
US010135929B2

(12) United States Patent
Wojciechowski et al .

(10) Patent No . : US 10 , 135 , 929 B2
(45) Date of Patent : Nov . 20 , 2018

(54) FAULT - TOLERANT DATA PROCESSING
COMPUTER SYSTEM AND METHOD FOR
IMPLEMENTING A DISTRIBUTED
TWO - TIER STATE MACHINE

. (71) Applicant : POLITECHNIKA POZNANSKA ,
Poznan (PL)

G06F 11 / 2094 (2013 . 01) ; H04L 67 / 1095
(2013 . 01) ; H04L 67 / 1097 (2013 . 01) ; GOOF

2201 / 82 (2013 . 01)
(58) Field of Classification Search

CPC HO4L 67 / 16
USPC 709 / 202
See application file for complete search history .

(56) References Cited

U . S . PATENT DOCUMENTS
2003 / 0083577 A1 * 5 / 2003 Greenberg A61B 5 / 7475

600 / 437
2014 / 0344425 Al * 11 / 2014 Varney H04L 41 / 0813

709 / 221
* cited by examiner

(72) Inventors : Pawel Tomasz Wojciechowski , Poznan
(PL) ; Tadeusz Kobus , Torun (PL) ;
Maciej Kokocinski , Steszew (PL)

(73) Assignee : POLITECHNIKA POZNANSKA ,
Poznan (PL)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 151 days . Primary Examiner — Vivek Srivastava

Assistant Examiner — Sibte H Bukhari
(74) Attorney , Agent , or Firm — Mark M . Friedman (21) Appl . No . : 14 / 995 , 211

(22) Filed : Jan . 14 , 2016
(65) Prior Publication Data

US 2017 / 0201590 A1 Jul . 13 , 2017
(30) Foreign Application Priority Data

Jan . 12 , 2016 (EP) 16461501

(57) ABSTRACT
A fault - tolerant data processing computer system and
method for implementing a distributed two - tier state
machine aimed for distributed (replicated) data stores , in
which consistency is maintained despite the failure of any
number of replicas and communication paths . In the distrib
uted two - tier state machine , one process (device) in a
network of processes (devices) is chosen as the leader , and
that leader is responsible for executing functions that return
state machine commands , and for broadcasting the com
mands to the other processes . The processes execute the
commands in the logical precedence order that corresponds
to the order of function executions that return these com
mands . The system and method ensures that each of the
processes issues exactly the same sequence of commands for
execution , such that each command in the sequence , except
the first one , has a precedent command on which the
command logically depends .

(51) Int . Ci .
G06F 15 / 16 (2006 . 01)
H04L 29 / 08 (2006 . 01)
GOOF 11 / 18 (2006 . 01)
G06F 11 / 14 (2006 . 01)
G06F 11 / 20 (2006 . 01)

(52) U . S . CI .
CPC H04L 67 / 16 (2013 . 01) ; G06F 11 / 1425

(2013 . 01) ; G06F 11 / 1482 (2013 . 01) ; G06F
11 / 182 (2013 . 01) ; G06F 11 / 187 (2013 . 01) ; 12 Claims , 6 Drawing Sheets

C2 PNC P1
Leader

Pn po " 4 " 50 % . . . " * * " . . .

7

atent Nov . 20 , 2018

Fig . 1

wwwwwwwwwwwwww ww

* * * * *

Www Wel

with
the w

wwwwwwwwwwwwwwww
+ + +

ww .

wwwwwwwwww

w

wwwwwwwwwwwwwwwwwwwww
w wwwwwww .

* *

Lostor

Yiyev
us . co . 4 . _ _ - pasul both . - bethet .

* * * * * * * * *

Sws

Lue !

Sheet 1 of 6

* * * *

tut

,

* * *

*

*

* * * * * *

1 panta 2

-

* * * * *

1

KAT

*

www .

US 10 , 135 , 929 B2

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
w wth of w

wwwwwwwwwwww -

Why the

way wet n

winter

w

ww www to

wwww

atent Nov . 20 , 2018 Sheet 2 of 6 US 10 , 135 , 929 B2

222102011 . . .

Na

' 22221 '

- Ws - - - -
- - - - -

www

tutto reprn
LEBIL T9944714

24

_ US 10 , 135 , 929 B2

(188748

f

i : f : fi

,

??? - : i ?

. . . . ? ???????????????????????

73 wm

wvwww

?

:

? ???????? ? . . . ????? ? ? ? ? ?

: :

:

? ?? ;

; ? ? ?

?? . ??

?????????????????????????????
- - ???

? . ? . ????

- ???????

. ? ? ?

-

- ;) f

-
A

????????????????????????????????????

Sheet 3 of 6

-

?????

- ?

? ? ? ? ?? ??

?????????????????? ??????????? ???????? ?????????? ???????? ?????????????????????????

?

?

? ? ? ?

? ???? ??? ????? ?? ???

? ? ? ? ? ?

? . ?? ?? ? ? . ?? ? ? ?

?

?? ?

. ? ?

?? - cor

?

? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??? ???? ???? ??? ??? ??? ??? ??? ??? ???? ??? ?? ?? ?? ?? ?? ???? ??? ???

?

?

? ?

? ?

? ? ?

? ?

? ? ?

? ? ? ? ? ?

???? ???? ???? ?? ??

?? ?? ?? ?? ??

Nov . 20 , 2018

? ?

? ?

??

??????

????? } } } } } ? ? ? ? ? ?

?

?? :

?

?

?? ?

???

?

??????

??? ?????

??

?

?

?

? ? ? ? ?

?

-

? ? ?

- - - -

? ?

?

? ?

??? -

??????????????????

atent

?

???? ? ? ? ???? ? ? ? ? ?? ? ? ? ? ?? ? ? ??? ? ? ??? ?

?? ?

? ? : ? ?

- - ??? ??

?

301130 8910dWOO

??

???????????????????????

??

?
?? . ?? ?

me

m m

m

m

m

m

m

m

m

m

m

m

m

na nneer m

na na

na

a

na na na na na n

na na na na na

na na

na

na na

a

n

a

na n

na

na

na na na

a

n

na

na na

na

a

n

a

na n

na

a

a n

what

n

un hot

notar a

a

n

as

atent Nov . 20 , 2018 Sheet 4 of 6 US 10 , 135 , 929 B2

CommandNo m
cmd quorum , voters
2 a ABCD
5 b A B C E

14 a B DE
27 A CD

| 29b B C D

Fig . 5

Command Non
cmd quorum , voters

Command No m .
crd quorum , voters
2 0 A CD
5 B B C E

| 14 DAB D
27
29
32

¢ A CD
BCE

¢ A B DD
36 € BC E

. : . : . : . : . : . : . : . : :

43 d . BCDE
51 ? À CD

: :

54 « A C E
Fig . 6

atent Nov . 20 , 2018 Sheet 5 of 6 US 10 , 135 , 929 B2

-
-

Device p -

- Sei lastTriedl (p) in bullor number 5 which pounds and which is larger than
is previous value . -

-

-

- ????
-

- Send NextBallol (h , n) to all devices including itself where it is the smallest
Colmand number for wtlich p does not know the corresponding communi .

-

-

-

-

-

- ??????????? Receive BallotInfob . D . V . X) and My NextBallb ' nessages from devices .
-

-

- -

-

YES , -

- www -

-

-

-

-

If preceives MyNextBildb ') and h ' > last Triedip) , then
pchooses a new value of greater than b .

NO
Has Ballotinfoch . D . V . X) message been receiver
from a majority of the devices .

YES
dud the commands from each set D tu its lis L of issued commands .
writes them to stable storage , and sends the other clavices iny issued
cornmands pknow , but they do m .

-

- S mith

-

-

- LULU - -

-

-

-

-

-

- -

-

- ????????????????????? -

Initiate temporary koulder state LS (p) by copying w it the current state of
state machine Mip) of device p . For all votes V , pexecuies InitHistProcu) .
which produces the initial history set H uf command numbers ill ,
paired with the corresponding (not yet issued) wmmands .

-

-

-

-

-

-

-

-
Execule of leader site LSiprall coninards fron H according to the order of
command numbers (unless they were already executed by Mpi) . - -

-

- -

-

-

- - For every pair in , di in H according to the order of cominand numbers m .
execute a ballot to broadest command d for number m . using steps) and 2 : -

-

-

-

- -

-

-

1) Chrome Sprie Bajority set 0 of devices from among those from which
phas receivedl Ballotinfo messages for the current value of LastTriedip) .

2) Send BeginBillotin . b . dierery device in set Q . where hlastTriedlips .
-

-

-

-

-

- -

-

Receive ExeunteFunctionit message . -

-

- - www -

-

Execute function f on state LS (p) , which alters LS (p) , and retums comunani) d . -

- wwwwwwwww wwww

-

-

-

-

-

- -

-

-

-

-

-

Receive Voted { m , . .) message with comunand d .
YES

Has Votedim . b , c) imessage with command i been
received fron every device in the majority sai Q .

YES
Has the precedent coninand of crap mand i been issued ?

YES
Record command d inp ' s stable storage and consider d to be successfully issued

-

- - NO -

-

- -

- -

-

-

- -

-

-

-

- Seid Successid) message to all devices .
-

-

-

Fig . 7a

atent Nov . 20 , 2018 Sheet 6 of 6 US 10 , 135 , 929 B2

www www www www www www www www m mm m . m m . m . ww w . . . w . www . w . w . w

! Device a
Receive NextBallot (, 1) message from p .

If b > = nextBal (q) , respond hy setting nextBaliq)
toband sending Ballounfo (b . D . V . X) message to p .

NO
Else , if h < liextBallq) , respond by sending
MyNextBal (bº) to p , where hi = nextBal (q) .

Receive BeginBallot (m . b , d) message from p .

NO If b = nextBalig) , cast a vote v (m) for command d
in hallot number b , using steps 1 and 2 .

Ignore
the BeginBallot
message .

YES
1) Set prev Vore (a , m) to vote vím) and

record it inq ' s stable storage .
2) Send a Votediin , b , d) message to p .

Receive Success (d) message .

Record command d inq ' s stable storage ,

Send ExecuteFunction (f) message to p . Send ExecuteFunction (f) message to p .
- - - - - - - - - - - - –

Fig . 7b

. miyet Amithii
o wanie wig wat

ri inferius non werp 2 Hugot

US 10 , 135 , 929 B2

FAULT - TOLERANT DATA PROCESSING and availability , a local data store can be replicated , that is
COMPUTER SYSTEM AND METHOD FOR every local store (replica) contains an exact copy of data .

