synchrony,” in Proc. of ICDCS’94, 1994.

[10] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, May 1998.

[11] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast
algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36, no. 4,
Dec. 2004.

[12] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Deconstructing
Paxos,” SIGACT News, vol. 34, no. 1, 2003.

6

