
Brief Announcement: On Mixing Eventual and Strong
Consistency: Bayou Revisited∗

Maciej Kokociński

Maciej.Kokocinski@cs.put.edu.pl

Tadeusz Kobus

Tadeusz.Kobus@cs.put.edu.pl

Institute of Computing Science

Poznan University of Technology

Poznań, Poland

Paweł T. Wojciechowski

Pawel.T.Wojciechowski@cs.put.edu.

pl

ABSTRACT
In this paper we study the properties of eventually consistent dis-

tributed systems that feature arbitrarily complex semantics and mix

eventual and strong consistency. These systems execute requests

in a highly-available, weakly-consistent fashion, but also enable

stronger guarantees through additional inter-replica synchroniza-

tion mechanisms that require the ability to solve distributed con-

sensus. We use the seminal Bayou system as a case study, and then

generalize our findings to a whole class of systems. We show du-

bious and unintuitive behaviour exhibited by those systems and

provide a theoretical framework for reasoning about their correct-

ness. We also state an impossibility result that formally proves the

inherent limitation of such systems, namely temporary operation

reordering, which admits interim disagreement between replicas on

the relative order in which the client requests were executed.

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Com-
puter systems organization → Reliability; Availability;

KEYWORDS
eventual consistency, mixed consistency, fault-tolerance

ACM Reference Format:
Maciej Kokociński, Tadeusz Kobus, and Paweł T. Wojciechowski. 2019. Brief

Announcement: On Mixing Eventual and Strong Consistency: Bayou Revis-

ited. In 2019 ACM Symposium on Principles of Distributed Computing (PODC

’19), July 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3293611.3331583

1 INTRODUCTION
Modern replicated services running on the Internet are designed

for high availability and low latency in serving client requests.

These desirable traits come at the expense of weaker consistency

guarantees, e.g., eventual or causal consistency [17]. Such weak

∗
This work was supported by the Foundation for Polish Science, within the TEAM

programme co-financed by the European Union under the European Regional Develop-

ment Fund (grant No. POIR.04.04.00-00-5C5B/17-00). Kokociński and Kobus were also

supported by the Polish National Science Centre (grant No. DEC-2012/07/B/ST6/01230)

and partially by the internal funds of the Faculty of Computing, Poznan Univ. Techn.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6217-7/19/07.

https://doi.org/10.1145/3293611.3331583

consistency models are often sufficient and thus embraced by the

widely employed NoSQL data stores. However, there are many

use cases in which stronger guarantees are needed, in the form of,

e.g., serializable transactions. This is why in recent years various

NoSQL vendors started adding (quasi) transactional support to

their systems [6] [7], albeit these add-on mechanisms are often

very limited.
1

In this paper we study the inherent limitations of replicated sys-

tems which mix eventual consistency with strong consistency, and

at the same time retain rich transactional semantics. More precisely,

we are interested in eventually consistent systems which facili-

tate serializable transactions that can operate on the same data as

highly-available, weakly consistent operations. Weakly consistent

operations are guaranteed to progress, and are handled in such a

way that the processes eventually converge to the same state within

each network partition, even when strongly consistent transactions

cannot complete due to network and process faults. The full version

of the paper is available in [11].

2 BAYOU – A CASE STUDY
In the past several mixed consistency systems have been proposed,

most notably [16] [8] [4]. To showcase some of the problems which

result from having multiple consistency models coexisting in a

system we study the seminal Bayou system [16], one of the first

always available, eventually consistent data stores.

Overview. Each Bayou server speculatively total-orders all re-

ceived client requests using a simple timestamp-based mechanism

and without prior agreement with other servers. This way a Bayou

process (which we call a replica) can respond to a request even

in the presence of network partitions in the system. In the back-

ground, Bayou replicas synchronize to enforce the final request

execution order, as established by a primary replica (the primary

periodically commits the operations it has received). When desired,

a client may wait until the request stabilizes, i.e., it is processed

according to the final execution order, so the response can never

change. Logically, the state of each replica corresponds to the fol-

lowing list l of received requests: the prefix of l contains stabilized
requests, arranged in the order established by the primary; other

requests are kept further on l , arranged according to their times-

tamps. Stabilization of a request means that the request is moved

from the second part of the list to the end of the first part of the

list. Note that sometimes this operation might involve rolling back

1
For instance, Riak allows strongly consistent (serializable) operations to be performed

only on distinct data [7], whereas using the so called light weight transactions in

Apache Cassandra on data that are accessed also in the regular (eventually consistent)

fashion leads to undefined behaviour [10].

