
RESTGroups for Resilient Web Services

Tadeusz Kobus and Paweª T. Wojciechowski

Pozna« University of Technology
Institute of Computing Science

60-965 Pozna«, Poland
{Tadeusz.Kobus,Pawel.T.Wojciechowski}@cs.put.poznan.pl

Abstract. Service resilience, de�ned as the continued availability of a
service despite failures and other negative changes in its environment, is
vital in many systems. It is typically achieved by state machine replica-
tion using group communication middleware for coordination of service
replicas. In this paper we focus on systems that represent critical data
as Web resources identi�ed by Uniform Resource Identi�ers (URIs). The
best examples of such systems are RESTful web services. We present
RESTGroups: a group communication front-end for RESTful web ser-
vices. Our system is based on Spread � a popular group communication
toolkit. Contrary to Spread and other such toolkits, we represent group
communication services as resources on the Web, addressed by URIs. In
the paper, we describe the system architecture and the API.

1 Introduction

The Web can provide a common, language-independent platform for interopera-
ble services that work together to create seamless and robust systems. However,
we must ensure that each individual service is resilient, i.e. it is able to withstand
unpredictable and di�cult conditions, such as sudden and signi�cant degrada-
tion of network latency or failure of dependant services. In our work, we focus on
RESTful web services. REpresentational State Transfer (REST) [6, 5] embraces a
stateless client-server architecture, in which web services are viewed as resources
identi�ed by URIs. Clients that want to request these services access their par-
ticular representation by transferring application content using a small globally
de�ned set of methods. The methods describe an action to be performed on
a given resource (consequently, by the corresponding service). Typically REST
uses HTTP [4] and its methods GET, PUT, POST, and DELETE.

A typical way of increasing service resilience is to replicate it. Service repli-
cation means deployment of a service on several server machines, each of which
may fail independently, and coordination of client interactions with service repli-
cas. Each service replica, called a process, starts in the same initial state and
executes the same requests in the same order. Thus, the replicated service exe-
cutes simultaneously on all machines. A client can use any single response to its
request to the service. A replicated service is available continuously, tolerating
crashes of individual server machines. If required, these machines can be located
in geographically distant places, connected via a wide-area network.

A general model of such replication is called replicated state machine [19]. In
this approach, each non-fault replica receives every request (the agreement prop-
erty), and each non-fault replica processes the requests in the same relative order
(the order property). The key abstractions required to obtain these two essential
properties are o�ered by group communication systems. They provide reliable
multicast transport protocols with a range of delivery options, e.g. causally- ,
�fo- and totally-ordered multicasts in a group of processes. The protocols are
fully distributed, i.e. they do not depend on any central server and so there is
no single point of failure. For the past 20+ years, many group communication
systems have been implemented (e.g. JGroups [17] and Spread [20]; see also [11]
for other references). Unfortunately, they have quite di�erent APIs, which are
language dependent and complex. Moreover, many of group communication sys-
tems are monolithic, so it is not possible to easily replace their protocols or add
new features. Using these systems to implement resilient web services makes the
code of the services neither easily reusable nor interoperable with other services,
which is a counterexample to the openness of the Web. Moreover, none of the
system that we know o�ers a REST/HTTP-based interface.

In [16], the authors discuss some examples of service replication middleware
systems developed at the academia (e.g. WS-Replication [18]); however, none of
these systems supports RESTful web services. The industry solutions for web ser-
vice resilience are usually based on the SOAP-based WS-* standards that were
not designed for service replication. The concrete implementations of service
resilience are usually built on queueing or publish-subscribe systems. This ap-
proach does not bene�t from the group communication protocols that have been
optimized for state machine replication. When it comes to RESTful approaches
to web service implementation, group communication solutions that o�er all as-
sociated properties and guarantees are unknown to us. At the moment there is a
lack of standards in the domain of group communication intended for the REST
style. This provided motivation for our work described in this paper.

