
Brief Announcement:
Eventually Consistent Linearizability∗

Maciej Kokociński Tadeusz Kobus Paweł T. Wojciechowski
Institute of Computing Science

Poznan University of Technology
{Maciej.Kokocinski, Tadeusz.Kobus, Pawel.T.Wojciechowski}@cs.put.edu.pl

ABSTRACT
Eventually consistent linearizability (ec-linearizability) is a
new correctness condition for eventually consistent distribu-
ted systems (modeled as shared objects). Unlike the exist-
ing definitions of eventual consistency, ec-linearizability is
suitable for describing the behaviour of some popular even-
tually consistent systems, such as Cassandra. It is because
ec-linearizability allows for certain types of phenomena, such
as lost updates. Similarly to linearizability, ec-linearizability
is a safety property and is both local and nonblocking. Thus,
ec-linearizability is a property that is both easy to use and
reason about.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification

Keywords
Eventual consistency; correctness condition; linearizability

1. INTRODUCTION
Modern distributed applications often trade strong consis-

tency for higher performance and increased availability. De-
velopment of such applications is difficult (and thus costly),
because the programmer has to account for various artifacts
caused by reading stale (inconsistent) data. Usually it is as-
sumed that inconsistencies can occur only temporarily and
over time servers running the distributed application con-
verge to a consistent state. Hence, such an approach is often
described as eventually consistent.

Surprisingly, relatively little attention has been devoted to
formally describing the way in which such systems function
and the guarantees they offer (for a broader discussion see

∗The project was funded from National Science Centre funds
granted by decision No. DEC-2012/07/B/ST6/01230.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distribu-
ted for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
ACM 978-1-4503-3617-8 /15/07.
http://dx.doi.org/10.1145/2767386.2767448.

Section 2). Some authors provide only a very vague specifi-
cation of the system’s behaviour [1] [14]. The more formal
ones lack the description of the system properties from the
client’s point of view ([13] [5] [3] among others), or assume
stronger guarantees than some popular eventually consis-
tent systems, such as Cassandra ([4], [12]). Alternatively,
some definitions assume that the system becomes strongly
consistent at some point in the future [11] [7]. It means
that systems that satisfy these properties are as difficult to
implement, as if they were strongly consistent.

In this paper, we propose eventually consistent lineari-
zability (ec-linearizability), a new correctness condition for
distributed systems (modeled as shared objects). Ec-linea-
rizability relaxes linearizability [8] by allowing for a cer-
tain amount of inconsistency between operation executions
on the same object. However, ec-linearizability retains the
two fundamental properties of linearizability: locality and
nonblocking. The former requires that the system is ec-
linearizable if and only if every object is ec-linearizable. The
latter states that every ec-linearizable history of some ec-
linearizable object has an extension that is also ec-lineari-
zable. Ec-linearizability is non-empty as well as prefix- and
limit-closed. Therefore, it is a safety property [9].

Ec-linearizability is defined using a more basic property,
called ∆-ec-linearizability. Roughly speaking, ∆ corresponds
to the level of inconsistency that each operation can en-
counter. For ∆ = 0, ∆-ec-linearizability reduces to lineari-
zability.

2. RELATED WORK
Below we give a succinct survey on the literature relevant

to our work. There is no single definition of eventual consis-
tency that the community agrees upon. Informal definitions
state that in a system that is eventually consistent, updates
to the system’s state are not necessarily immediately visible
to subsequent read operations. On the other hand, if no
new update operations are issued, eventually all read opera-
tions will return a value produced by the most recent update
operation [1] [14] [2].

This formulation of eventual consistency is to some extent
reflected by eventual linearizability, first defined in [11] and
later refined in [7]. Eventual linearizability models intermit-
tent inconsistencies (as in self-stabilizing systems) that may
occur in a system only up to a certain point in time (mea-
sured in terms of elapsed time or the number of events from
the beginning of computation). As noted by the authors,
providing eventual linearizability is as difficult as providing
linearizability itself, because, from some moment on, all pro-



p1

p2

w(x, 1)

r(x)→ 1 w(x, 2) r(x)→ 1 r(x)→ 1 ...

Figure 1: An example execution history in Cassan-
dra with a lost update (p1’s clock drifts into future).

cesses have to work in a fully coordinated fashion (no further
inconsistencies are allowed).

Contrary to eventual linearizability, ec-linearizability does
not require the system to exhibit strong consistency at any
point during the (possibly infinite) execution. Instead, ec-
linearizability makes some weak assumptions on the history
of operations already submitted to the system. In this sense,
ec-linearizability is similar to approaches described below.