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

458

https://doi.org/10.1145/3293611.3331583
https://doi.org/10.1145/3293611.3331583


R1

R2

(primary) R3

invoke(T1)

invoke(Q1)

response(Q1,1)

invoke(T2) invoke(Q2)

response(Q2,2)

commit(T1) commit(T2)
executions of T1 executions of T2 executions of Q1/Q2

T1 {
x = 1

if y = 1 then
z = 1

}

T2 {
y = 1

if x = 1 then
z = 2

}

Q1/Q2 {

return z

}

Figure 1: Example execution of Bayou showing temporary operation reordering and circular causality. Initially, replica R1
executes transactionsT1 andT2 in orderT2,T1, which corresponds toT1’s andT2’s timestamps. This transaction execution order
is observed by the client who issues queryQ1. On the other hand, R2 executes the transactions according to the final execution
order (T1,T2), as established by the primary replica R3. Hence, the client who issued query Q2 observes a different execution
order than the client who issuedQ1. The execution orders perceived by the clients form a circular dependency betweenT1 and
T2: T1 depends on T2 as evidenced by Q1’s response, while T2 depends on T1 as evidenced by Q2’s response. Note that replicas
execute the operations with a delay (e.g., caused by CPU being busy). Also, notice that R1 reexecutes the operations once it gets
to know the final order.

and reexecuting some of the requests. Intuitively, Bayou combines

timestamp-based eventual consistency [17] and serializability [13].

For the purpose of our analysis we assume that requests in Bayou

are arbitrary but deterministic operations that produce some re-

sponse values. An operation might correspond to, e.g., a transaction

specified in SQL. When a client is interested in the stable response,

we say that the operation is strong. Otherwise it is weak, and the re-

sponse is returned to the client before the final operation execution

order is established. This way any weak operation is non-blocking

(with respect to network communication), but its ultimate impact

on the system’s state might differ from what the client can infer

from the response (if the final execution order differs from the

tentative one). On the other hand, a strong operation returns a

response only after the final execution order is established. Hence

the guarantees on the execution order of strong operations are

more stringent compared to the guarantees of weak operations.

By abstracting a system described above, we obtain a model of a

distributed system with arbitrarily complex semantics that mixes

eventual and strong consistency. The semantics are formalized by a

specification of a sequential data type exporting a set of operations

available to the clients.

Anomalies. We demonstrate two phenomena present in Bayou

that may come as dubious and unintuitive. Interestingly, they are

never exhibited by popular NoSQL systems (which guarantee only

eventual consistency), nor by strongly consistent solutions (e.g.,

DBMS). In the first phenomenon, which we call temporary operation

reordering, the replicas may temporarily disagree on the relative

order in which the requests (modeled as operations) submitted to

the system were executed. The difference in operation execution

order can be observed by the clients. The second phenomenon,

circular causality, signifies a situation in which, by examining the

return values of the operations processed by a system, one may

discover a cycle in the causal dependency between the operations.

Both of these anomalies are present in Bayou, because it features

two incompatible ways of ordering operation executions (see Fig-

ure 1). Interestingly, circular causality can be avoided in Bayou [11],

however, this is not the case with temporary operation reordering.

Correctness guarantees. Because of the phenomena described

above, the guarantees provided by Bayou cannot be formalized

using the correctness criteria used for contemporary eventually

consistent systems. For example, basic eventual consistency (BEC) by

Burckhardt [3] directly forbids circular causality. BEC also requires

the relative order of any two operations, as perceived by the client,

to be consistent and to never change. Similarly, strong eventual

consistency (SEC) by Shapiro et al. requires any two replicas that

delivered the same updates to have equivalent states. Obviously,

Bayou neither satisfies BEC nor SEC. Bayou satisfies the opera-

tional specification in [8]. However, we aim to provide a declarative

specification, similar in style to popular consistency criteria, such

as sequential consistency [12], or serializability [13].