IMPLEMENTING A DISTRIBUTED Then a client gets the same response no matter which server
TWO - TIER STATE MACHINE will process the request . In particular , if a given server is

5 down or slow and does not respond , a client can resubmit its
TECHNICAL FIELD request to another server . In practice , a crashed server can be

recovered , meaning that the server is restarted and its state
The present disclosure relates to a fault - tolerant data is caught up with the other servers to reflect the current state .

processing computer system and a method for implementing Conventional approaches to implementing fault - tolerant
reliable distributed computing systems , especially distrib - 10 distributed data store systems require some synchronization
uted (replicated) data store systems , utilizing a two - tier state protocols for maintaining consistency among replicas . How
machine approach . ever , the synchronization protocols designed in accordance

with the prior art have several drawbacks , as explained
BACKGROUND below .

15 The two - phase commit protocol (2PC) (described in : Jim
The present disclosure pertains generally to distributed Gray . Notes on data base operating systems . In Operating

computing systems and , more particularly , distributed (rep - Systems : An Advanced Course , volume 60 of Lecture Notes
licated) data store systems comprising of strongly consistent in Computer Science , pages 393 - 481 , Berlin , Heidelberg ,
data store replicas . More precisely and technically , the New York , 1978 . Springer - Verlag .) , a popular consensus
present disclosure relates to a fault - tolerant data processing 20 protocol known from distributed database systems , gener
computer system and method for implementing a distributed ally assumes a single process (a leader) that coordinates all
(replicated) two - tier state machine , in which consistency processes . In the first phase , a leader attempts to prepare all
among processes (devices) is maintained despite the failure the processes to take the necessary steps for either aborting
of any number of processes (devices) and communication or committing transactions and to vote for a commit or abort .
paths . The two - tier state machine can be used to build a 25 In the second phase , the leader decides to commit the
reliable distributed (replicated) data store system and also transaction (if all processes have voted for commit) or abort
other distributed computing systems with modest reliability (otherwise) . The protocol is not resilient to all possible
requirements that do not justify the expense of an extremely failure configurations and it is a blocking protocol . After a
fault tolerant , real - time implementation . process has sent a message to the leader , it will block until

From the computer architecture point of view , a distrib - 30 a commit or rollback is received . If the leader fails perma
uted data store system is a middleware that can be used by nently , some processes will never resolve their decisions . If
the application programmers to develop any kind of distrib - both the leader and some process failed , it is possible that the
uted applications . It generally consists of a set of computers , failed process accepted a decision while other processes did
each equipped with a local data store , primitive operations not . Even if a new leader is elected , it cannot proceed with
for reading and writing to the local data store , and a protocol 35 the operation until it has received a message from all
for ensuring synchronization among the computers being processes and hence it must block .
tailored to the desired functionality (e . g . all or only some The three - phase commit protocol (3PC) (described in :
data are replicated) . A data store is a repository of a set of Dale Skeen and Michael Stonebraker . A formal model of
data objects . These objects are modeled using classes crash recovery in a distributed system . IEEE Transactions on
defined in a database schema . A data store is a general 40 Software Engineering , SE - 9 (3) : 219 - 228 , May 1983 .) is
concept that includes not just repositories like databases , but more resilient to faults than the 2PC protocol . It avoids
also simpler store types such as key - value data repositories , permanent blocking by introducing additional phase , in
flat files , etc . The programmers can use the primitive opera - which the leader sends a preCommit message to other
tions for reading and writing to the local data store to processes . The leader will not send out a decision message
implement transactions , i . e . blocks of code that operate on 45 (abort or commit) until all processes have acknowledged the
the data store with the desired safety properties . A distrib - preCommit message . The protocol places an upper bound on
uted data store system facilitates development of distributed the amount of time required before a transaction either
applications , since the programmer has only to implement commits or aborts . This property ensures that if a given
the application handlers that handle client requests and the transaction is attempting to commit via 3PC and holds some
application transactions that operate on the store (as required 50 resource locks , it will release the locks after the timeout .
by the requests) . Applications can be modified without Thus , the protocol can make progress in case of failures .
redesigning the underlying middleware . Moreover , if the However , the original 3PC protocol does not take into
underlying data store system can tolerate failures , it is also account every possible mode of failure . In particular , it is
much easier to develop robust applications . In particular , a only resistant to node crashes and is vulnerable to e . g .
fully replicated data store system can continue to provide 55 network partitions . A network partition is a failure of the
service even if some of its replicas have crashed and are not network device that causes a network to be split , so that
recovered yet . some processes are not able to communicate .

In a system comprising a distributed data store and a client The enhanced three - phase commit protocol (E3PC) (de
application , there are a number of server computers (servers) scribed in : Idit Keidar and Danny Dolev . Increasing the
connected together in a network in which the servers can 60 Resilience of Distributed and Replicated Database Systems .
send messages to each other . Each server has access to a Journal of Computer and System Sciences , 57 (3) , 309 - 324 ,
local data store kept in stable storage that can survive server December 1998) alleviates the aforementioned shortcom
crashes . On every server , there are many concurrent pro - ings of 3PC by introducing a quorum - based recovery phase .
cesses processing client requests and returning responses to However , even though processes are not blocked indefinitely
the clients . Processing a client request means translation of 65 by a failure of some process or a network partition , a
the request into a transaction that executes some code and transaction ' s commitment may be significantly delayed .
returns a result to the client . To increase system robustness This is because , as in the 2PC and 3PC protocols , a trans

US 10 , 135 , 929 B2

action can only commit when all processes accept it . If series of numbered ballots , where each ballot is a referen
failures occur , processes may invoke the recovery procedure dum on a single command . The state machine commands are
and elect a new coordinator . If the recovery procedure fails numbered consecutively . One of the processes (devices) in
(e . g . , due to the crash of some process) , it is retried until it the network is designated as a leader , and it sends ballots
will eventually succeed . The final decision on whether to 5 with proposed commands to the other processes (devices) .
commit or abort a transaction can only be made when the In each ballot , a process has the choice of either voting for
system is fully recovered . the proposed command or not voting . A process does not

A state machine approach (described in : Leslie Lamport . vote if it has already voted in a higher ballot . Obviously , a
Time , clocks , and the ordering of events in a distributed crashed process also does not vote . In order for a ballot to
system . Communications of the ACM (CACM) , 21 (7) : 558 - 10 succeed and a command to be issued , a majority set of the
565 , July 1978 .) is another popular method that can be used processes in the system must vote for it . If less than majority
to implement distributed data stores and other computing of processes voted for a command , then another ballot has
systems that must tolerate failures . A state machine gener - to be conducted . Therefore , a single command can be voted
ally consists of a set of states , a set of commands , a set of in several ballots . Each ballot is given a unique number , and
responses , and a functor that assigns a response / state pair to 15 the majority set is chosen in such manner that the majority
each command / state pair . A state machine executes a com - sets voting on any two ballots will have at least one process
mand by changing its state and producing a response , with in common (in fact , any two majority sets have at least one
the command and the machine ' s current state determining its process in common) . Thus , any command which has been
new state and its response . A state machine can be replicated , issued will appear in the store of at least one process of any
as illustrated in FIG . 1 . Then , all state machines start from 20 majority set participating in a subsequent ballot . Each issued
the same state S , and execute exactly the same sequence of command is processed by a separate instance (execution) of
commands c , . . . kt (k > 0) . A distributed computing system the protocol . Protocol instances (executions) and issued
consists of several component processes (devices) that are commands are numbered using natural numbers . An
connected by a network . In the distributed state machine instance n denotes the n ’ th instance (execution of the
approach to building fault - tolerant systems , the component 25 protocol which corresponds to the issued command number
processes (devices) are replicated and synchronized by n . When a new leader is chosen , messages are exchanged
having every process P1 . . . Pn independently simulate the between the new leader and the other processes in the system
execution of the same state machine . The state machine is to ensure that each of the processes has all of the commands
tailored to the particular application , and is implemented by that the other processes have . As part of this procedure , any
a general algorithm for simulating an arbitrary distributed 30 command for which one of the processes has previously
(replicated) state machine . Problems of synchronization and voted but does not have a command number is broadcast as
fault tolerance are handled by this algorithm . When a new a proposed command in a new ballot . The protocol allows a
system is designed , only the state machine is new . leader to conduct any number of ballots concurrently by

If additional assumptions are made about the relation running a separate instance of the protocol for each com
between state machine commands , an algorithm implement - 35 mand number .
ing a distributed (replicated) state machine can be designed In the simplest state machine approach , a distributed data
to reflect that relation and to improve performance . For store system is implemented with a network of servers that
example , commands that have a commutative relationship transform transactions into commands of a distributed state
can be executed in an arbitrary order , thus a state machine machine . Any algorithm used for simulating a distributed
could refrain from requiring that all processes obtain all 40 state machine , ensures that all servers obtain the same
commands in the same order . For example , consider a sequence of commands to be executed sequentially , thereby
distributed computing system for maintaining bank accounts ensuring that they all produce the same sequence of state
of customers . Some actions of different clients can be changes assuming they all start from the same initial state
translated to the state machine commands that commute and the state machine is deterministic (i . e . , given the same
with one another . E . g . , if a client cl issued a request to 45 input it produces the same output) . Therefore strong con
deposit $ 100 into its account at approximately the same time sistency is ensured and network communication is modest
when a client c2 issued a request to withdraw $ 50 from its (since only commands have to be broadcast) . However , in
account , either command could be performed first , without general transactions cannot be executed concurrently on a
affecting the final state of the distributed state machine . A server (since they must produce the same results on all
method and system for implementing a fault - tolerant dis - 50 servers) , which does not allow the system to fully utilize the
tributed state machine that supports commutative commands performance of modern multi - core architectures .
were described in the European patent EP1659500 . How - In the database state machine approach to building a
ever , the approach presented in EP1659500 is not much distributed store system (described in : Fernando Pedone ,
different from the original state machine , since even though Rachid Guerraoui , and André Schiper . The database state
different processes (devices) may obtain the same com - 55 machine approach . Distributed and Parallel Databases ,
mands in a different order , the commands still have to be 14 (1) : 71 - 98 , July 2003) , a distributed state machine is only
executed sequentially . Moreover , it lacks a general method used for transaction commitment . In a distributed (repli
of deciding by the distributed state machine whether two cated) data store built using this approach , transactions can
commands are commutative or not . be executed concurrently , but a transaction commitment

Paxos (originally described in : Leslie Lamport . The part - 60 procedure is transformed into a state machine command .
time parliament . ACM Trans . Comput . Syst . , 16 (2) , May The command performs two tasks : (1) it decides whether to
1998 , and in the U . S . Pat . No . 5 , 261 , 085 under the name of commit or abort a finished transaction based on updates and
Multiple Command Protocol) is the most popular algorithm other data about transactions (this task is called certifica
for implementing arbitrary state machines . It was success - tion) , and (2) it applies the updates to the data store in case
fully used in many practical distributed applications . The 65 of successful certification otherwise the transaction is
general idea of the Paxos protocol can be explained as aborted . That command is executed , and the state machine
follows . The state machine commands are chosen through a response is transformed into a reply to the application , which