We introduce a group communication front-end for replication of RESTful
web services � RESTGroups. A brief announcement of our work appeared in [8].
In this paper, we describe the system architecture and the API. Our system is
based on Spread [20, 2] � a popular group communication toolkit implementing
protocols for reliable, ordered multicasts and group membership. Contrary to
Spread and other such toolkits, we represent group communication services as
resources on the Web, addressed by URIs. Thus, RESTful web services and
their clients can use group communication services in the same style as they
communicate among themselves. Moreover, since �rewalls usually do not block
the HTTP protocol, RESTGroups supports communication across �rewalls. The
system has been implemented and the distribution �les are available [1].

2 RESTGroups Design and Service Replication

RESTGroups is a group communication front-end for RESTful web services. Our
current implementation is based on Spread Toolkit. Spread [20, 2] is a monolithic

2

group communication system, consisting of a daemon program, client libraries,
and a system monitor. RESTGroups represents group communication services
provided by Spread, as resources on the Web, addressed by URIs. Spread's API
consists of many functions with bindings available for several programming lan-
guages: C/C++, Java, Perl, Python, and Ruby. RESTGroups has a small but
powerful API that consists of just four methods of the HTTP protocol: GET,
POST, PUT, and DELETE. They can be used for detection of malfunction-
ing/crashed processes, reliable point-to-point transfer of messages, formation of
processes into groups, the structure of which can change at runtime, and reli-
able message multicasting with a wide range of guarantees concerning delivery
of messages to group members (e.g. causally-, �fo- and totally-ordered delivery).

2.1 System design

A system built using RESTGroups consists of four types of communicating com-
ponents: Web Service, Client, RESTGroups Server (RESTGr Server in short),
and spreadd (which is a daemon of Spread Toolkit). Web Service is a user-de�ned
RESTful web service. The RESTGr Server acts as a proxy between Web Ser-
vice and group communication protocols that are implemented by spreadd. The
communication between Client and Web Service, as well as between Web Service
and RESTGr Server uses the REST/HTTP style. RESTGr Server and spreadd
communicate using TCP and may or may not run on the same machine.

Group communication services (provided by Spread) are represented as Web
resources identi�ed by URIs. Instead of calling Spread methods, a user-de�ned
Web Service invokes only four methods of the HTTP protocol (i.e. GET, PUT,
POST or DELETE). Then, a suitable HTTP request, possibly containing an
XML document, is sent to RESTGr Server that translates it into a group com-
munication call to spreadd. A crash of RESTGr Server results in the disconnec-
tion of all Web Services that are using this server. They can establish connection
with another RESTGr Server which is available within the same group. Next,
we present an architecture of a system, in which the RESTGroups components
will be replicated for resilience.

2.2 Service replication

In Figure 1, we show an architecture of an example system in which RESTGroups
has been used for replication of a RESTful web service. There are three service
replicas (each one called Web Service replica) perceived by the clients as a single
web service, represented as a large circle. Clients can issue REST/HTTP requests
to any of them. Each Web Service replica connects to two RESTGr Servers using
HTTP, so it can tolerate a crash of one server. Each RESTGr Server has its own
spreadd so that partial failure of the Spread group communication system used
as the back-end is also tolerated.

In general, replicating a web service to tolerate at most b(n− 1)/2c machine
crashes, requires the following steps:

3

Web

Service

replica

Web

Service

replica

Web

Service

replica

RESTGr

Server

RESTGr

Server

RESTGr

Server

HTTP

H
T
T
P

H
T
T
P

H
T
T
P

H
T
T
P

HTTP

spreadd

spreadd

spreadd

T
C
P

T
CP

T
C
P

T
C
P

T
C
P

TCP

Client

Client

Client

Client

Client

service request

Fig. 1. Replication of a RESTful web service

� spawning n Spread daemons (spreadd) on n independent machines;

� spawning n RESTGroups servers on di�erent machines; each server commu-
nicates only with one Spread daemon (usually located on the same machine);

� spawning n instances of the RESTful web service on di�erent machines (in
this case, they would run on the same machines as Spread daemons); each
service replica can communicate with one or many RESTGroups servers.