In some definitions, such as those in [13] [5] [3] [10] [4],
processes in a system are guaranteed to eventually agree
on some common prefix of (updating) operations. It means
that the system converges over time to a consistent state. In
some cases, as in [13], [3] or [4], all operations executed by
any process have to be eventually visible to all operations
that arrive after some point in the future. However, such a
requirement can be deemed too strong. In fact, Cassandra,
a popular eventually consistent replicated data storage sys-
tem, allows some updates to be lost (and thus not visible)
under certain circumstances (see Figure 1). Moreover, en-
suring such a guarantee is not possible for some operations.
For example, consider two concurrent pop operations exe-
cuted on a stack. The stack has an invariant: no element
can be returned when the stack is empty. If the stack has
only one element and partition occurs, both pop operations
will return the same last element. During convergence, the
invariant will be broken, leading to a corrupt −1 sized stack.
Inevitably, the next push operation performed on it will be
lost (the pushed value will never be visible to any other oper-
ation). In principle, eventual-visibility of every operation is
easy to ensure with updating operations that do not return
a value or operations that commute [4] [12].

Ec-linearizability maintains a common prefix of opera-
tions but allows some operations to be omitted from it (and
thus, it allows to model lost updates). Additionally, ec-
linearizability is a correctness condition that, similarly to
linearizability [8], concentrates on the interaction between
the clients (processes) and the system, and intends to be
as general as possible. In this way, it significantly differs
from definitions in [13] [5] [3] [10], which put an emphasis
on the properties of the systems’ internal state, not on the
correctness from the clients’ point of view.

3. THE DEFINITION
We reuse the notation and basic definitions (such as com-

pletion of a history, legal history, etc.) from [6], but we only
consider deterministic and finitely nondeterministic shared
objects. Otherwise, neither linearizability, nor ec-lineariza-
bility, is a safety property.

For any complete sequential history S, S′ is a complete
prefix (or a complete subsequence) of S, if S′ is a prefix (or a
subsequence) of S, such that it contains an invocation event
of some operation opk, if and only if it contains the response
event of opk. We use Sk to denote a prefix consisting of
the first k operation executions in S, and Sk,k+l to denote a
contiguous subsequence consisting of l consecutive operation

executions in S starting from the k-th one. Let fluctus(S)
be a function that returns the set of all possible complete
subsequences of any permutation of operation executions
in S, e.g., fluctus(〈op1, op2〉) = {〈〉, 〈op1〉, 〈op2〉, 〈op1, op2〉,
〈op2, op1〉}, where opk = 〈inv[opk], resp[opk]〉. Additionally,
by S1 · S2 we denote the concatenation of S1 and S2.

We are now ready to present our correctness condition.
We define ec-linearizability using ∆-ec-linearizability. This
way we ensure that the size of the inconsistency window,
denoted ∆, is unknown but finite.

Definition 1. A history H is ∆-ec-linearizable for some
natural number ∆, if:

1. there exists a sequential history S = 〈op1, op2, ...〉 equiv-
alent to some completion of H, such that →H⊆→S ,
and

2. there exists L, a legal complete subsequence of S, such
that for every operation execution opk in S, there ex-
ists a legal history V = P · F · 〈opk〉, such that:

• P is a complete prefix of L and P is a subsequence
of Sk−1−∆ (or P is empty, if ∆ ≥ k − 1),

• F ∈ fluctus(Sk−∆,k),

• if k > ∆, then there exists an operation opl in F ,
such that opl is in L, or opk is in L.

Definition 2. A history is ec-linearizable if it is ∆-ec-li-
nearizable for some ∆.

∆-ec-linearizability defines a view V for every operation
in a given history. The view V represents the subjective
perspective (from the operation’s point of view) on the op-
erations processed by the system. More precisely, V is com-
posed of two parts: the common prefix P and the fluctus
part F . P is a prefix of the sequence L, which consists of
operations that are agreed upon. Since L is shared between
the views of operations (each operation observes a prefix of
L), the amount of inconsistencies each operation observes
is limited. The inconsistencies observed by the operations
are modeled by the fluctus part F . It may consist of up to
∆ operation executions that directly precede the considered
operation in S. These operations may appear in F in any
order (not consistent with the order they appear in S).

Note that our definition assumes that some operations
may never be included in L. This way, we model the pos-
sibility that some conflicting operations are rolled-back or
overwritten. More precisely, an operation may never ap-
pear in L even though it completed correctly and returned
results to the issuing process. It can, however, appear in
fluctus parts of views of the next ∆ operations processed
by the system. This trait reflects the update semantics of
eventually consistent systems that ec-linearizability models.
In such systems, when there are two operations performed
on independent sites, they are executed locally, and their
updates are propagated asynchronously. Whenever any pro-
cess receives updates to the same object coming from two
different sites, it may try to merge them or, if the updates
do not commute (conflict), it may discard (or overwrite) one
of them (the winning update is chosen deterministically).