US 10 , 135 , 929 B2

en

is sent to it by the server that executed the transaction . The hand , any naive implementation utilizing a general state
state machine commands are executed sequentially , as in the machine algorithm to issue commands , in which functions
original state machine approach . Since all servers perform are executed externally by some dedicated process (device)
the same sequence of state machine commands , they all and the order of issued commands is not constrained by the
maintain consistent versions of the state machine state 5 functions returning the commands will be incorrect . This is
(which is kept in the local data stores) . However , at any time , because the general state machine algorithms (such as Paxos
some servers may have earlier versions than others because and its variants , e . g . described in the patent publications U . S .
a state machine command is not always executed at the same Pat . Nos . 5 , 261 , 085 , 7 , 565 , 433 , 7 , 856 , 502 , 7 , 558 , 883 , and
time by all servers . EP1659500) are not able to ensure that the sequence of

A distributed data store utilizing the database state 10 issued commands is dependent . Moreover , as the concurrent
machine approach allows for strong consistency and non execution of commands and functions is not constrained , the
blocking concurrency , but it has drawbacks . Firstly , the execution of functions can intervene the execution of the
network communication is not optimal , since the updates sequence of issued commands , thus leading to inconsisten
and other data of every transaction (which can be large) must cies among local data stores .
be communicated to all servers irrespective of whether this 15 Thus there is a need to develop a novel communication
transaction will be decided to commit or abort . This is protocol that can be used to ensure a fault - tolerant distrib
because these data are required by the first task of the uted (replicated) two - tier state machine .
transaction certification procedure performed by the state
machine on every server . Secondly , solutions based on SUMMARY
selecting one dedicated process to carry out this task (and 20
thus eliminating redundant certification on other servers) There is disclosed herein a system and method for imple
resemble the 2PC or 3PC protocols , so have their draw - menting distributed computing systems , especially distrib
backs . uted data store systems , in which consistency among repli

Therefore , there is a need to develop a system and a cas is maintained despite the failure of any number of
method for implementing fault - tolerant distributed data 25 devices and communication paths . The system and method
stores and distributed computing systems utilizing a similar is suitable for systems with modest reliability requirements
model of computation that will be free from the above that do not justify the expense of an extremely fault tolerant ,
drawbacks . The key idea of such a system and method can real - time implementation . The disclosed approach can be
be explained using a two - tier state machine , which extends described in detail as Executive Paxos , a fault - tolerant
the notion of a general state machine in the following way . 30 distributed protocol for implementing distributed two - tier

A two - tier state machine is a state machine , equipped with state machines . It can be summarized as follows . One device
a set F of functions , that are intended to be called only by in a network of devices is chosen as the leader , and that
one process (device) which is considered by the other leader is responsible for executing functions that return state
processes (devices) as a leader . Functions return commands machine commands , and for broadcasting the commands to
intended for the state machine . Functions can be nondeter - 35 the other devices . The devices execute the commands in the
ministic (may return different results each time they are logical precedence order that corresponds to the order of
called) and can be executed concurrently . Functions may function executions that return these commands . The system
transform a leader state LS that is associated with a leader and method ensures that each of the devices issues exactly
process that executes the functions , where LS is separate the same sequence of commands for execution , such that
from a machine state MS of the state machine . Given two 40 each command in the sequence , except the first one , has a
functions f and g , the execution of g logically depends on the precedent command on which the command logically
execution of for , g depends on f , for brevity) if the state depends . The commands are numbered consecutively , and
transformed by g depends on the state transformed by f , with they are recorded in stable storage by the devices . Each
no other function intervening in between and accessing the command is broadcast through a uniquely numbered ballot ,
state of for g . Given two commands dl and d2 , d2 depends 45 and each device participating in a ballot may either vote to
on d1 , or in other words d1 precedes d2 , denoted d1 = > d2 , if accept the command or not vote . To be issued , a command
they were returned by , respectively , functions f and g such must be voted for by a majority of the devices in the system
that g depends on f . A null command is an abstract command and its precedent command in the sequence must have
that has no precedent command . A sequence of commands already been issued . Each issued command is stored by each
is dependent if given any two commands dl and d2 , such 50 of the devices in the majority set which voted for it , and
that di is directly followed by d2 in this sequence , di since any two majority sets must have at least one device in
precedes d2 , and the first element of the sequence is the null common , any command which has been issued will appear
command . The commands that have been issued for the in the store of at least one device of any majority set
execution by the two - tier state machine can be executed participating in a subsequent ballot . When a new leader is
concurrently with functions , and the following two condi - 55 chosen , messages are exchanged between the new leader and
tions hold : (1) all the issued commands form a dependent the other devices in the system to ensure that each of the
sequence of commands ; (2) the state machine must execute devices has all of the commands that the other devices have .
a prefix of the dependent sequence of the issued commands As part of this procedure , any command which is not issued ,
with no intervening command in between . but has a chance to be issued based on the history of

A distributed two - tier state machine can be implemented 60 previously issued commands and the logical precedence
trivially as an ordinary distributed state machine , by having order relation , for which one of the devices has previously
each function executed by the state machine , and requiring voted but does not have a command number is broadcast as
that the result of function execution (a command) is a proposed command in a new ballot .
executed by the state machine before any other function can The protocol disclosed herein removes all the aforemen
be issued for execution by the state machine . However , this 65 tioned drawbacks of the existing protocols aimed for the
brings no more advantages over a common state machine implementation of distributed (replicated) data stores . Con
and requires functions to be deterministic . On the other sistency among replicas is maintained despite the failure of

US 10 , 135 , 929 B2

any number of devices and communication paths . The issued be issued , a command d must not only be voted for by a
commands can be executed by several devices , each inde - majority of the devices in the system , but also a command
pendently simulating the execution of the same state on which d depends must have been issued as a command
machine , while functions that return these commands are with one lower command number (unless d is the null
performed concurrently only by one device chosen as a 5 command) ; in other words , the sequence of issued com
leader . If the leader crashes , a new leader is automatically mands must be (logically) dependent .
singled out and continues processing function calls and In Paxos , in the event of gaps in the command numbers ,
producing commands for the state machine . The protocol the leader attempts to issue " no - op ” commands to fill the
ensures that the sequence of commands that are issued for gaps , rather than issuing operative commands which would
the execution by the state machine preserves the dependency 10 be out of order with respect to when they were introduced .
of the corresponding functions , i . e . the sequence of issued Such gaps might , for example , occur if the system were to
commands is dependent , despite the failure of any number shut down after one or more ballots have been initiated but
of devices and communication paths . Thus , by using the before they are completed . Assume , for example , that com
system and method disclosed herein the problems of syn - mands # 125 and # 126 are proposed , that all of the devices
chronization and fault tolerance are handled by a general 15 shut down before they are issued , and that a new leader is
algorithm with which devices handle function calls and chosen the next time the system is active . If all of the devices
acquire a sequence of issued commands . This approach which voted for command # 125 are absent , the new leader
greatly facilitates the implementation of distributed comput could issue command # 126 (as required by safety condition
ing systems . B3 (B) described later) without ever learning about command

In particular , the system and method as presented herein 20 # 125 , thereby creating a gap in the command numbers .
can be easily used to implement a fault - tolerant distributed Upon discovery , this gap is filled by a “ no - op ” command
data store system , utilizing the two - tier state machine with a number # 125 , which is issued but not executed by the
approach . The system design is similar to the general state machine . In Executive Paxos , there are no gaps , so
database state machine approach described earlier , but a there is no need to issue the “ no - op ” commands .
transaction commitment procedure is split into two proce - 25 The behavior of Paxos described above poses no problem
dures : a certification function performing transaction certi - for typical distributed applications utilizing the ordinary
fication , and an update command that applies updates con - state machine approach , where voted messages are mutually
sistently to all store replicas . The update commands are independent . For example , consider a distributed data store
executed on every server , while the calls of the certification system utilizing the database state machine approach , where
function , which can be performed concurrently , are handled 30 a commitment procedure for a given transaction T is trans
only by one device chosen to be a leader . The synchroniza - formed into a state machine command . If this command is
tion algorithm simulating the distributed (replicated) two lost due to failures and therefore not issued , the commitment
tier state machine ensures dependency between the executed procedure for transaction T cannot be accomplished . How
commands , irrespective of faults that might occur . If the ever , the system will repeat the commitment procedure for
leader fails , then a new leader is chosen automatically . 35 T after receiving the “ no - op ” command , or after a suffi

Distributed (replicated) data store systems implemented ciently long timeout . It is possible that the commitment
using the system and method presented herein combine the procedure will then decide to abort transaction T instead of
following advantages : (1) strong consistency among replicas commit (or vice versa) , but this scenario does not violate
is maintained despite the occurrence of faults such as a safety .
server crash or the loss or duplication of messages 40 On the contrary , in a distributed data store system based
exchanged between servers , thus increasing system robust on the two - tier state machine , the transaction commitment
ness ; (2) transactions can be executed concurrently and procedure is split into a certification function and an update
without blocking , thus increasing system availability and command , where a sequence of update commands is depen
scalability (especially on multicore processors) ; and (3) dent . Therefore any update command d cannot be executed
transaction state updates , which can be large , are commu - 45 unless a precedent command (on which d depends) has
nicated to each replica only if the updates must be applied already been executed . This requirement is ensured by the
(i . e . , they are not broadcast if the certification function Executive Paxos protocol . For instance , consider a com
aborts the transaction) , thus saving network bandwidth . mand c which has been successfully voted within an

Executive Paxos builds on Multiple Command Protocol instance number n , i . e . , a majority set of the devices in the
(Paxos) . Like Paxos , it guarantees that if fewer than a 50 system have voted for c (but c is not issued yet) . In this
quorum of devices fail then the commands are issued for the protocol , the command c can be issued by the leader only if
execution within a fixed length of time . However , there are some command b on which c depends has already been
also important differences between the two protocols (and issued in an instance m , where m = n - 1 . If no command has
also between Executive Paxos and all of the existing variants yet been issued in instance m , or the command issued in
of Paxos) . In particular , some extensions and changes were 55 instance m was not a precedent command for c , then the
necessary in order to ensure that : (1) in addition to carrying leader is not allowed to issue command c . However , if there
a process of voting , a leader receives and executes (possibly is another command b ' that was proposed in instance m ,
non - deterministically) functions which return commands which depends on the command a on which command b also
that are voted in the ballots ; (2) consecutive commands can depends , then if b ' will be successfully voted instead of b ,
be voted concurrently in separate instances of the protocol , 60 then the leader can issue b ' instead of b for the instance
but the order of issued commands must correspond to the number m and ignore both b and c (instead , some other
order in which the commands where returned by functions command c ' which depends on b ' may be voted and issued
and there must be no gaps in command numbering (as for the instance number n at some later time) . Therefore , in
explained below) ; (3) in a ballot , the leader chooses a Executive Paxos all issued commands are operative com
command based not only on the most recent votes of the 65 mands having consecutive numbers and forming a depen
devices in the majority set for this ballot , but also taking into dent sequence . There are no gaps that must be filled with any
account the dependency relation between commands ; (4) to " no - op ” commands . In Paxos , in a similar scenario , the