The service developers can use the replicated state machine approach [19, 22]
to implement a resilient RESTful web service, as follows. After system start up,
a group is created to which all Web Service replicas must join. A client can issue
a request to any known replica which then forwards the request to the RESTGr
Server that is alive; the latter broadcasts the request in the group. All client
requests issued to (any replica of) the web service are delivered within the group
totally ordered. Thus the requests will be processed by each replica in exactly
the same order; the client will obtain only one reply to each request. We require
the web service to be deterministic, so that all replicas will make transition to
the same state in response to the same sequence of requests issued by clients. In
the case of a replica crash, the clients may have to repeat its request to another
Web Service replica after a timeout.

2.3 Statelessness

RESTGr Servers are almost stateless � they only store data that are necessary
to maintain group communication sessions for the connected Web Service repli-
cas. Moreover, RESTGr Server does not have any representation in the group
communication system that is the back-end of RESTGroups. However, unique
client IDs generated by Spread are used by RESTGroups.

4

Various authors pointed out limitations of the REST architectural style. For
example, Khare and Taylor [7] discussed some of the limitations and proposed
extensions of REST, collectively called ARRESTED. They allow to model the
properties required by distributed and decentralized systems. Similarly to them,
we are not bound by the rules of the original model since REST cannot model
group communication well (as the RESTGr Server is not 100% stateless). There-
fore our goal was rather to design the REST-inspired interface to group commu-
nication, albeit sacri�cing strict conformance to the original REST model.

3 RESTGroups API Calls

In this section, we explain the calls of RESTGroups API using a few simple
examples. A complete description of the API is in the User Guide, available
electronically [1]. The following methods of the HTTP protocol are used, where
resources represent some group communication services or data structures (such
as a mailbox):

� GET is used to perform a query on a resource, e.g. to retrieve messages from
the mailbox (in a blocking or non-blocking manner);

� PUT is used to create a new resource, e.g. to extend a process group with a
new process; the server responds with a status indicating success or failure;

� POST is used to update existing resources, e.g. to connect to the server on
system start-up (this operation is executed only once) or to send/broadcast
a new message;

� DELETE is used to remove a resource, e.g. to remove a process from a process
group; in some cases, the update and delete actions may be performed with
POST operations as well.

Consider the RESTGroups server located at http://mydomain.com:8182 and
a RESTGroups client (or client, in short), denoted userA, located at some other
site. For example, userA could be the Web Service replica in Figure 1. Below we
describe the following operations: connecting to the server, sending messages,
and message retrieval.

3.1 Connecting to the server

HTTP is a stateless protocol for client-server communication. In order to execute
a given action by a server, a client initializes connection with the server and sends
a request to it. The request contains all the information that are needed by the
server to process the action. After processing the action, the server sends back
a response message and the connection is closed. Therefore, using HTTP as a
transport protocol in the group communication system does not seem natural.
A permanent connection would be more useful, since it can allow the system to
detect client's failure when the connection is broken.

Therefore, the connection with the RESTGroups server is accomplished using
two requests to the server. The �rst one, called the temporary (or pilot) request, is

5

: create session

: delete profile

: create session - OK

: permanent connection - OK

 : userA : RESTGr Server : spreadd

: pilot connection - OK

: delete profile - OK

(create profile)

......

: pilot connection

: permanent connection

: delete session

: delete session - OK

Fig. 2. Successfully connecting and disconnecting from the RESTGroups server

used to ask the server to set up a resource which represents a new communication
session. The session is created using the second request, called the permanent
request. The server does not respond to this request, so the connection opened to
process it remains open. Breaking of the latter connection is interpreted by the
server as crash of the client. Both requests should be separated in time by no more
than 5 seconds; the order of the requests is irrelevant. In Figure 2, we illustrate
making a successful connection and disconnection with the RESTGroups server.

