
Model-Driven Comparison of State-Machine-based
and Deferred-Update Replication Schemes

Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński
Poznań University of Technology, Poland

Email: {Pawel.T.Wojciechowski,Tadeusz.Kobus,Maciej.Kokocinski}@cs.put.poznan.pl

Abstract—In this paper, we analyze and experimentally com-

pare state-machine-based and deferred-update (or transactional)

replication, both relying on atomic broadcast. We define a model

that describes the upper and lower bounds on the execution of

concurrent requests by a service replicated using either scheme.

The model is parametrized by the degree of parallelism in either

scheme, the number of processor cores, and the type of requests.

We use our model to make a comparison with a non-replicated

service, considering separately abcast- and request-execution-

dominant workloads. To evaluate transactional replication ex-

perimentally, we developed Paxos STM—a novel fault-tolerant

distributed software transactional memory with programming

constructs for transaction creation, abort, and retry. We used

JPaxos for state-machine-based replication. Both systems share

the same implementation of atomic broadcast built on the Paxos

algorithm. We present the results of performance evaluation of

both replication schemes, and a non-replicated (thus prone to

failures) service, considering various workloads. The key result

of our theoretical and experimental work is that neither system

is superior in all cases. We discuss these results in the paper.

Index Terms—state machine replication; deferred update repli-

cation;

I. INTRODUCTION

Replication is an important method to increase service reli-
ability and accessibility. It means deployment of a service on
several server machines, each of which may fail independently,
and coordination of service replicas so that they maintain
a consistent state. Each replica maintains service state in
memory (and optionally in its local nonvolatile store).

We analytically and experimentally analyze two approaches
to fault-tolerant replication of services (or objects). The first
approach is a replicated state machine (SM) [1] in which
a client request is executed on every server. Services must
be deterministic: any service replica being in the same state
always produces the same effect upon the same request. SM
coordinates all servers, so that all requests are delivered and
processed by every replica in the same order. Thus concurrent
object accesses are consistent. The second approach is trans-
actional replication (TR) based on deferred update [10] (also
known as multi-primary passive replication). Programmers use
atomic transactions to access critical objects; such objects are
replicated on every server. The transaction’s atomicity and
serializability guarantee that the concurrent modifications of
object replicas are propagated consistently to every server.
In the paper, we consider deferred update relying on atomic
broadcast (abcast). This technique prevents deadlocks and
allows better scalability than using two-phase commitment

since transactions are never blocked [2], [3].
The SM scheme is more general than TR since it can also be

used for replication of services that require linearizability [4]
while transactions in TR normally only guarantee serializabil-
ity. Thus, it is important to remember that some services can
be replicated using SM but not TR. Thus, our comparison is
valid only for replicated services, in which concurrent requests
satisfy one-copy serializability [5]. We also assume the crash-
recovery model of failure, in which dN/2e� 1 server crashes
can be tolerated, where N is the number of servers. A server
can rejoin the system any time after crash.

The contributions of the paper are twofold. We define a
model of SM and TR, and use it to analyze both replication
schemes. Our model describes the upper and lower bounds
on the execution of concurrent requests parametrized by the
degree of parallelism, the number of processor cores, and the
types of requests. Next, we present and discuss the results of
the SM and TR performance evaluation, obtained using two
popular microbenchmarks. To our best knowledge, this is the
first experimental comparison of the two replication schemes
and a non-replicated service in a uniform environment (same
abcast), under varying contention loads and requests sizes.

To facilitate experimentation, we developed Paxos STM—
Distributed Software Transactional Memory (DSTM) for TR
replication that has programming constructs for transaction
creation, abort, retry, and for annotating Java objects as
transactional. DSTM systems are a follow-up of the work
on STM—a concurrent programming mechanism intended
to replace lock-based synchronization (see [6], [7] among
others). In STM, an atomic transaction is any piece of code
containing memory reads and writes that must be executed
atomically. To avoid blocking, STM systems use optimistic
concurrency control—a transaction that conflicts with another
concurrent transaction is rolled back and retried. DSTM is
essentially like STM but transactional memory is replicated
on other network nodes. Contrary to the majority of existing
DSTM systems, Paxos STM implements the deferred update
replication scheme using a transaction certification protocol
which is based on atomic broadcast.