In order to formalize the guarantees of systems that, similarly to

Bayou, admit temporary operation reordering, we introduce a new

correctness criterion called fluctuating eventual consistency (FEC),

which can be viewed as a generalization of BEC. More precisely,

BEC requires that the following three conditions are satisfied: EV,

NCC, and RVal(F ). EV requires every operation to eventually be-

come visible to all subsequent ones. NCC forbids circular causality.

Finally, RVal(F ) requires the return values to be consistent with

the replicated data type F specification,
2
i.e., for any given oper-

ation op, the value returned, and the value predicted by F (based

on the set of operations visible to op and a single total order of all

operations), have to match.

FEC retains EV and NCC but relaxes RVal, so that different

operations can perceive different operation orders. However, we

require that the different perceived operation orders converge to

one final execution order.

For strong operations Bayou provides more stringent guaran-

tees, namely sequential consistency (Seq). A response of a strong

operation op always reflects the serial execution of all stabilized

operations up to the point of op’s commit.

When weak and strong operations are mixed, we denote by

FEC(weak,F ) ∧ Seq(strong,F ) the combination of guarantees in-

cluding FEC for weak operations and sequential consistency for

strong operations.

2
A replicated data type specification is a generalization of a sequential data type

specification, that is suitable for certain replicated data types such as MVRs [15].

Although this generalization is not necessary in case of Bayou, which always processes

all operations sequentially, we adopt it for generality and compatibility with BEC.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

459



Wait-freedom. Now we show that, unlike many existing even-

tually consistent data stores, Bayou does not guarantee bounded

wait-free execution of operations, i.e., there does not exist a bound

on the number of steps of the Bayou protocol that a replica takes

before returning a response to the client [9]. Consider an infinite ex-

ecution in which new operations are being invoked on each replica

with a constant rate. Assume that one of the replicas is unable to

keep up executing the operations at the same rate as it receives

them over network. The replica starts lagging behind. Each new

operation invoked at the replica will be executed only after the

current stash of lagging requests is executed. Since the lag is in-

creasing, so is the response time for the operations invoked on the

replica. Thus no bound on response time exists. It is surprising,

because the result holds also when the clients do not wait for the

operations to stabilize.

Fault-tolerance. Bayou’s reliance on the primary makes it not

fault-tolerant (the primary is the single point of failure). Although

the primary may recover, when it is down, operations do not sta-

bilize, and thus no strong operation can complete. Alternatively,

the primary could be replaced by a distributed commit protocol.

If two-phase-commit (2PC) [1] is used, the phenomena illustrated

in Figure 1 are not possible. However, in this approach, a failure

of any replica blocks the execution of strong operations (in 2PC

all the replicas need to be operational). On the other hand, if a

non-blocking commit protocol is used, e.g., based on a total order

broadcast (TOB) [14], the system may stabilize operations despite

(a limited number of) failures. Any scheme which admits failures

of at least one replica, and thus do not depend on synchronous

communication with all the replicas, is necessarily prone to the

phenomena described above.

3 IMPOSSIBILITY RESULT
Now we proceed to our central contribution. Informally, our result

shows that it is impossible to devise a fault-tolerant system that

mixes strong and weak consistency and implements arbitrary se-

mantics (as defined by a specification of a replicated data type F )

but which never admits temporary operation reordering. Before

we state our theorem, we discuss our approach to formulating it.

We are interested in the behaviour of systems, both in the fully

asynchronous environment, when timing assumptions are consis-

tently broken (e.g., because of prevalent network partitions), and in

a stable one, when the minimal amount of synchrony is available so

that consensus eventually terminates. Thus, we consider two kinds

of runs: asynchronous and stable. Replicas are not aware which kind

of a run they are currently executing. In the stable runs, we augment

the system with the failure detector Ω, the weakest failure detector
capable of solving distributed consensus in the presence of failures

[5]. This way replicas can use, e.g., TOB for communication. In the

asynchronous runs, a system which waits for TOB to complete may

block forever.

We make some basic assumptions about the systems considered

(we expressed the assumptions implicitly in Section 1). In case of

weak operations the system needs to behave as a regular eventually

consistent data store as defined by the write-propagating data store

abstraction by Attiya et al. [2]. Intuitively, each replica processes

weak operations as soon as possible, and eagerly synchronizes

with other replicas, to ensure eventual consistency. The system

cannot rely on a central coordinator for the propagation of the

weak operations (as in [4]). In case of strong operations, we consider

systems with non-blocking strong operations, which means that the

execution of a strong operation never blocks on communication

with all replicas. This assumption eliminates protocols such as

2PC for inter-replica synchronization required to complete strong

operations; quorum-based mechanisms, such as TOB, are permitted.