∆-ec-linearizability ensures progress by requiring that at
least one operation from the fluctus part or the operation
itself is in L. Without this requirement, satisfying ∆-ec-
linearizability would be trivial: an implementation that never



a)
p1

p2

a(2)→ 2 a(2)→ 4 a(2)→ 6 ...

a(1)→ 1 a(1)→ 2 a(1)→ 3 ...

b)
p1

p2

a(5)→ 5

a(3)→ 3 r()→ 5

history ecl wc tl el bec

a 0 1 0 0 0

b 1 0 0 0 0

c 1 1 0 0 0

d 0 1 1 1 1
c)

p1

p2

a(1)→ 1 r()→ 1 r()→ 1 ...

a(1)→ 1

d)
p1

p2

a(1)→ 1 a(1)→ 3

a(1)→ 1

Figure 2: Incomparability of properties.

conducts any communication between processes would suf-
fice. It is therefore imperative that L increases over time.
Moreover, it is guaranteed that for every operation in L,
only a finite number of operations can be excluded from L.
In particular, given ∆+1 conflicting operations, at least one
of them has to be recognized by all processes.

It is easy to show that ec-linearizability ensures even-
tual consistency in its most basic formulation: “if writes
stop, then, processes will—at some point in time and for-
ever afterwards—all agree on the same value for each object
in the system.”[2] Consider a history H. Let opk be the last
update operation in H included in L. If H is infinite, then
there exists a finite ∆, such that the view of every operation
in H, invoked ∆ events after the response of opk, contains
opk as the last update operation.

4. RESULTS
In this section, we present a few results regarding ec-linea-

rizability. We begin with some easy observations. Firstly, a
history that is ∆-ec-linearizable is also ∆′-ec-linearizable for
some ∆′ > ∆. Larger ∆ means that we require even weaker
consistency for the history. Secondly, ∆-ec-linearizability
reduces to linearizability for ∆ = 0. In this case, the size
of inconsistency window is zero, and the progress condition
enforces every operation to be included in L. Additionally,
as in case of linearizablilty, ec-linearizability requires that S
respects the real-time order of H.

Now we compare ec-linearizability (ecl) with weak-consis-
tency (wc), t-linearizablity for some t (tl), eventual lineari-
zability (el) [7] and basic eventual consistency (bec) [4]. We
show that ec-linearizability is incomparable with the rest of
the properties by producing a few simple histories, which are
shown in Figure 2. In each history two processes p1 and p2

execute operations on the same shared object that holds a
single integer register and exports two operations: a(u)→ v
which adds u to the register and returns its current value,
and r()→ v which returns the current value of the register.

The infinite history a is trivially weakly consistent, be-
cause each process observes only all its previous operations.
This history is not ec-linearizable, because processes never
agree on a common prefix of operations (∆ has to be finite).
On the other hand, in history b the opposite is true. From
p2’s point of view, operation a(5) → 5 overrides operation
a(3) → 3. It is an example of a lost update history accept-
able by ec-linearizability, but not a weakly consistent one
(p2 does not recognize its own update operation).

History c also contains a lost update. It is not t-linearizable
for any t, because p1 never recognizes p2’s operation. For
the same reason history c is neither eventually linearizable,
nor (basically) eventually consistent. History d is not ec-
linearizable, because there is no legal view of operation a(1)→

3. However, it is t-linearizable for t = 2. It is also eventually
linearizable and (basically) eventually consistent.

It is possible to show that ec-linearizability is both prefix-
and limit-closed. It is also non-empty, therefore it is a safety
property (unlike eventual linearizability) [9]. Two funda-
mental properties of linearizability are locality and nonblock-
ing [8]. Both are preserved by ec-linearizability, what makes
it an easy to reason about correctness condition.

5. REFERENCES
[1] P. Bailis and A. Ghodsi. Eventual consistency today:

Limitations, extensions, and beyond. Queue, 11(3),
Mar. 2013.

[2] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Bolt-on causal consistency. In Proc. of SIGMOD ’13,
June 2013.

[3] A. Bouajjani, C. Enea, and J. Hamza. Verifying
eventual consistency of optimistic replication systems.
In Proc. of POPL ’14, Jan. 2014.

[4] S. Burckhardt, A. Gotsman, and H. Yang.
Understanding eventual consistency. Technical Report
MSR-TR-2013-39, March 2013.

[5] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.
In Proc. of PODC ’96, May 1996.

[6] R. Guerraoui and E. Ruppert. Linearizability is not
always a safety property. In Proc. of NETYS ’14. May
2014.

[7] R. Guerraoui and E. Ruppert. A paradox of eventual
linearizability in shared memory. In Proc. of PODC
’14, July 2014.

[8] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
TOPLAS, 12(3), 1990.

[9] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers Inc., 1996.

[10] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1), Mar. 2005.

[11] M. Serafini, D. Dobre, M. Majuntke, P. Bokor, and
N. Suri. Eventually linearizable shared objects. In
Proc. of PODC ’10, July 2010.

[12] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
Proc. of SSS ’11, May 2011.

[13] D. Terry, M. Theimer, K. Petersen, A. Demers,
M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated
storage system. In Proc. of SOSP ’95, Dec. 1995.

[14] W. Vogels. Eventually consistent. Commun. ACM,
52(1), Jan. 2009.