In the example code below, which has been taken verbatim
from the executable source, a transaction is created that
accesses two objects accA and accB atomically:

@TransactionObject
class Account { ... }
new Transaction() {

public void atomic() {
float amount = 100;
if (accA.balance() >= amount)

accA.withdraw(amount);
else

retry();
accB.deposit(amount)

}
};

For objects to be accessed atomically, their class Account
has been annotated as transactional. Paxos STM replicates
such objects on other servers, coordinates the execution of
concurrent transactions preserving isolation (one-copy serial-
izability) and maintains a consistent view of object replicas
on every server despite server failures. If retry is executed,
a transaction is rolled back and reexecuted.

To experimentally evaluate SM replication, we used JPaxos
[8]—a state-machine-based replication library, implementing
Paxos [9] for replica (server) coordination. Paxos STM reuses
this protocol code for agreement coordination. Thus, we are
able to fairly compare the results of benchmarks that we
implemented using both tools. The analytical model helped us
to understand and interpret our experimental results precisely.

A. Motivations and results
The motivations to do this research were twofold. Firstly,

to our best knowledge there was no prior work on rigorous
evaluation and comparison of the SM and TR replication
schemes, including estimation of the upper and lower time
bounds. Secondly, reasoning about advantages, limitations and
possible optimization paths of both replication schemes is
difficult without a performance model that abstracts away from
any uninteresting details. Although the modus operandi of SM
and TR may appear simple, concurrency, transaction conflicts,
and dealing separately with read-only and read-write (update)
requests make the model quite subtle.

The main contributions of our work are the following:
• We designed and implemented Paxos STM, a program-

ming tool for TR replication of services;
• We defined a model of SM and TR that describes the

upper and lower bounds on processing a set of concurrent
requests (assuming no delays); the lower bound is given
for unoptimized and optimized schemes, where the latter
recognizes read-only requests and treats them differently;

• Our model shows precisely the potential benefits of
various means to increase parallelism in SM and TR and
so also to increase throughput, such as optimized abcast,
dealing with read-only requests differently, detecting con-
flicts earlier and fully using multi-core CPUs;

• We have shown when concurrent processing of requests
by SM and TR can be faster than their sequential execu-
tion, considering (in TR) upper bounds on the number of
conflicts that cause transactions to be reexecuted;

• We examined throughput and scalability using two mi-
crobenchmarks (Hashmap and Bank) and compared SM
and TR; the comparison is fair since JPaxos and Paxos
STM share the same implementation of abcast.

Both JPaxos and Paxos STM support the crash-recovery
model of failure, which means that a server replica can recover
after a crash and catch up on the current state automatically
(from a local disk and/or other replicas). However, we do not
show evaluation results under faulty behavior scenarios in this
paper since our focus is on modeling and comparing normal
behaviour of both systems when no failures occur. We leave
examining the faulty behaviour for future work.

B. Paper structure
The paper has the following structure. Firstly, we define

the analytical model of state machine and deferred update
replication in §II. Next, we show the results of our evaluation
experiments in §III, comparing performance and scalability of
the two replication schemes. Then, we discuss related work in
§IV. Finally, we conclude in §V.

II. ANALYTICAL MODEL

In both SM and TR replication protocols, we can identify
some of the following 5 phases [10], each of which takes the
amount of time given in brackets:

1) Client request (q)
2) Server coordination (sc)
3) Local execution (e)
4) Agreement coordination (ac)
5) Client response or answer (a)
In our model, each client request consists of a sequence

of operations to be executed atomically, that can read or
modify the database (i.e. objects). We call a client request a
“transaction” both in the TR and SM scheme. A replicated ser-
vice (or database) satisfies one-copy serializability (1SR) [5]:
transactions performed on the replicas have an ordering which
is equivalent to an ordering obtained when the transactions are
performed sequentially in a single centralized database.

We can identify three types of requests: read-only, write-
only and update, denoted respectively, r, w and rw. The
former two describe requests that contain respectively, only
read or only write operations to be executed by a replicated
service, while the last contains at least one write and read.