US 10 , 135 , 929 B2
10

leader would immediately issue the successfully voted com FIG . 3 also illustrates client computing devices 108
mand c with a number n , and the “ no - op ” command for through 110 , though the system and method presented herein
instance m . is intended to operate in environments having any number of

Features of the disclosed system and method are disclosed client computing devices . The client computing devices are
in the description below and / or in the claims that follow the 5 illustrated as having a generic communicational connection
description . to the distributed computing system 101 . As will be known

by those skilled in the art , such a communicational connec
BRIEF DESCRIPTION OF DRAWINGS tion can use any communication medium and protocol , and

can allow the client computing device to communicate with
FIG . 1 is a state diagram generally illustrating a distrib - 10 one or more of the computing devices in the distributed

uted (replicated) state machine . computing system 101 .
FIG . 2 is a state diagram generally illustrating a distrib The distributed system 101 is configured to operate a

uted (replicated) two - tier state machine . (distributed) data store . A data store is a repository of a set
FIG . 3 is a block diagram of one embodiment of a of data objects . These objects are modeled using classes

distributed data processing system utilizing a distributed 15 defined in a database schema . A data store is a general
two - tier state machine . concept that includes not just repositories like databases , but

FIG . 4 is a block diagram generally illustrating an exem also simpler store types such as key - value data repositories ,
plary server computer with which an embodiment of the flat files , etc .
present disclosure can be implemented . In FIG . 4 , an exemplary server computer 200 on which the

FIG . 5 is a table illustrating the implementation of one 20 present disclosure may be implemented is shown . The figure
condition of a state machine . and the description of the server computer 200 below is

FIG . 6 is a table illustrating the implementation of one equivalent to FIG . 2 of the patent EP1659500 . The server
condition of a two - tier state machine . computer 200 is only one example of a suitable server
FIGS . 7a and 7b comprised together is a flow chart computer and is not intended to suggest any limitation as to

illustration of aspects of an embodiment of the Executive 25 the scope of use or functionality of the present disclosure . In
Paxos protocol . particular , the exemplary server computer 200 shown in

FIG . 8 is a timing chart illustrating an exemplary execu FIG . 4 , is not intended to exactly represent any of the server
tion of the supply chain management system built using an computers illustrated in FIG . 3 , and it should not be inter
embodiment of the present disclosure . preted as having any dependency or requirement relating to

30 any one or combination of peripherals illustrated in FIG . 4 .
DETAILED DESCRIPTION OF THE PRESENT Components of server computer 200 may include , but are

DISCLOSURE not limited to , a processing unit 220 , a system memory 230 ,
and a system bus 221 that couples various system compo

The present disclosure may be described in the general nents including the system memory to the processing unit
context of computer - executable instructions , such as pro - 35 220 . The system bus 221 may be any of several types of bus
gram modules , being executed by a computer . Generally , structures including a memory bus or memory controller , a
program modules include routines , programs , objects , com - peripheral bus , and a local bus using any of a variety of bus
ponents , data structures , etc . that perform particular tasks or architectures . By way of example , and not limitation , such
implement particular abstract data types . In distributed com architectures include Peripheral Component Interconnect
puting environments , tasks can be performed by remote 40 (PCI) , PCI Express , Accelerated Graphics Port (AGP) . Fur
processing devices that are linked through a communica - thermore , the processing unit 220 can contain one or more
tions network . In a distributed computing environment , physical processors .
program modules may be located in both local and remote Server computer 200 typically includes a variety of com
computer storage media including memory storage devices . puter readable media . Computer readable media can be any
Distributed Computing Environment 45 available media that can be accessed by server computer 200

For ease of presentation only , the present disclosure will and includes both volatile and nonvolatile media , removable
be described with reference to distributed computing sys - and non - removable media . By way of example , and not
tems such as system 101 , which comprises server computers limitation , computer readable media may comprise com
103 through 107 , interconnected by a network 102 as shown puter storage media and communication media . Computer
in FIG . 3 . A server computer (a server , in short) or , more 50 storage media includes both volatile and nonvolatile , remov
generally , a (computing) device handles the client requests able and non - removable media implemented in any method
by performing the requested task . Servers generally receive or technology for storage of information such as computer
requests from client computing devices , execute data readable instructions , data structures , program modules or
retrieval and updates , manage data integrity and dispatch other data . Computer storage media includes , but is not
responses to client requests . Each of the servers includes at 55 limited to , RAM , ROM , EEPROM , flash memory or other
least a processor and some means of stable storage from memory technology , CD - ROM , digital versatile disks
which information will not be lost in the event of a crash , a (DVD) or other optical disk storage , magnetic cassettes ,
power failure , or the like . The servers may also include other magnetic tape , magnetic disk storage or other magnetic
equipment such as input devices , monitors , mass storage storage devices , or any other medium which can be used to
devices , printers , etc . The network 102 can be of any suitable 60 store the desired information and which can be accessed by
type or configuration that permits messages to be sent server computer 200 . Communication media typically
between any two servers on the network . As will be under - embodies computer readable instructions , data structures ,
stood by those skilled in the art , the present disclosure is program modules or other data in a modulated data signal
applicable to all distributed computing environments and is such as a carrier wave or other transport mechanism and
not intended to be limited in any way by the exemplary 65 includes any information delivery media . The term “ modu
distributed computing system of FIG . 3 , which is simplified lated data signal ” means a signal that has one or more of its
for presentation purposes . characteristics set or changed in such a manner as to encode

11
US 10 , 135 , 929 B2

12
information in the signal . By way of example , and not The server computer 200 can operate in a networked
limitation , communication media includes wired media such environment , such as that shown in FIG . 3 , using logical
as a wired network or direct - wired connection , and wireless connections to one or more remote computers . FIG . 4
media such as acoustic , radio frequency , infrared and other illustrates a general network connection 271 to a remote
wireless media . Combinations of any of the above should 5 server computer 280 . The general network connection 271 ,
also be included within the scope of computer readable and the network connections illustrated in FIG . 3 , can be any
media . of various different types of networks and network connec

The system memory 230 includes computer storage media tions , including a Local Area Network (LAN) , a Wide - Area
in the form of volatile and / or nonvolatile memory such as Network (WAN) , a wireless network , networks conforming
read only memory (ROM) 231 and random access memory 10 to the Ethernet protocol , the Token - Ring protocol , or other
(RAM) 232 . A basic input / output system 233 (BIOS) , con - logical , physical , or wireless networks including the Internet
taining the basic routines that help to transfer information or the World Wide Web .
between elements within computer 210 , such as during When used in a networking environment , the server
start - up , is typically stored in ROM 231 . RAM 232 typically computer 200 is connected to the general network connec
contains data and / or program modules that are immediately 15 tion 271 through a network interface or adapter 270 , which
accessible to and / or presently being operated on by process can be a wired or wireless network interface card , a modem ,
ing unit 220 . By way of example , and not limitation , FIG . 4 or similar networking device . In a networked environment ,
illustrates operating system 234 , application programs 235 , program modules depicted relative to the server computer
other program modules 236 , and program data 237 . 200 , or portions thereof , may be stored in the remote

The server computer 200 may also include other remov - 20 memory storage device . It will be appreciated that the
able / non - removable , volatile / nonvolatile computer storage network connections shown are exemplary and other means
media . By way of example only , FIG . 4 illustrates a hard of establishing a communications link between the comput
disk drive 241 that reads from or writes to non - removable , ers may be used .
nonvolatile magnetic media , a magnetic disk drive 251 that In the description that follows , the present disclosure will
reads from or writes to a removable , nonvolatile magnetic 25 be described with reference to acts and symbolic represen
disk 252 , and an optical disk drive 255 that reads from or tations of operations that are performed by one or more
writes to a removable , nonvolatile optical disk 256 such as server computers , unless indicated otherwise . As such , it
a CD ROM or other optical media . Other removable / non - will be understood that such acts and operations , which are
removable , volatile / nonvolatile computer storage media that at times referred to as being computer - executed , include the
can be used in the exemplary operating environment 30 manipulation by the processing unit of the server computer
include , but are not limited to , magnetic tape cassettes , flash of electrical signals representing data in a structured form .
memory cards , digital versatile disks , digital video tape , This manipulation transforms the data or maintains it at
solid state RAM , solid state ROM , and the like . The hard locations in the memory system of the server computer ,
disk drive 241 is typically connected to the system bus 221 which reconfigures or otherwise alters the operation of the
through a non - removable memory interface such as interface 35 server computer in a manner well understood by those
240 , and magnetic disk drive 251 and optical disk drive 255 skilled in the art . The data structures where data is main
are typically connected to the system bus 221 by a remov - tained are physical locations of the memory that have
able memory interface , such as interface 250 . particular properties defined by the format of the data .