Connection with the RESTGr Server is identi�ed by a unique identi�er pi-
lotConnectionToken, created with the use of random UUID numbers [21]. The
UUID number created by a client is sent in the XML format in the bodies of
both the pilot and permanent requests. A pilot request may look as follows:

POST ht tp : //mydomain . com:8182/ groups /userA/ p i l o tConnect i on

<?xml ve r s i on=" 1 .0 " encoding="UTF-8 "?>
<re s tg roups>
<pi lotConnect ionToken>dec7b89c -1 f08 -447 e -952 f -9 c441ec92e5c<</pi lotConnect ionToken>

</ re s tg roups>

Processing of this request is suspended until a corresponding permanent re-
quest is received or a timeout occurs. The schemes/pro�lesPilotMessage.xsd �le
is used for validation of the temporary request's body.

A permanent request may contain information about client preferences, e.g.
a request of discarding the group membership messages, as below.

POST ht tp : //mydomain . com:8182/ groups /userA

<?xml ve r s i on=" 1 .0 " encoding="UTF-8 "?>
<re s tg roups>
<pi lotConnect ionToken>dec7b89c -1 f08 -447 e -952 f -9 c441ec92e5c</pi lotConnect ionToken>
<groupMembership>f a l s e</groupMembership>

</ re s tg roups>

6

(create profile)

 : userA

: pilot connection - timeout

 : RESTGr Server : spreadd

: permanent connection

: pilot connection

: create session

: permanent connection - timeout

: create session - OK

: delete session - OK

: delete session

Fig. 3. Unsuccessful session creation due to a connection timeout

The schema/pro�leMessage.xsd �le is used for validation of the permanent
request's body.

If a new session has been created successfully, the response message to the
temporary request is returned with the 204 'Success No Content' status. The
response contains: sessionID � a session identi�cation number, stored in the
response 'cookie'; from now on, all requests to the RESTGroups server must
include sessionID, which will allow the server to identify clients, and identi�er
� URI of the client's private group, stored in the response �eld that is used for
identi�cation; since the names of private groups must be unique across the whole
group communication system, the identi�er value can be di�erent from the name
of the client, which is speci�ed in the pilot and permanent requests.
For example, the following values could be received:

� sessionID: d10b88e7-74f3-424a-b306-c47440a818d9
� identi�er: http://mydomain.com:8182/groups/@userA@mydomain

If connection with the RESTGroups server fails, suitable error messages are
received, e.g. in response to the pilot or permanent request, HTTP's 408 'Request
Timeout' error can be received if one of the two requests has not been received
in a prede�ned period of time (see Figure 3).

3.2 Sending messages

There are two possible ways of sending messages to a group of users or to a
single user, identi�ed by the URI of the private group to which it belongs (only
one user can belong to a given private group). The �rst way (see Figure 4) can
be applied in every case; it uses a prede�ned resource /multicast and requires
to specify (in the body of a message) the name of the message recipient, i.e. an
identi�er of a group or a user to whom the message will be sent. When using
the second way, there is no need to specify the message recipient in the body of
the message. However, each potential recipient of the message, i.e. a group or

7

: multicast message

 : userA : RESTGr Server

: multicast message - OK

 : spreadd

: multicast message

: multicast message - OK

Fig. 4. Sending a message

an individual user, must be represented by a resource, identi�ed by URI. This
approach is convenient if messages are addressed to a single user only.

Consider a user-de�ned group named customGroup. Sending a message to
this group by referring to the /multicast resource, requires an XML document.
The structure of this document is veri�ed based on the schemes/clientMes-
sage.xsd �le which de�nes the proper XML schema. The following sections (or
tags) of the structure must be de�ned: guarantee � the reliability and order-
ing guarantees of message delivery, type � a message type, groups � a list of
addresses, and �nally data � the message payload.