For the model to be tractable, we consider a replicated
system in which the time e of processing a request locally
by either TR or SM is the same for all requests; the same
holds for q and a. Thus, we can estimate the total time T of
processing n requests by a service replicated on N machines
(servers) using SM or TR to be:

T = M(q, sc, e, ac, a) (1)

where function M depends on the semantics of SM and TR
and the parallelism enabled by the underlying system. For each
replication scheme we estimate the upper and lower bounds
on time T , that correspond to respectively, the worst and
best cases when computing n concurrent requests without any
delay. We consider the number of available processors (or CPU
cores) per server, denoted c, and abstract away other hardware
restrictions. A mean time of processing n requests is an aver-
age of the lower and upper bounds: T 0 = (Tlower+Tupper)/2.

2

So, we get the average throughput P = n/T

0. We use the
following symbols: N is the number of servers (replicas), n is
the number of requests (equal to the number of transactions),
tabc is the execution time of a single atomic broadcast (abcast)
with a superscript r (requests) for SM and o (object read-sets
and write-sets) for TM (trabc can differ from t

o
abc considerably,

depending on the size of requests vs. the size of read/write-
sets), � is the degree of the atomic broadcast optimization
(� � 1), where the greater � the higher throughput of atomic
broadcast; � = 1 means no optimization.

Optimizations of abcast are request batching and running
concurrent rounds of abcast [11]. Batching means processing
of several requests by a single round of abcast. The best results
are when there is a continuous stream of requests so that
the protocol does not need to wait for the batch to be filled
in. Running concurrent rounds of abcast can further shorten
the time required to deliver requests in a total order. In our
model, broadcasting a continuous stream of n requests by the
optimized abcast protocol takes n

� tabc, where � is a small
number (say < 5).

A. State machine replication (SM)
We first model a non-replicated state machine, and extend it

to a replicated SM executing on N servers with c cores each.
Single processing (N = n = 1):

sc = t

r
abc (2)

ac = 0 (3)
T

1
SM = q + sc+ e+ ac+ a = q + t

r
abc + e+ a (4)

Sequential processing (N = 1, n > 1):

T

1!n
SM = nT

1
SM (5)

Parallel processing (N > 1, n > 1): In a system replicated
on N servers using SM:

• all requests must be executed by all servers,
• all requests are executed by each server sequentially,
• server coordination (atomic broadcast) and execution of

requests can occur in parallel,
• a client can submit request to any non-faulty server, and

the current leader of the Paxos protocol will broadcast
the message.

The above assumptions hold in JPaxos [8]—our reference
implementation of SM. An optimized (rare in practice) variant
of SM could recognize requests that are read-only and process
them differently, replacing the first two assumptions by:

• all update requests must be executed by all servers,
• all update requests are executed by each server sequen-

tially (i.e. processing is single-threaded),
• read-only requests can be executed by one server only, in

parallel with any other requests, and t

r
abc = 0.

Consider a sequence of three client requests r(o), w(o), and
r(o), each containing only a single operation either reading
(r) or updating (w) a replicated object o. The unoptimized
SM guarantees that the last read will always see the object o
modified by w(o). In the optimized SM, read-only requests are

not ordered, so the last read may not see the update of object
o. To solve this problem additional machinery is required (see
e.g., [9]), which we neglect in our model since without this the
1SR property is still guaranteed: the effect can be equivalent
to a sequential execution r(o), r(o), and w(o).

Below we compute the upper and lower bound on the total
time of processing n requests by SM. The lower bound is
computed both for the unoptimized and optimized SM.

1) Upper bound: In the worst case there is no concurrency,
which means sequential execution. Thus, we have:

T

1|..|n
SM

upper

= nT

1
SM (6)

2) Lower bound (unopt. SM): In the best case there is as
much concurrency as possible, i.e. server coordination (abcast)
and the execution of requests occur in parallel. Concurrently
the client requests and responses are communicated but these
times are relatively short. Thus, the total time of processing
n requests by an unoptimized SM has only two outcomes,
depending on which of the parallel parts will take more time.
We model this choice using a function max.