The drives and their associated computer storage media Although the description herein focuses primarily on the
discussed above and illustrated in FIG . 4 , provide storage of 40 operation of computing devices in a distributed computing
computer readable instructions , data structures , program system , it will be appreciated that the description is equally
modules and other data for the server computer 200 . In FIG . applicable to devices running on a single computing device ,
4 , for example , hard disk drive 241 is illustrated as storing such as on separate processors , in separate memory spaces ,
operating system 244 , application programs 245 , other pro virtual machines , or using other similar programming tech
gram modules 246 , and program data 247 . Note that these 45 niques allowing one physical computing structure to per
components can either be the same as or different from form the actions described herein as attributed to multiple
operating system 234 , application programs 235 , other pro - server computers . Thus , additional embodiments include the
gram modules 236 , and program data 237 . Operating system operation of the Executive Paxos algorithm in multiple
244 , application programs 245 , other program modules 246 , processor environments , irrespective of whether the multiple
and program data 247 are given different numbers here to 50 processors are physically located in one or more computing
illustrate that , at a minimum , they are different copies . A user devices , and also in multiple virtual machine environment ,
may enter commands and information into the server com irrespective of whether the multiple virtual machines are
puter 200 through input devices such as a keyboard 262 and being executed by one or more computing devices . Addi
pointing device 261 , commonly referred to as a mouse , tional features and advantages of the present disclosure will
trackball or touch pad . Other input devices (not shown) may 55 be made apparent from the following detailed description of
include a microphone , joystick , game pad , satellite dish , illustrative embodiments which proceeds with reference to
scanner , or the like . These and other input devices are often the accompanying figures .
connected to the processing unit 220 through a user input In view of the many possible embodiments to which the
interface 260 that is coupled to the system bus , but may be principles of the present disclosure may be applied , it should
connected by other interface and bus structures , such as a 60 be recognized that the embodiments described herein with
parallel port , game port or a universal serial bus (USB) . A respect to the drawing figures are meant to be illustrative
monitor 291 or other type of display device is also connected only and should not be taken as limiting the scope of present
to the system bus 221 via an interface , such as a video disclosure . For example , those of skill in the art will recog
interface 290 . In addition to the monitor , computers may n ize that some elements of the illustrated embodiments
also include other peripheral output devices such as speakers 65 shown in software may be implemented in hardware and
297 and printer 296 , which may be connected through an vice versa or that the illustrated embodiments can be modi
output peripheral interface 295 . fied in arrangement and detail without departing from the

13
US 10 , 135 , 929 B2

14
spirit of the present disclosure . Therefore , the present dis - ballots with the same number . To keep different devices from
closure as described herein contemplates all such embodi initiating ballots with the same number , the set of possible
ments as may come within the scope of the following claims ballot numbers is partitioned among the devices . This can be
and equivalents thereof . done , for example , by making each ballot number a pair
Safety Conditions 5 consisting of two integers , one of which is unique to each

In order to understand the Executive Paxos protocol as device . The pair can be arranged as a decimal , with the
described herein and the differences between this protocol integer identified with the device following the decimal
and Paxos , it is helpful to first understand what safety point . A device can be said to own those ballot numbers conditions must be satisfied by both protocols in order to which end in its own unique number . ensure consistency . 10 To maintain condition B2 , the majority set for a ballot is In Paxos , consistency among the devices is maintained if chosen to include a majority of the devices in the system . If the following conditions are satisfied :
B1 (B) : Each ballot in set ß of ballots has a unique number . desired , this can be a weighted majority , rather than an
B2 () : The majority sets for any two ballots in set ß have at absolute majority , as long as any two majority sets have at

least one device in common . is least one device in common .
B3 () : For every ballot B in set ß of ballots , if any device Executive Paxos shares conditions B1 and B2 with Paxos

in the majority set voting in ballot B voted in an earlier (and they can be maintained as described above) , but con
ballot in set B , then the command of ballot B is chosen to dition B3 (B) is not sufficient . This is because votes in
be the command voted upon in the latest of those earlier Executive Paxos are chosen not only based on the majority
ballots . 20 set , but also taking into account dependency between com
The implementation of these conditions is illustrated by mands .

the example in FIG . 5 . This figure and the description The execution of functions induces a sequence of depen
following correspond to the ones presented in the U . S . Pat . dent commands which are the results of the executed func
No . 5 , 261 , 085 , which describes the Multiple Command tions . A dependency sequence of a command d is a sequence
Protocol . In the example there are five ballots numbered 2 , 25 of dependent commands , such that the null command is the
5 , 14 , 27 and 29 and five devices designated A - E . The first element and d is the last element of the sequence . For
devices in the majority set for each ballot are indicated , with each command d (except the null command) , the precedent
the devices voting for the ballot being enclosed in boxes . command of d is the command that immediately precedes d
The devices voting for each ballot is a subset of the majority in some dependency sequence induced by the execution of
set for the ballot . Ballot # 14 , for example , has a command 30 functions . A command d is issued in some instance n (n > 0)
a , a majority set consisting of devices B , D and E , and set if it was successfully voted in a ballot in n and d ’ s precedent
of voters consisting of devices B and E . Conditions B1 (B) command had been issued in n - 1 . A command d is anchored
and B2 (B) are satisfied for each of the ballots because each in some instance n if it is issued in n or can be issued in n ,
ballot has a unique number and the majority sets for any two i . e . for each instance m less or equal n (O < m < = n) if there is
of the ballots have at least one device in common . Condition 35 a command issued in m , then this command is an element of
B3 (B) is applied to each of the five ballots as follows : the dependency sequence of d .
2 . Ballot # 2 is the earliest ballot , so the condition on that Then , the third safety condition of Executive Paxos can be

ballot is trivially true . formulated as follows :
5 . Since none of the devices in the majority set for ballot B3 (I , B) : For every ballot B of instance I in set B of ballots ,

5 voted in an earlier ballot , the condition on that ballot 40 if any device in the majority set voting in ballot B voted
is also trivially true . for some anchored command in an earlier ballot of

14 . The only member of the majority set of ballot # 14 to instance I in set B , then the command of ballot B is chosen
vote in an earlier ballot is D , and it voted in ballot # 2 . to be the (anchored) command voted upon in the latest of
Therefore , the condition requires that the command for those earlier ballots .
ballot # 14 must equal the command of ballot # 2 . 45 The condition B3 (1 , B) is illustrated by the example execu

27 . This is a successful ballot . The members of the majority tion in FIG . 6 . The example shows an execution of two
set for ballot # 27 are A , C and D . A did not vote in an concurrent instances of the protocol , numbered with con
earlier vote , the only earlier ballot in which C voted was secutive numbers m and n , where m = n - 1 . The instance
ballot # 5 , and the only earlier ballot in which D voted was numbers are used to number the issued commands . Suppose
ballot # 2 . Since ballot # 5 is the later of these two earlier 50 that a is a command that was issued within instance m - 1 for
ballots , the condition requires that the command of ballot the command number m - 1 , where a may or may not be the
27 must equal the command of ballot # 5 . null command , and there are two alternative proposals of a

29 . The members of the majority set for ballot # 29 are B , command for the command (instance) number in , namely b
C and D . The only earlier ballot in which B voted was and b ' . Both are valid , as a = > b and a = > b ' . There are also two
ballot # 14 , but C voted in ballots # 5 and # 27 , and D voted 55 alternative proposals of the command for the command
in ballots # 2 and # 27 . Since the latest of the four earlier (instance) number n , namely c and c ' , such that b = > c and
ballots on which any of these votes occurred is ballot # 27 , b ' = > c ' . Condition B3 (1 , 5) is applied to each of the ballots as
the condition requires that the command of ballot # 29 follows :
must equal the command of ballot # 27 . # 2 . This is the first ballot for m . Device D votes for b and
The rules governing how the Paxos leader chooses the 60 b is a valid proposal since a = > b .

ballot number , the command and the majority set , and how # 5 . Device E votes for b ' for m and b ' is also a valid proposal
the other devices decide whether or not to vote in a ballot are since a = > b ' and none of the devices in the majority set for
derived directly from the need to maintain conditions ballot # 5 voted for other commands in earlier ballots for
B1 - B3 . m .

To maintain condition B1 , each ballot must receive a 65 # 14 . b is the only possible command that can be voted upon ,
unique number . By recording in its store the ballots it has because device D (the only member of the quorum that
initiated , the leader can easily avoid initiating two different voted in an earlier ballot) voted for b in ballot # 2 .

15
US 10 , 135 , 929 B2

16
27 . This is the first ballot for n . Devices A and D vote for the state Sj (where j = i - 1) of every device Pk (k = 1 . . . n) to

c and c is a valid proposal , since b was voted within be transformed to state Si . It is assumed that a null (abstract ,
instance m , such that b = > c and no other command has non - existent) command is the precedent command for the
yet been issued for m . first operative command to be issued to the state machine .

29 . Device E votes for c ' for n and c ' is a valid proposal , 5 The null command has a number 0 and is issued .
because b ' was voted within instance m , such that b ' = > ' The Executive Paxos protocol description uses the fol
and no other command has yet been issued for m . lowing notation and data structures : # 32 . c is the only possible command that can be voted upon , p , q devices , because devices A and D (the only members of the b , b ' ballot numbers , quorum that voted in an earlier ballot) voted for c in # 27 . 10 m , n protocol instance numbers (or command numbers) , # 36 . This is a successful ballot for m . Command b ' is the c , d commands , only possible command that can be voted upon , because d (m) an issued command in instance m , device E (the only member of the quorum that voted in an
earlier ballot) voted for b ' in # 5 . v (m) a vote (a triple of device , ballot number , and command)

43 . This is a successful ballot for n . In Paxos , c would be 15 n In Paxos e would be 1a in instance m ,
the only valid command to be voted upon in this ballot . L a list of all issued commands ,
because D (a member of the quorum in # 43) voted for c = > the logical dependency (logical precedence) relation ,
in ballot # 32 — the latest ballot of the three earlier ballots lastTried (p) the number of the last ballot that p tried to begin ,
within instance n , in which any member of the quorum of or - o if there was none ,
43 voted . However , in Executive Paxos , c cannot be 20 nextBal (q) the largest value of b for which q has sent a
chosen since b (the logically precedent command of c) has message BallotInfo , or - oo if it has never sent such a
not been issued for m , but b ' . On the other hand , c ' is also message ,
a valid proposal for this ballot since the logically prec prevVote (q , m) the vote cast by q in the highest - numbered
edent command of c ' is b ' which was issued for m , and E ballot for command number m in which it voted , or empty
(a member of the quorum in ballot # 43) voted for c ' in 25 if it never voted ,
ballot # 29 . Since no other valid command was voted by nextCommandNoín) the number of the nextCommandNo (p) the number of the next command p is
the devices in the majority set for ballot # 43 , c ' is issued . going to propose ,
If there would be more valid commands to choose from , 1 , NextBallot (b , n) a message sent by a leader with a new ballot Next Ballotch
then the valid command from the latest ballot is chosen . number b for command number n ,

51 . b ' is the only possible command that can be voted upon , 30 BallotInfo (b . D . VX) a message sent in ballot b by a device
because device C voted for b ' in # 36 , the latest ballot in q to the leader with q ' s knowledge on commands issued which any member of the quorum of # 51 voted .