The following guarantees of message delivery are supported:

� unreliable � no guarantee of message delivery,
� reliable � reliable broadcast,
� �fo � �fo broadcast (�rst-in-�rst-out),
� causal � causal broadcast, consistent with Lamport's de�nition of causality,
� safe � total order broadcast,
� agreed � total order broadcast that is consistent with causal broadcast, i.e.
messages are delivered to all recipients in the same order, and the order
agrees with the causal relation between messages.

POST ht tp : //mydomain . com:8182/mu l t i ca s t

<?xml ve r s i on=" 1 .0 " encoding="UTF-8 "?>
<re s tg roups>

<messages>
<message type=" r egu l a r ">

<guarantee>s a f e</ guarantee>
<type>0</ type>
<groups>

<group>customGroup</group>
</groups>
<data>Sample message</data>

</message>
</messages>

</ re s tg roups>

Using the second approach for sending a message to the customGroup, re-
quires to specify an XML document. The structure of this document is veri�ed
using the schemes/clientMessageSingleGroup.xsd schema �le.

8

The request should appear as below:

POST ht tp : //mydomain . com:8182/ groups /customGroup/mailbox/ s a f e

<?xml ve r s i on=" 1 .0 " encoding="UTF-8 "?>
<re s tg roups>

<messages>
<message type=" r egu l a r ">

<type>0</ type>
<data>Sample message</data>

</message>
</messages>

</ re s tg roups>

Note that the request's URI refers to a private mailbox located at the speci-
�ed address. The last part of the URI de�nes the chosen guarantee of message
delivery; this guarantee can take any of the six values described earlier.

Upon successful message sending, the RESTGr Server returns a response
message with the 204 'Success No Content' status code. In the case of an error,
the server returns the HTTP error message, e.g. 400 'Client Bad Request' � if
the client with the sessionID identi�er in the request's 'cookie' does not have
an active RESTGroups session, or 503 'Service Unavailable' � if an error occurs
during the disconnection from the group communication system.

3.3 Reception of messages

The RESTGroups system o�ers two types of mechanisms for reception of mes-
sages: blocking (synchronous) and non-blocking (asynchronous). A user can also
check if there are any unread messages waiting on the RESTGroups server with-
out fetching them. Below we describe the blocking reception mechanism; the
non-blocking reception mechanism has a similar syntax.

Performing the following GET request by a client is suspended until a new
message (or messages) will be received by the client:

GET ht tp : //mydomain . com:8182/ groups /@userA@mydomain/mailbox/ b lock ing

A response to this request is an XML document which contains aggregated
messages that have been sent (or broadcast) to the client; each message contains
the names of the broadcast group and of the message sender. Messages are sent
to a client as soon as they arrive to the RESTGroups server. The structure of
responses in the case of non-blocking messages is similar, except that the �no
messages� response can also be returned.

In order to stop receiving messages, the client should issue the DELETE
request:

DELETE ht tp : //mydomain . com:8182/ groups /@userA@mydomain/mailbox/ b lock ing

9

4 Related Work

In this section, we describe related work on group communication support for
web services. We begin from discussing the industry standards, followed by ex-
ample research projects. This work is for SOAP-based web services only; we are
not aware of similar work done for RESTful web services.

In SOAP-based web services, distributed processes communicate messages,
typically wrapped in the XML format, using the Simple Object Access Proto-
col (SOAP). Essentially, SOAP means sending remote procedure calls (RPC)
through standard HTTP ports, using an XML envelope. REST emphasizes the
element of using standardized URIs, and also giving importance to the HTTP
verb used (i.e. GET, POST, PUT, or DELETE). Bene�t of the RESTful interface
is that requests and responses can be short � in contrary to SOAP that requires
an XML wrapper around every request and response. On the other hand, SOAP
can easier transport any attached �les and has better tool support. Since group
communication protocols exchange many control messages, shorter processing
time of messages in REST means better performance of these protocols. How-
ever, we do not present evaluation results since our contribution is mainly the
design of the group communication interface for RESTful web services, not a
group communication system. In particular, we might use some other back-end
system instead of Spread and obtain di�erent performance.