T

1|..|n
SM

lower

= T

1
SM +max(

n

�

t

r
abc, ne)� �SM (7)

where

�SM =

(
t

r
abc if max(n� t

r
abc, ne) =

n
� t

r
abc

e if max(n� t
r
abc, ne) = ne

The interpretation of the above two cases is as follows. In
the first case, abcast time is dominant, i.e. requests are short.
In the second case, request processing time is dominant, i.e.
requests are long. If n

� t
r
abc = ne, max returns either value.

3) Lower bound (opt. SM): In the optimized SM, read-only
requests can be processed by any non-faulty replica in parallel
with any other requests. However, parallelism is limited by the
fact that each of the N servers (replicas) has only c processors
(or processor cores), where c � 1.

Thus, the best case for servers with one processor core is:

T

1|..|n
SMopt

lower

= max

✓
nrw

�

t

r
abc, (nrw +

l
nr

Nc

m
)e� ⇡

◆

+ T

1
SM � �SM , where c = 1 and ⇡ 2 h0,min(trabc, e)i

(8)

The request processing is dominant if either requests are long
or they are short but many read-only requests are among them.
⇡ describes any forward shift in a schedule caused by read-
only requests (⇡ = 0 if nr = 0).

If servers have many processors (or processor cores) then:

T

1|..|n
SMopt

lower

⇡ max

✓
nrw

�

t

r
abc, nrwe,

l
nr

N(c� ✓)

m
e

◆

+ T

1
SM � �SM , where c > 1 and ✓ 2 {0, 1}

(9)

where nrw and nr denote correspondingly, the number of
update and read-only requests, and �SM is equal respectively,
t

r
abc (or 0) if the first (or second) compound of max is the

largest, and e otherwise. When no parallel update requests are
present, read-only requests can be executed on c cores instead

3

of c � 1. We use ✓ to model this choice. More precisely,
the third compound of max should be d

n0
r

Nc + n00
r

N(c�1)ee,
where n

0
r + n

00
r = nr. However, we prefer the less precise

approximation to avoid cluttering the model with additional
parameters.

Below we give the main results for the optimized SM. The
proofs of lemmas are available in the technical report [12].

Lemma 1: The speedup of processing requests by the opti-
mized SM when compared to the unoptimized SM is propor-
tional to the number of read-only requests, and—for abcast
dominant processing—inversely proportional to �.

Lemma 2: In the best case, a service replicated on N single-
core processor servers (N > 1) using the SM scheme is not
slower than the non-replicated service if at least one request
is read-only and

nrw +
l
nr

N

m
�

⇡

e

nrwt
r
abc

�e

 n� 1 (10)

when abcast is dominant, and
✓
nrw

�

+ 1

◆
t

r
abc

l
nr

N

m
e� ⇡ ne (11)

when request execution is dominant.
Note that if N = 1 or nr = 0, then the equation (10) is false,

which is intuitively valid since the overhead of replication must
slow down the replicated service if no parallelism is possible.
Also, if nr = 0, then the equation (11) is false (trabc > 0).

B. Transactional replication (TR)
In TR, each request is processed as a single atomic trans-

action that can read and write a set of objects atomically. All
transaction objects are replicated on every server. TR maintains
one-copy serializability of distributed object accesses. Concur-
rent transactions are executed optimistically (objects are not
locked) and may conflict. An update transaction (or request)
x conflicts with some concurrent transaction y that is about to
commit, resulting in x being rolled back and reexecuted, if x
reads any object modified by y. We call the former transaction
conflicting and the latter one committing.

We denote K to be the number of conflicts while processing
n requests by TR (K � 0). Note that K is also the number
of transaction (or request) reexecutions caused by conflicts. K
depends on the type of requests and the intersection of objects
modified by transactions (the more shared objects, the higher
the probability of a conflict). By a conflict definition, write-
only requests cannot conflict1. Since read-only requests are not
causally ordered, they also do not cause conflicts, unless strict
1SR is required. K does not depend on the number of servers
(replicas) N . K cannot be statically predicted since whether
(or not) a conflict occurs depends on transaction interleaving
at runtime. However, the upper bound can be estimated—if n
update requests have been submitted by clients concurrently,
the number of conflicts cannot be greater than (n�1)+ . . .+
1 = (n�1)n

2 .