If a mixed-consistency system could avoid temporary operation

reordering, it would mean that it ensures BEC for weak operations

and also provides at least sequential consistency (Seq) for strong

operations. However, as we show, it is impossible.

Theorem 1. Let F be an arbitrary replicated data type. If a system

guarantees BEC(weak,F ) in asynchronous runs, then it does not guar-

antee BEC(weak,F ) ∧ Seq(strong,F ) (neither in the asynchronous,

nor in the stable runs).

If we replaced BEC with FEC above, the theorem would not

longer be true. In fact, in [11] we formally prove that a fault-

tolerant version of Bayou that avoids circular causality guarantees

FEC(weak,F ) in asynchonous runs and FEC(weak,F )∧Seq(strong,

F ) in stable runs. Thus our result shows that admitting temporary

operation reordering is the inherent cost of mixing eventual and

strong consistency when we make no assumptions about the se-

mantics of F . Naturally, for certain replicated data types achieving

both BEC(weak,F ), and Seq(strong,F ) is possible (it is easy to

show that it is the case for, e.g., a single distributed register).

REFERENCES
[1] Philip A., Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987. Concurrency

control and recovery in database systems. Addison-Wesley.

[2] Hagit Attiya, Faith Ellen, and Adam Morrison. 2015. Limitations of Highly-

Available Eventually-Consistent Data Stores. In Proc. of PODC ’15.

[3] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foundations and

Trends in Programming Languages 1, 1-2 (Oct. 2014), 1–150.

[4] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich.

2015. Global Sequence Protocol: A Robust Abstraction for Replicated Shared

State.. In Proc. of ECOOP ’15.

[5] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. 1996. The Weakest

Failure Detector for Solving Consensus. J. ACM 43, 4 (July 1996), 38.

[6] Apache Cassandra documentation. 2019. Light Weight Transactions in Cassandra.

https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html.

[7] Basho documentation. 2019. Consistency levels in Riak. https://docs.basho.com/

riak/kv/2.2.3/developing/app-guide/strong-consistency.

[8] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman.

1996. Eventually-serializable Data Services. In Proc. of PODC ’96.

[9] Maurice Herlihy. 1991. Wait-free Synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 13, 1 (Jan. 1991), 124–149.

[10] Apache Cassandra Issues (Jira). 2016. Mixing LWT and non-LWT operations

can result in an LWT operation being acknowledged but not applied. https:

//jira.apache.org/jira/browse/CASSANDRA-11000.

[11] Maciej Kokociński, Tadeusz Kobus, and Paweł T. Wojciechowski. 2019. Onmixing

eventual and strong consistency: Bayou revisited. ArXiv preprint arXiv:1905.11762

[cs.DC] (2019). https://arxiv.org/abs/1905.11762

[12] L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (Sept. 1979).

[13] Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database

Updates. J. ACM 26, 4 (1979).

[14] Fernando Pedone, Rachid Guerraoui, and André Schiper. 1998. Exploiting Atomic

Broadcast in Replicated Databases. In Proc. of Euro-Par ’98.

[15] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-free Replicated Data Types. In Proc. of SSS ’11.

[16] Douglas Terry, Marvin Theimer, Karin Petersen, Alan Demers, Mike Spreitzer,

and Carl Hauser. 1995. Managing Update Conflicts in Bayou, aWeakly Connected

Replicated Storage System. In Proc. of SOSP ’95.

[17] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (Jan. 2009), 5.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

460

https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html
https://docs.basho.com/riak/kv/2.2.3/developing/app-guide/strong-consistency
https://docs.basho.com/riak/kv/2.2.3/developing/app-guide/strong-consistency
https://jira.apache.org/jira/browse/CASSANDRA-11000
https://jira.apache.org/jira/browse/CASSANDRA-11000
https://arxiv.org/abs/1905.11762

	Abstract
	1 Introduction
	2 Bayou – a case study
	3 Impossibility result
	References