WS-ReliableMessaging [15] is an OASIS standard describing the protocol for
reliable unicast-only message communication using SOAP. The standard does
not specify multicast (or broadcast) communication. It de�nes two components:
Remote Messaging Source (RMS) on the sender side and Remote Messaging Des-
tination (RMD) on the receiver side. These two components communicate using
SOAP-messages. For this, a communication link is created between RMS and
RMD, and all messages exchanged using this link are given a sequence number.
The programmer can choose among the following levels of delivery assurances,
e.g. at-least-once, at-most-once, exactly-once and in-order. The above properties
can provide building blocks for implementing group communication abstractions
above the WS-ReliableMessaging. In RESTGroups, the unicast communication
with analogous guarantees can be achieved by de�ning a group to which only
the sender and the receiver belong, and using a POST method with the required
semantics (unreliable, reliable, or �fo).

WS-BaseNoti�cation [13] and WS-BrokeredNoti�cation [14] are OASIS stan-
dards describing the protocols for one-to-many communication of SOAP mes-
sages. The communication is based on the publish-subscribe model. The system
users can create topics of messages, to which the message recipients (or con-
sumers) can subscribe. The standard allows to have a separate subscriber that
subscribes a number of consumers to a given topic. When a message sender (or
a publisher) publishes a message on a given topic, the message is propagated to
all consumers who subscribed (or have been subscribed) for that topic and their
subscription remains active. The WS-BrokeredNoti�cation standard also intro-
duces a broker, who is responsible for recording published messages of a given
topic, and resending them to all consumers that have subscribed to that topic.

10

However, the WS-BaseNoti�cation and WS-BrokeredNoti�cation standards fo-
cus on the information exchange protocol only, leaving the issues of reliable
communication to �a delivery mechanism for transmission�, where transmission
properties are unspeci�ed: �depending on the actual delivery mechanism, this
transmission might be reliable or might be done on a best-e�ort basis� [13].

In commercial applications, message queueing systems are often used as the
mechanism for reliable message transmission, including the one-to-many inter-
action. They provide an asynchronous communication protocol between dis-
tributed, loosely coupled processes. The sender and a receiver of a message do
not need to be accessible at the same time, for the message to be delivered (by
default, in the FIFO order). When a receiver of a message is not accessible, the
message will be stored in a queue until it can be delivered. This property is
called durability. Many implementations of queueing systems support resilience
to system failures. This is usually done by implementing a message property
called persistence. After receiving a persistent message, a queueing system sends
a message receipt acknowledgment but only after the message had been stored in
non-volatile memory. The persistence property guarantees that a message char-
acterized by this property will never be lost, even in the case of runtime failures.
Many queueing systems have been developed for the last few decades. This re-
sulted in a variety of protocols and APIs (including REST/HTTP). However,
many consider the Java Message Service (JMS) [12] to be a de facto standard of
a queueing system. JMS assumes both the one-to-one and one-to-many mode of
communication, where the latter uses the publish-subscribe model. In [10], the
authors show that it is possible to build a group communication system based
on JMS, o�ering a notion of a group, a membership service and a total-order
broadcast. However, such approach adds additional layers of abstraction when
compared to RESTGroups. On the contrary, the group communication protocols
designed for the replicated state machine are more e�cient.

The closest work to ours is WS-Multicast [18] that has been designed as
a broadcasting service for SOAP-based web services. The service is built on
the JGroups group communication system [17]. It uses its own transport layer
module for message communication based on SOAP. A WSDL interface has
been de�ned, making WS-Multicast a web service itself. Since WS-Multicast
only replaces the transport layer of the JGroups system, leaving the rest of the
protocol stack unchanged, all the assurances o�ered by JGroups remain in place.
Nonetheless, as was noted, the use of SOAP involves sizable cost stemming from
the character of this protocol. Thus, in the �nal version of the proposed service,
parsing XML data was being avoided.