1However, in our object-oriented Paxos STM they are treated as regular rw
requests, since a transaction normally modifies only a subset of object fields;
the other object fields are then “read”.

Instead of server coordination, TR requires agreement co-
ordination, which is responsible for transaction certification:
when a transaction has completed, the effects of its execution
are sent to all servers (replicas) using atomic broadcast; if
no conflicts with other concurrent transactions are detected
locally, the effects are made permanent on every server and
the transaction commits. Otherwise, the transaction is rolled
back and reexecuted.

Thus, the server and agreement coordination times are:

sc = 0 (12)
ac = tcer + t

o
abc (13)

where tcer and t

o
abc are correspondingly, the local transaction

certification time and the time of atomic broadcast, where the
latter is executed on commit only. The broadcast data include
object read-sets, write-sets and changes made to objects. For
simplicity, we assume that all these messages have the same
size for all update requests (transactions).

The agreement coordination phase also includes any other
operations of the transaction processing protocol, such as
creation of object shadow copies accessed by transactions.
Some of these operations are executed in parallel with abcast,
while the rest is assumed to be included in tcer. Since in
typical applications the network communication will be the
bottleneck, we assume that tcer << t

o
abc.

Single processing (N = n = 1):

T

1
TR = q+0+e+t

o
abc+tcer+a = q+t

o
abc+e+a+tcer . (14)

Sequential processing (N = 1, n > 1):

T

1!n
TR = nT

1
TR . (15)

Note that if toabc = t

r
abc then we obtain T

1
TR = T

1
SM + tcer

and T

1!n
TR = nT

1
SM + ntcer.

In single and sequential processing, there are obviously no
concurrent transactions, so conflicts cannot occur.

Parallel processing (N > 1, n > 1): In a system replicated
on N servers using TR:

• a client can submit request to any non-faulty server,
• each request (transaction) is executed by one server only

and any object modifications are consistently applied to
object replicas on all servers,

• requests can be executed in parallel,
• each server is multi-threaded and can execute its requests

(transactions) concurrently under optimistic concurrency
control scheme (no blocking).

Paxos STM that we developed for experimental validation
allows an optimized variant of TR (which is common for TR):

• read-only requests do not need agreement coordination,
• conflicts are detected as soon as possible, so a conflicting

transaction, can be aborted before completion, giving the
execution time less than e and t

o
abc = 0 (but for simplicity,

we use e to describe such cases),
• a conflict can also be detected after a transaction com-

pletes but before its effects are broadcast, causing an abort
of the committing transaction; then t

o
abc is also 0.

4

We say that a conflict is detected early to describe one of the
two cases above. Conflicts can be detected early no matter if
the conflicting and committing transactions are executed on
the same server or not.

As before, we consider 1SR as the criterion of correctness.
If consistency guarantees should reflect any causal relations
between requests issued by various clients, they have to be
ensured by the replicated service itself.

Below we compute the upper and lower bounds on the total
time of processing n requests by TR.

1) Upper bound: We consider almost sequential execution
but allow a bit of concurrency, so before a transaction commits
with its effects stored, a new transaction can commence that
may conflict with the committing transaction. Then the total
time of processing n requests is

T

1|..|n
TR

upper

⇡ n(q + e+ t

o
abc + tcer + a) +K(e+ tcer + t

o
abc)

= T

1!n
TR +K(e+ tcer + t

o
abc) where 0 K < n

(16)

We approximated the almost sequential execution to sequen-
tial but admitted K conflicts (0 K < n). We assumed
the worst case: a conflicting transaction x has completed and
broadcast its effects to all servers as part of transaction certifi-
cation. Not till then did the servers detect that there is a conflict
with some other transaction that completed soon after x had
commenced but not committed yet. The conflicting transaction
must be rolled back and reexecuted, so the execution time is
2(e+ tcer + t

o
abc).