54 . c ' is the only possible command that can be voted upon , (D) , voted (V) , and missing (X) ,
because devices C and E have voted for c ' in # 43 , the MyNextBal (b ') a message used by q to communicate next
latest ballot in which any member of the quorum of # 54 35 Bal (q) to the leader ,
voted . BeginBallot (m , b , d) a message sent by a leader to begin a

The Executive Paxos Protocol ballot ,
The Executive Paxos protocol is executed by a network of Voted (m , b , d) a message sent by a device to indicate its vote ,

computing devices . Each device independently simulates the ExecuteFunction (f) a message with a request to execute
same two - tier state machine , and one of said devices is 40 function f ,
designated as a leader for sending ballots with proposed Success (m , d) a message indicating that command d has been
commands to the other devices . Any suitable method can be issued and is associated with the instance) number m ,
employed for choosing the leader , e . g . using failure detec - Mp) a local state machine of device p ,
tors that are available to all these devices . A failure detector LS (p) a temporary leader state of device p acting as the
can be implemented using a heartbeat protocol that relies on 45 leader .
timely exchange of messages between devices . A device that When a new leader is chosen , the following steps occur in
fails to respond in a timely fashion may be crashed and , the Executive Paxos protocol :
therefore , it is assumed as unreliable by the device imple - 1 . The new leader p sets lastTried (p) to a ballot number b
menting the failure detector . Since the failure detector may which it owns and which is larger than its previous value
make mistakes , during unstable periods of computation 50 and sends a NextBallot (b , n) message to all devices
failure detectors used by different devices may indicate including itself , where n is the smallest command number
different devices as correct . for which p does not know the corresponding command .

FIG . 2 illustrates an exemplary distributed (replicated) 2 . Upon receipt of a NextBallot (b , n) message from p with
two - tier state machine , which consists of n devices P1 . . . b > = nextBal (q) , device q sets nextBal (q) to b and sends a
Pn , each device having the same initial state So , where 55 BallotInfo (b , D , V , X) message to p , where :
device P1 is currently a leader . Every device Pk (k = 1 . . . n) D is the set of pairs (m , d (m)) with m > = such that q knew
may request a function fto be executed by the current leader that command d (m) was issued for the command num
by sending a message ExecuteFunction (f) to the leader , ber in ,
where f indicates the function to be executed . The requests V is the set of pairs (m , v (m)) such that : (i) m > = n , (ii) q
to execute functions are handled by the leader device in 60 does not know the issued command for number m , (iii)
order of appearance , and the commands ci (i = 1 , . . .) which q has voted in a ballot for command number m , and (iv)
are returned as the results of the consecutive function v (m) is the most recent vote cast by q in a ballot for
executions fi (i = 1 , . . .) are sent to all devices within ballots . command number m , kept in prevVote (q , m) ,
Commands being voted are not necessarily) independent . X is the set of command numbers < n for which q does not
Therefore each command ci includes the information about 65 know the corresponding issued command .
the previous command cj (where j = i - 1) that logically pre - If b < nextBal (q) , q sends the message My NextBal (b ') back to
cedes ci . The execution of command ci (for any i > 0) causes p , where b ' = nextBal (q) .

US 10 , 135 , 929 B2
18

3 . Upon receipt of MyNextBal (b ') from any device , if b ' is Steps 1 - 4 contain the protocol for initiating a ballot and
greater than lastTried (p) , the leader p chooses a new value voting on it . In step 5 , the results of the balloting are
of b greater than b ' and goes back to step 1 . determined , and in step 6 the command is declared to be

Upon receipt of BallotInfo (b , D , V , X) messages from a issued .
majority of the devices , p adds the commands from each 5 In step 1 of this protocol , a leader device p is informing
set D to its list L of issued commands , and writes them to the other devices that it has all of the previously issued
stable storage . The leader also sends the other devices any commands with numbers less than n , and in step 2 , each of
issued commands it knows but they do not according to the other devices q informs p of all commands it already has
their BallotInfo messages . with numbers equal to or greater than n , and it asks p to send

The leader p initiates the temporary leader state LS (p) by 10 it any commands which q does not have with numbers less
copying to it the current state of the state machine M (p) than n .
of device p . When the new leader has received a reply from every

For a set Votes of all votes V received in the BallotInfo member of a majority set , it is ready to perform either step
messages , the leader p executes the following procedure 3 ' or step 3 " for each new instance of the protocol . For some
InitHistProc (which produces the initial history set H of 15 finite number of instances (command numbers) , the choice
command numbers m , paired with the corresponding (not of commands decided by InitHistProc () in step 3 will be
yet issued) commands . determined by condition B3 (1 , 3) . The leader p immediately

The procedure starts from the lowest number m for which performs step 3 ' for each of those instances to try passing
the leader does not know the issued command , and these commands . Thereafter , whenever p receives a request
proceeds through all consecutive command numbers m 20 to execute a function and issue a command returned by the
for which there exists any ballot in Votes by executing the function , it chooses the lowest command number that it is
following steps : still free to choose (stored in nextCommandNo (p)) , and it
(a) if there exists a vote v (m) with a command c cast in performs step 3 " for that command number (instance of the

the most recent ballot for command number m , such protocol) to try to issue the command .
that the precedent command of c is either the command 25 In step 2 , if a device q receives a message from a leader
which has been issued with number m - 1 or is in H device p , with a ballot number that is lower than the largest
(paired with m - 1) , then the leader adds (m , c) to H and ballot number b ' for which q has replied to some leader
assigns m + 1 to nextCommandNo (p) , device , then q sends b ' to p . To optimize the protocol , the

(b) if there is no such a suitable vote , device p ends same conditional statement can also be executed by device
procedure InitHistProc () . 30 q in step 4 .

The leader p executes on the temporary leader state LS (p) all In step 4 , a device has the option not to vote . In fact , all
the commands from H according to the order of command the steps in this protocol are optional , i . e . the correctness of
numbers (unless they were already executed by the state the protocol is not compromised when some steps of the
machine M (p) before leader state LS (p) was initiated) . protocol are not executed by some devices since they

3 ' . For every pair (m , d) in the leader ' s initial history set H 35 crashed or messages were lost . Failure to take an action can
according to the order of command numbers in , the leader prevent progress , but it cannot cause any inconsistency
p executes a ballot to broadcast command d for command because it cannot make the conditions B1 (B) , B2 (B) , and
number m , as follows : B3 (1 , 3) false . Since the only effect not receiving a message
(c) p chooses some majority set Q of devices from among can have is to prevent an action from happening , message

those from which it has received BallotInfo messages 40 loss also cannot cause inconsistency . Thus , the protocol
for the current value of last Tried (p) , guarantees consistency even if a computer fails or messages

(d) p sends a message BeginBallot (m , b , d) to every device are lost .
in set Q , where b = lastTried (p) . The protocol allows any device to initiate a new ballot at

3 " . If the leader p had received the ExecuteFunction (f) any time . Each step maintains the conditions B1 (B) , B2 (B)
message , function f is executed on the temporary leader 45 and B3 (1 , B) , so the entire protocol also maintains these
state LS (p) , altering LS (p) , and returning some command conditions . Since a device enters a command in its perma

nent storage only if it is the command of a successful ballot ,
Next , the leader p executes a ballot on command d for consistency among the devices is maintained . In the proto

command number nextCommandNo (p) by executing col , each device also records the number of every ballot it
steps 3 ' (c) and 3 ' (d) , and then increments nextCommand - 50 initiates , and every vote it casts .
No (p) . If a single leader is selected for all these instances , it is

Steps 3 ' and 3 " can be executed concurrently . necessary to perform the first three steps of the protocol
4 . Upon receipt of a message BeginBallot (m , b , d) with (steps 1 - 3) just once when a new leader is chosen .

b = nextBal (q) , device q casts a vote for the command d in The leader does not need to broadcast the Success (m , d)
ballot number b , i . e . it records that vote in prevVote (q , m) 55 messages (step 6) in case devices send Voted (m , b , d) mes
kept in stable storage , and sends a Voted (m , b , d) message sage (step 4) not only to the leader , but to all of the devices ,
back to p . so that they can make the decision to consider d to be

5 . When p receives Voted (m , b , d) messages back from every successfully issued on their own (step 5) .
device in the majority set Q , and p knows that the Devices notify the leader about missing issued commands
precedent command of d has been issued for command 60 by sending the BallotInfo (b , D , V , X) message with X con
number m - 1 , it considers command d to be successfully taining the numbers of missing issued commands . In return ,
issued , so it records d in its stable storage , and it sends a the leader replies with messages containing the missing
message Success (m , d) to all devices . issued commands . The same effect can be achieved by a

6 . Upon receiving the Success (m , d) message , a device a catch - up mechanism which is orthogonal to the core of the
records command d in its stable storage . 65 protocol . Then , a device does not ask the leader for the
Aspects of an embodiment of the Executive Paxos pro - issued commands , but acquires the missing commands from

tocol are illustrated in FIGS . 7a and 7b . its peers , thus reducing the load of the leader . The catch - up

US 10 , 135 , 929 B2
19 20

mechanism also facilitates the recovery of failed devices that particular , the system receives requests to register incoming
can use it to be up to date with the most recently issued goods (when delivered by external vendors) , to register
commands . transfer of goods between the company ' s warehouses or

As in Paxos , each device q must keep last Tried (q) , their sections , and to register outbound shipment of goods to
nextBal (q) , and prev Vote (q) in stable storage , together with 5 customers . The requests to the system are translated into the
the sequence L of all commands issued so far . However , requests (calls) to execute the following functions by the
instead of keeping the sequence of all commands issued , a distributed two - tier state machine , implemented using the
device can keep the current state , the command number of Executive Paxos protocol :
the last command reflected in that state , and a list of the inbound (X , v) — to deposit the amount v of goods in
recently issued commands . When a failed device is restarted , 10 warehouse X ,
it can update its data by copying the state and / or list of outbound (X , v) — to withdraw the amount v of goods from
recently issued commands from any other device . warehouse X ,

The devices use stable storage to facilitate the process of transfer (X , Y , v) — to transfer the amount v of goods from
recovery from crash . However , under certain assumptions warehouse X to warehouse Y .
about the maximal number of crashes that may occur at the 15 Function calls are handled by a leader device that
same time typically less than half of the devices are executes the functions and transforms the results of function
crashed at any given time , the use of stable storage can be execution into the state machine commands that assign
eliminated altogether through careful coordination with concrete values to variables representing a given warehouse .
other devices during recovery . For simplicity , the example considers only one type of goods

Progress will be guaranteed by Executive Paxos if the 20 and three , initially empty , warehouses (or sections of a single
following two requirements are met : (1) If no device fails or warehouse) that correspond to variables A , B and C . The
restarts , then after some time T , exactly one device in the amount of goods stored in each warehouse is represented as
system considers itself to be the leader ; (2) Upon receipt of an integer value , initially equal to 0 . If B is equal to 350 , it
the ExecuteFunction (f) message with a request to execute means that at this moment there are 350 units of goods in
function f , the leader may either immediately execute f , or 25 warehouse B . The variables A , B and Care stored on servers
postpone its execution . However , every request to execute f denoted as devices p , q and r . For resiliency , every variable
will be eventually handled by the leader and the command is replicated on every device .
returned by the function voted (unless another device FIG . 8 shows the time chart of an example execution of
becomes the leader in the meantime , in which case the the system , where arrows represent the unidirectional com
ExecuteFunction (f) message has to be sent again to that new 30 munication of protocol messages between two given
leader) . If the two requirements are met , then after time devices . For clarity , messages sent by a device to itself are
T + delta (for some delta) , if majority of devices are active , omitted . The events that occur upon message receipt or
then every proposed command will be promptly recorded in message sending are described below .
stable storage of every device in the majority set . 1 . Device p decides to become the leader device , so p sends