5 Conclusion

In this paper, we demonstrated that group communication middleware, such as
Spread, can be easily extended to support RESTful web services. RESTGroups
wraps functionality of group communication middleware and exposes it through
a uniform interface based on the HTTP protocol. We have discussed an example

11

application of our system � replication of RESTful web services. We also em-
phasized that systems like RESTGroups cannot be 100% RESTful since some
REST principles, such as client-server stateless interaction, cannot be captured
in this type of application.

Acknowledgments This work has been partially supported by the Polish
Ministry of Science and Higher Education within the European Regional Devel-
opment Fund, Grant No. POIG.01.03.01-00-008/08.

References

1. RESTGroups. http://www.it-soa.pl/restgroups, 2010�2011.
2. Yair Amir and Jonathan Stanton. The Spread wide area group communication

system. Technical Report CNDS-98-4, Dep. of CS, Johns Hopkins Univ., 1998.
3. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi�ers (URI):

Generic Syntax. Internet Engineering Task Force, August 1998. RFC 2396.
4. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol � HTTP/1.1. Internet Engineering Task Force,
June 1999. RFC 2616 (Draft Standard). Updated by RFC 2817.

5. Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

6. Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web
architecture. ACM TOIT, 2(2):115�150, 2002.

7. Rohit Khare and Richard N. Taylor. Extending the Representational State Transfer
(REST) architectural style for decentralized systems. In Proc. ICSE '04, May 2004.

8. Tadeusz Kobus and Paweª T. Wojciechowski. A 90% RESTful group communica-
tion service. In Proc. of the DCDP Workshop '10, June 2010. Available electroni-
cally at http://arxiv.org/html/1006.1689v1.

9. Tadeusz Kobus and Paweª T. Wojciechowski. A 90% RESTful group communica-
tion service. Technical Report RA-02/10, Institute of Computing Science, Pozna«
University of Technology, May 2010.

10. Arnas Kup²ys, Stefan Pleisch, André Schiper, and Matthias Wiesmann. Towards
JMS compliant group communication - A semantic mapping. In Proc. of NCA '04,
August 2004.

11. Sergio Mena, André Schiper, and Paweª T. Wojciechowski. A step towards a new
generation of group communication systems. In Proc. of Middleware '03: the 4th
ACM/IFIP/USENIX Middleware Conference, LNCS 2672, June 2003.

12. Sun Microsys. Java Message Service. http://java.sun.com/products/jms/, 2009.
13. OASIS. Web Services Base Noti�cation 1.3, 2006.
14. OASIS. Web Services Brokered Noti�cation 1.3, 2006.
15. OASIS. Web Services Reliable Messaging 1.1, 2007.
16. Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. What service replica-

tion middleware can learn from object replication middleware. In Proceedings of
MW4SOC: the 1st Workshop on Middleware for Service Oriented Systems, Decem-
ber 2006.

17. Red Hat. The JGroups toolkit. http://www.jgroups.org/, 2009.
18. Jorge Salas, Francisco Pérez-Sorrosal, Marta Patiño-Martínez, and Ricardo

Jiménez-Peris. WS-Replication: A framework for highly available Web services.
In Proc. of WWW '06, May 2006.

12

19. Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM CSUR, 22(4):299�319, 1990.

20. Spread Concepts LLC. The Spread toolkit. http://www.spread.org/, 2006.
21. The Internet Society. A Universally Unique IDenti�er (UUID) URN Namespace.

http://www.ietf.org/rfc/rfc4122.txt, 2005.
22. Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and

Gustawo Alonso. Understanding replication in databases and distributed systems.
In Proceedings of ICDCS '00: the 20th IEEE International Conference on Dis-
tributed Computing Systems, pages 464�474, April 2000.

13