2) Lower bound (unoptimized TR): In the best case, all
transactions are executed by TR in parallel but in case of any
conflicts, as before, the conflicting transactions must be rolled
back and reexecuted. The first naı̂ve version of the lower bound
is

T

1|..|n
TR

lower

⇡ T

1
TR +max

⇣
f(n0)(e+ tcer) +

K

0

�

t

o
abc,

n+K

0

�

t

o
abc

⌘
� �TR

(17)

where f() is a conflict function which for a given number of
conflicting transactions n

0 executed in parallel (0 n

0
< n)

returns a factor that when multiplied by a time of processing
one transaction gives the time of committing all n

0 trans-
actions. Note that some of the conflicting transactions can
be executed several times until they commit, so the number
of conflicts K can be larger than n

0. K

0 is the number of
conflicts that are not detected early, so transaction effects
are abcast to all servers. Once a conflict is detected the
conflicting transaction is aborted but for simplicity we still
use the complete times e and tcer to describe its execution.

As before, max describes the parallel execution of abcast
and local processing on nodes. However, we must also reflect
the order imposed by the TR phases. Thus, the first compound
of max describes a sequence of the ’execute’, ’certify’ (lo-
cally), and ’abcast’ operations of a subset of transactions that
run into conflicts, while the second compound describes the

total of ’abcast’ operations of all transactions; abcasts of non-
conflicting transactions may occur in parallel with the local
execution of retried transactions. We reduce (17) to

T

1|..|n
TR

lower

⇡ T

1
TR +max(f(n0)e0,

n

�

t

o
abc) +

K

0

�

t

o
abc � �TR

(18)

where e

0 = e+ tcer

�TR =

(
0 if max(f(n0)e0, n

� t
o
abc) = f(n0)e0

t

o
abc if max(f(n0)e0, n

� t
o
abc) =

n
� t

o
abc

The interpretation of the above conditional is as follows. In the
first case, request execution is dominant, i.e. either transactions
are relatively long or many conflicts occur that are detected
early (which means no abcast is required). In the second case,
atomic broadcast is dominant, i.e. transactions are relatively
short and there are few conflicts.

The more concurrent accesses of shared objects occur and
the more parallelism is allowed, the more probable the con-
flicts are. The actual number of conflicts K and a value f(n0)
depend on the intersection of objects shared by transactions
and their runtime interleaving. In the report [12], we defined
a conflict function f() for a few special cases, and computed
the upper/lower bounds for the worst case (f(n0) = n

0).
3) Lower bound (optimized TR): In our estimation of TR’s

lower bound, we neglected hardware restrictions and assumed
an unlimited number of processors. Below we approximate
the lower time bound of processing n concurrent requests by
a service replicated in a system of N servers with c processor
cores each, and consider the optimized TR in which read-only
requests do not require the agreement coordination phase:

T

1|..|n
TRopt

lower

⇡ T

1
TR +max

⇣l
n+K

Nc

m
e

0 + ⌃,
nrw +K

0

�

t

o
abc

⌘
+

� �TR where ⌃ = �e

0 +
j
�

x

k
t

o
abc and � 2 h0, fH(Nc� 1)i

(19)

where �TR is equal to e

0 if the first compound of max is
the larger, or t

o
abc otherwise. The conflict function fH() is

defined as before but the function domain is h0, fH(Nc)i,
which means that at the same time there cannot be more than
Nc concurrent conflicting transactions. ⌃ = �e

0 + b

�
x ct

o
abc

describes the offset caused by the conflicting transactions
that have not managed to be executed in parallel with non-
conflicting transactions (see Fig. 1), where the upper bound
on � is equal fH(Nc� 1) and x (0 < x �+1) reflects the
fact that some of the conflicts can be detected early and no
abcast is used.

Below we give the main results for the optimized TR:
Lemma 3: A service replicated on N servers, each having

c-processor cores, using the optimized TR runs nr
to
abc

� faster
than when using the unoptimized TR.

Lemma 4: In the best case, a service replicated on N single-
core processor servers (N > 1) using the TR scheme can be
faster than the non-replicated service if

l
n+K

N

m
e

0 + ⌃

nrw +K

0

�

t

o
abc ne� e

0 (20)

5

σ

H

threads

0

time factor

Nc

f (Nc−1)

Fig. 1. Processing n+K requests on Nc cores, where K � Nc� 1

when abcast is dominant, and

nrw +K

0

�

t

o
abc

l
n+K

N

m
e

0 + ⌃ ne� t

o
abc (21)

when request execution is dominant.
The proofs of lemmas are available in technical report [12].
Note that in the equation (20) nrw (and so t

o
abc) cannot equal

0 since we assumed abcast dominance.
The TR-replicated service is faster than a non-replicated

service if the equation (21) holds. In particular, if nrw = 0,
there are no conflicts (K = K