The leader does not need to copy the whole current state 35 the NextBallot (17 , 1) message to all other devices thus
of the state machine M (p) (step 3) . Instead , the leader may initiating the protocol for instance 1 (no commands have
utilize a more efficient method which , for example , stores in been issued before) with ballot number 17 (some unique
the temporary leader state LS (p) only the differences in state ballot number chosen by p) .
compared to the state of state machine M (p) , where the 2 . Devices respond with the BallotInfo (17 , 0 , 0 , 0) messages ,
differences stem from the execution of functions . 40 indicating that

It is apparent from the foregoing that a new two - tier a . q and r have no knowledge of any issued commands
distributed state machine and method have been provided . that p is not aware of ,
While only certain presently preferred embodiments have b . q and r have not previously cast any votes that p has to
been described in detail , as will be apparent to those familiar account for ,
with the art , certain changes and modifications can be made 45 c . there are no issued commands that p is aware of and
without departing from the scope of the present disclosure as either q or r are missing .
defined by the following claims . 3 . Upon reception of the BallotInfo messages , p creates
Example Applications of the Executive Paxos Protocol LS (p) as a copy of M (r) and initiates the InitHistProc
Supply Chain Management System procedure . The procedure constructs an empty initial

Below is an example of the intended use of the Executive 50 history H . Since H is empty , p needs to take no further
Paxos protocol . Consider a global e - commerce company actions at this point . Device p is now the leader device .
that runs a network of automated warehouses . Goods need 4 . In response to a request to the system , device q wants to
to be transferred (transported) between warehouses and execute a function f - inbound (A , 500) . Since q is not the
between sections of a single warehouse . The goods are leader , q sends a request to p (the current leader device)
eventually shipped to the customers of the company from 55 to execute f .
the most convenient warehouse . To keep track of all the 5 . The leader device p receives the request to execute
logistic operations , the company uses a supply chain man function f and subsequently executes it . Function f is
agement system , which relies on distributed devices , each executed on the leader state LS (p) , in which the value of
one associated with one warehouse or its section . The A is 0 (the initial value) . The function changes the value
system uses the Executive Paxos protocol described herein 60 of A in the leader state LS (p) to 500 and returns command
in order to ensure that the correct record of all goods stored df consisting of one instruction { set the value of A to
in warehouses is always available and is consistent on every 500 ; } which , when executed , sets the value of A to 500 on
device , despite of any crashes of some devices or network a given state machine . In order to issue df , p starts a new
failures , as long as a quorum of devices is not faulty . ballot with number 17 and instance number 1 . The leader

Before any operation can be performed in the warehouses , 65 device p sends a message BeginBallot (1 , 17 , df) to the
it needs to be registered with the system . Only then the majority set Q = { p , q) , which constitutes the majority of
actual goods can be moved around the warehouses . In devices .

21
US 10 , 135 , 929 B2

22
6 . The devices from the set Q respond with message Voted (1 , leader state LS (r) , in which the value of A is 400 and the

17 , df) . The devices vote for the command df . Since they value of B is 100 . The function changes the value of A in
did not vote in any other ballot in this instance , doing so the leader state to 300 , the value of B in the leader state
does not violate the rule B3 (1 ,) . to 200 and returns the command dh consisting of two

7 . Upon receipt of the Voted messages , the leader device p 5 instructions (set the value of A to 300 ; set the value of B
marks df as issued and sends Success (1 , df) message to all to 200 ; } . The command , when executed , sets the value of
devices . A to 300 and sets the value of B to 200 on a given state 8 . Upon reception of message Success (1 , df) , all devices machine . In order to issue dh , r starts a new ballot with issue df , which means , they execute it on their state number 21 and instance number 3 . The leader device r machines M (p) , M (q) and M (r) . Therefore , A is equal to 10 sends a message BeginBallot (3 , 21 , dh) to the set Q = { q , 500 on every state machine .

9 . In response to a request to the service , device r wants to r } , which constitutes the majority of devices . Starting
ballots on dg and dh is done concurrently . execute a function g = transfer (A , B , 100) . Since r is not the

leader , r sends a request to p (the current leader device) to 16 . The devices from the set Q respond with messages
execute g . 15 Voted (2 , 21 , dg) and Voted (3 , 21 , dh) . The device q votes

10 . The leader device p receives the request to execute for the command dg . Since q voted for this command in
function g and subsequently executes it as dependent on an earlier ballot for instance 2 , q does not violate the rule
the execution of function f . Function g is executed on the B3 . The device r did not vote for any command in instance
leader state LS (p) , in which the value of A is 500 and the 2 , therefore it is free to vote for dg for this instance as
value of B is 0 (the initial value) . The function changes the 20 well . Neither q nor r voted for any command for instance
value of A in the leader state to 400 and the value of B in 3 , therefore they vote for dh in that instance .
the leader state to 100 and returns command dg consisting 17 . Upon receipt of the Voted messages , the leader device r
of two instructions (set the value of A to 400 ; set the value marks dg and dh as issued and sends the Success (2 , dg)
of B to 100 ; } . The command , when executed , sets the and Success (3 , dh) messages to all devices .
value of A to 400 and sets the value of B to 100 on a given 25 18 . Device p recovers after crash and rejoins the computa
state machine . In order to issue dg , p starts a new ballot t ion .
with number 17 and instance number 2 . The leader device 19 . Upon receipt of messages Success (2 , dg) and Success (3 ,
p sends a message BeginBallot (2 , 17 , dg) to the majority dh) , all devices issue dg and dh , which means they
set Q = { p , q) , which constitutes the majority of devices . execute them on their state machines M (p) , M (q) and M (r)

11 . The devices from the set Q respond with messages 30 in the order of command numbers . Therefore , on every
Voted (2 , 17 , dg) . The devices vote for the command dg . state machine A is equal to 300 and B is equal to 200 .
Since they did not vote in any other ballot in this instance , 20 . In response to a request to the service , device p wants to
doing so does not violate the rule B3 . execute a function k = transfer (A , C , 500) . Since p is not

12 . Before the current leader p receives the Voted messages , the leader , p sends a request to r (the current leader device)
p crashes . Note that dg is not yet issued . 35 to execute k .

13 . Device r decides to become the leader device , so r sends 21 . In response to a request to the service , device q wants to
the NextBallot (21 , 2) message to q (p is crashed) thus execute a function l = transfer (B , A , 200) . Since q is not the
initiating the protocol for instance 2 (r is aware that a leader , q sends a request to r (the current leader device) to
command df has been issued for instance 1) with ballot execute 1 .
number 21 (some unique ballot number chosen by r , such 40 22 . The leader device r receives the requests to execute
that the number is greater than any other ballot number r functions k and 1 and subsequently executes them . Note
is aware of) . that for both functions to execute without errors , 1 has to

14 . Device q responds with BallotInfo (21 , 0 , { (q , 2 , 17 , dg) } , be executed before k (otherwise , the execution ofk would
0) message thus indicating that : fail since there would be no sufficient amount of goods to
a . q has no knowledge of any issued commands that r is 45 perform a transfer) . Assume that the leader device r first

not aware of , executes function 1 , as dependent on the execution of
b . q has previously cast a vote on command dg for function h , and then k , as dependent on the execution of

instance 2 in ballot number 17 , function 1 (see below for a discussion on the order of
c . there are no issued commands that r is aware of and a function executions) . The function 1 is executed on the

is missing . 50 leader state LS (r) , in which the value of A is 300 , the value
Additionally , in response to a request to the service , of B is 200 and the value of C is 0 (the initial value) . The

device q wants to execute a function h = transfer (A , B , 100) . function changes the value of A in LS (r) to 500 , the value
Since q is not the leader , q sends a request to r (which of B in LS (r) to 0 and returns a command dl consisting of
already initiated the procedure to become the leader) to two instructions set the value of A to 500 ; set the value
execute h . of B to 0 ; } . The command , when executed , sets the value
15 . Upon reception of the BallotInfo message , r creates of A to 500 and sets the value of B to 0 on a given state
LS (r) as a copy of M (r) and initiates the InitHistFroc machine . Then the function k is executed on the leader
procedure . The procedure constructs an initial history set state LS (r) . The function changes the value of A in LS (r)
H = { (2 , dg) } . Since H is not empty , r executes dg on its to 0 , the value of C in LS (r) to 500 and returns a command
leader state LS (r) and sets the value of A to 400 and the 60 dk consisting of two instructions set the value of A to 0 ;
value of B to 100 . Then r initiates a new ballot to finish set the value of C to 500 ; } . The command , when executed ,
voting on dg . To this end , r sends a message BeginBallot sets the value of A to O and sets the value of C to 500 on
(2 , 21 , dg) to the majority set Q = { q , r } , which constitutes a given state machine . In order to issue dl and dk , r starts
the majority of devices . Device ris now the leader device . new ballots with number 21 and instance numbers 4 and
In the mean time , r receives the request to execute 65 5 . The leader device r sends messages BeginBallot (4 , 21 ,
function h and subsequently executes it as dependent on dl) and BeginBallot (5 , 21 , dk) to the set Q = { q , r } , which
the execution of function g . Function h is executed on the constitutes the majority of devices .

23
US 10 , 135 , 929 B2

24
23 . The devices from the set Q respond with messages concurrent updates on the same document , thus allowing for

Voted (4 , 21 , dl) and Voted (5 , 21 , dk) . Neither q nor r voted reduced CPU utilization and limited network congestion . In
for any commands for instances 4 or 5 , therefore they are this case , functions would represent changes made by dif
free to vote for dl and dk for those instances without ferent users (clients) on a document or a group of docu
violating the rule B3 . 5 ments . The role of the leader would be to merge the changes

24 . Upon receipt of the Voted messages , the leader devicer and produce new versions of the documents , which then can
marks dl and dk as issued and sends the Success (4 , dl) and be safely stored on all client devices . The benefits of the
Success (5 , dk) messages to all devices . present disclosure can be even more evident when used for

25 . Upon receipt of messages Success (4 , dl) and Success (5 , building massive - scale multiplayer games . Similarly , as in
dk) , all devices issue dl and dk , which means they execute 10 the computer aided collaborative tools , multiple users (cli
them on their state machines M (p) , M (q) and M (r) in the ents) access and modify shared resources concurrently .
order of command numbers . Therefore , on every state More precisely , the users immersed in the virtual world
machine A is equal to 0 , B is equal to 0 and C is equal to interact with each other and with the world in which their
500 . avatars exist , so their actions need to be reflected in the game
Constructing the initial history out of the information 15 environment . Because of the highly interactive nature of this

obtained from other devices and maintaining the leader state process the requirements on real - time evaluation are even
for function execution is crucial for ensuring correctness . If tighter . When such systems would be implemented as dis
Paxos were used instead of Executive Paxos , and the leader tributed two - tier state machines , the users would send their
failed in the middle of step 22 , just after sending messages actions , expressed as functions , to the leader device . Then
BeginBallot for dk , but before sending messages BeginBal - 20 the leader would execute them on its leader state to obtain
lot for di , instead of command dl a " no - op ” command could a consistent set of gradual changes to the game environment .
be issued . Then , however , command dk would be issued and These changes or state updates would then be send to all
its dependent command dl would not be issued . This would other devices as commands to persist the changes and to
lead to an incorrect state where A would equal O , B would make them visible to the users on their local devices .
equal 200 , and C would equal 500 . 25 The invention claimed is :

In the example , it is assumed that function 1 executes 1 . A fault - tolerant data processing computer system uti
before k and therefore both functions are executed without lizing a two - tier state machine aimed for distributed data
errors . Had they been executed in a different order , execu - stores , the system comprising :
tion of function k would fail as there would be no sufficient a network of computing devices having functions and
amount of goods to perform the transfer . In such a case 30 consecutively numbered commands ,
function k would have to be resubmitted at some point in one of said devices being designated as a leader for
hope that its execution succeeds . In Executive Paxos , the sending proposed commands to the other devices in
leader does not need to execute functions in the order of their ballots for a given command number ,
receipt . Then , if the leader received several function calls wherein each of the devices includes a processing unit
approximately at the same time , it may analyze them and 35 having at least one processor , the processing units of
choose the order of function executions that yields the best the devices collectively configured :
results , so that most of the commands are successfully to define a majority set of the devices such that any two
completed . This way the Executive Paxos protocol may majority sets selected in a similar manner will have
reduce the number of times functions are submitted to the at least one device in common ,
system and executed , thus reducing the utilization of CPU 40 to send a message from the leader to the other devices
and limiting the network congestion , contrary to other in the majority set to indicate that the leader is going
solutions that cannot provide the same advantages . to propose commands ,

The presented example of the usage of Executive Paxos to send reply messages from the other devices in the
has been tailored to a specific application . In practice , majority set to the leader identifying the most recent
applications such as the supply chain management system 45 ballots for given command numbers in which they
do not need to use the Executive Paxos protocol directly . have voted , such that the commands for the given
Instead , they may rely on a distributed data store middleware command numbers are not yet issued ,
system that occupies a position in a hierarchy between the in response to the reply messages from the devices in
operating system and the applications . Then , A , B , C would the majority set , to send a ballot to the devices in the
be just three variables kept in the distributed (replicated) 50 majority set for a given command number on some
data store and the functionality of the supply chain man command voted for in a previous ballot for said
agement system would be implemented as three transac command number , such that the command for said
tions , each corresponding to one of the functions defined command number is not yet issued ,
earlier . Then , upon receipt of a request to the system , an in response to the reply messages from the devices in
appropriate transaction would be executed locally by device 55 the majority set , to send a ballot to the devices in the
that received the request , and the results of transaction majority set on a command for some command
execution would be sent to the leader to certify the trans number for which no commands have yet been
action . In case of the certification were successful , the proposed ,
transaction updates of the data store would be consistently to exchange votes between the devices , and to ensure
applied by all devices to their local data stores . Otherwise , 60 that all devices agree a command is issued ,
the transaction would have to be re - executed . wherein the two - tier state machine is equipped with a

Other applications of the system and method presented set of functions , that are intended to be called and
herein include any systems with partially or fully replicated executed only by the leader ; wherein the functions
data in which concurrent requests to access these data need transform a leader state that is associated with the
to be synchronized in a strongly consistent fashion . For 65 leader that executes the functions ; wherein the leader
example , computer aided collaborative tools may delegate to state is separate from a machine state of the two - tier
the leader device the process of resolving conflicts between state machine ; wherein the functions return com

US 10 , 135 , 929 B2
25 26

mands intended for the state machine ; wherein the 4 . The system of claim 1 , wherein the processing units of
commands that have been issued for an execution by the devices are further collectively configured :
the two - tier state machine are executable concur - to send a catch - up message from a device to other device
rently with the functions ; wherein all the issued or devices indicating any command numbers for which
commands form a dependent sequence of com - 5 said device does not have an issued command , and
mands ; and wherein the two - tier state machine is in response to the catch - up message , to send reply mes
configured to execute a prefix of the dependent sages from the other device or devices to said device sequence of the issued commands with no interven indicating any issued commands the other device or ing command in - between , devices have for command numbers indicated by the and wherein said commands are being the results of 10 catch - up message . executing said functions by some computing device , 5 . The system of claim 1 , wherein the processing units of where the order of function executions determines
the logical precedence between commands , the devices are further collectively configured :

and wherein said leader is designated also for executing to prevent the leader from sending a proposed command
until all previously proposed commands up to a pre functions , 15

and wherein the response to the reply messages for determined number prior to the proposed command
sending a ballot for a given command number on have been issued .
some command voted for in a previous ballot , 6 . The system of claim 1 , wherein the commands are
includes choosing the command that was identified recorded in stable storage .
as being the one most recently voted for in a previous 20 7 . A method of implementing a fault - tolerant data pro
ballot for said command number , such that declaring cessing computer system utilizing a two - tier state machine
said command as issued does not break the logical aimed for distributed data stores , with a network of com
dependency between issued commands , or if there is puting devices having functions and consecutively num
no such command , choosing any arbitrary command , bered commands , one of said devices being designated as a

and wherein the processing units of the devices are 25 leader for sending proposed commands to the other devices
collectively configured to ensure that all devices in ballots for a given command number , the method com
agree a command is issued and to require that : prising the steps of :
(i) the devices in the majority set voted for the defining a majority set of the devices such that any two

proposed command in some ballot , and majority sets selected in a similar manner will have at
(ii) the precedent command of the proposed com - 30 least one device in common ,
mand was issued , in the event the proposed com sending a message from the leader to the other devices in
mand is not to be issued for the first command the majority set to indicate that the leader is going to
number , propose commands ,

and wherein the response to the reply messages for sending reply messages from the other devices in the
sending a ballot for a given command number on 35 majority set to the leader identifying the most recent
some command voted for in a previous ballot , and ballots for given command numbers in which they have
the response to the reply messages for sending a voted , such that the commands for the given command
ballot for a given command number for which no numbers are not yet issued ,
commands have yet been proposed , are independent upon receipt of the reply messages from devices in the
and can be active at the same time . 40 majority set , sending a ballot for a given command

2 . The system of claim 1 , wherein the processing units of number to the devices in the majority set on some
the devices are collectively configured : command voted for in a previous ballot for said com

to exchange votes between the devices and to ensure that mand number , such that the command for said com
all devices agree a command is issued , which includes : mand number is not yet issued ,
(i) sending messages from the other devices to the 45 upon receipt of the reply messages from devices in the

leader to vote for said command , majority set , sending a ballot to the devices in the
(ii) sending a success message to the devices in the majority set on a command for some command number
majority set to declare the command as issued , if : for which no commands have yet been proposed ,
(a) votes from the devices in the majority set were exchanging votes between devices ,

received , and ensuring that all devices agree a command is issued ,
(b) the precedent command of said command was wherein the two - tier state machine is equipped with a set

issued , in the event said command is not voted for of functions , that are intended to be called and executed
the first command number , only by the leader ; wherein the functions transform a

(iii) declaring the command as issued upon receipt of a leader state that is associated with the leader that
success message . 55 executes the functions ; wherein the leader state is

3 . The system of claim 1 , wherein the processing units of separate from a machine state of the two - tier state
the devices are collectively configured : machine ; wherein the functions return commands

to exchange votes between the devices and to ensure that intended for the two - tier state machine ; wherein the
all devices agree a command is issued , which includes : commands that have been issued for an execution by
(i) exchanging messages between the devices to vote 60 the two - tier state machine are executable concurrently

for said command , with the functions ; wherein all the issued commands
(ii) declaring the command as issued if : form a dependent sequence of commands ; and wherein

(a) votes from the devices in the majority set were the two - tier state machine is configured to execute a
received , and prefix of the dependent sequence of the issued com

(b) the precedent command of said command was 65 mands with no intervening command in - between ,
issued , in the event said command is not voted for and wherein said commands are being the results of
the first command number . executing said functions by some computing device ,

50

28

4 15

US 10 , 135 , 929 B2
27

where the order of function executions determines the (b) the precedent command of said command was
logical precedence between commands , issued , in the event said command is not voted for

and wherein said leader is designated also for executing the first command number , and
functions , (iii) upon receipt of a success message , declaring the and wherein the step of sending a ballot for a given 5 . command as issued . command number on some command voted for in a 9 . The method of claim 7 , wherein the steps of exchanging previous ballot , include choosing the command that
was identified as being the one most recently voted for votes between the devices and ensuring that all devices
in a previous ballot for said command number , such agree a command is issued include :
that declaring said command as issued does not break 10 (1) exchanging messages between devices to vote for said

command , the logical dependency between issued commands , or if
there is no such command , choosing any arbitrary (ii) declaring the command as issued if :
command , (a) votes from the devices in the majority set were

and wherein the step of ensuring that all devices agree a received , and
command is issued includes requiring that : (b) the precedent command of said command was
(i) the devices in the majority set voted for the proposed issued , in the event said command is not voted for
command in some ballot , and the first command number .

10 . The method of claim 7 , further comprising the steps (ii) the precedent command of said command was
issued , in the event said command is not to be issued
for the first command number , sending a catch - up message from a device to other device

20
and wherein the step of sending a ballot for a given or devices indicating any command numbers for which
command number on some command voted for in a said device does not have an issued command , and
previous ballot , and the step of sending a ballot for a upon receipt of the catch - up message , sending reply

messages from the other device or devices to said given command number for which no commands have
yet been proposed , are independent steps and can be 25 device indicating any issued commands the other
performed at the same time . device or devices have for command numbers indicated

8 . The method of claim 7 , wherein the steps of exchanging by the catch - up message .
votes between the devices and ensuring that all devices 11 . The method of claim 7 , further comprising the step of :
agree a command is issued include : preventing the leader from sending a proposed command

(i) sending messages from the other devices to the leader 30 until all previously proposed commands up to a pre
to vote for said command , determined number prior to the proposed command

(ii) sending a success message to the devices in the have been issued .
majority set to declare the command as issued if : 12 . The method of claim 7 , wherein the commands are
(a) votes from the devices in the majority set were recorded in stable storage .

received , and

of :