0 = ⌃ = 0) and no abcast
(toabc = 0). So we have

0

l
nr

N

m
e

0 + ⌃ nre (22)

Since normally tcer << e, the above equation is mostly true,
which agrees with the intuition that a TR-replicated service is
faster than a non-replicated service if there are many read-only
requests that can be processed in parallel. Note that if nr = 1
or N = 1 then the above equation is false. If nr N then
the equation is true only if nr �

e0+⌃
e .

III. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate and compare per-
formance and scalability of SM- and TR-based replicated, and
a non-replicated service, modelled by two benchmarks.

A. Programming tools
In order to evaluate SM-based replication, we used JPaxos

[8]—an efficient implementation of the Paxos [9] algorithm,
with the support of the crash-recovery model of failure. To
boost performance, JPaxos supports concurrent rounds of con-
sensus and request batching. Request types are not recognized
so it implements the unoptimized SM model (see II-A).

To evaluate TR-based replication, we designed and imple-
mented Paxos STM—an object-oriented fault-tolerant DSTM
system, which replicates every shared object on each node for
increased availability and minimal access latency. Paxos STM
supports multi-primary passive replication (similar to multi-
master replication in databases) and relies on the optimistic
concurrency control scheme. Paxos STM’s certification proto-
col is built on top of JPaxos, with each replica able to propose
new updates to the distributed state by abcasting them. Paxos
STM supports both the crash-stop and the crash-recovery
failure models. Our system also takes advantage of modern
multicore hardware by allowing multithreaded processing of

Operation (Transaction) Default Prolonged High-Contention
get (RO) 100 100 100
get (RW) 8 8 40

put/remove (RW) 2 2 10
“active wait” (RO+RW) 1ms

Fig. 2. Input parameters for the Hashtable benchmark

transactions. It distinguishes between read-only and updating
transactions, thus supporting the optimized version of TR
replication (see II-B). By the use of the multiversioning
scheme read-only transactions are guaranteed to commit suc-
cessfully.

B. Benchmarks
To evaluate SM and TR replication schemes under different

workloads and compare with a non-replicated run, we imple-
mented two popular microbenchmarks: Hashtable and Bank.

1) Hashtable microbenchmark: The hashtable of size n

stores key-value integer elements and manages them through
get/put/remove operations. It is prepopulated with n/2 random
elements from a defined range, thus giving the saturation of
50%. A single run consists of a series of requests issued to the
hashtable. There are two types of requests (or transactions):
read-only (RO) and read-write (RW), which correspond to
requests r and rw in Section II. The RO request atomically
performs a given number of get operations with a randomly
chosen set of keys. The RW request executes a defined number
of get operations followed by updating operations (either put
or remove). To keep the hashtable 50% saturated, the decision
whether to insert a new object to the hashtable or remove an
existing one depends on the previous get operations.

The benchmark parameters in Fig. 2 reflect different kinds
of workload: Default, Prolonged, and High-Contention. The
RO transactions scan through a vast amount of data using
many get operations. In contrary, RW transactions involve
much fewer operations (two to ten times less, depending on
the test), 20% of which are modifying ones. Different levels
of contention can be generated by manipulating the size (or
the number of involved operations) of the RW transactions
and the relative number of RO and RW transactions. In the
evaluation we use the same sizes of RO transactions for all
tests and two different sizes of RW transactions. For each
test, we examine three scenarios consisting of a different mix
of RW and RO transactions: 10/90, 50/50, 90/10, denoted
respectively: 10%, 50%, and 90% of RWs. In the Prolonged
workload each request additionally performs the “active wait”
for a given amount of time (1 ms) to simulate computation-
heavy workloads.

2) Bank benchmark: Operations are performed on an array
of accounts shared between nodes. We have two types of
transactions. An RW transaction performs transfer of funds
from one account to another, thus executing in total two read
and two write operations on two distinct accounts. An RO
transaction computes balance, which requires reading all of the
accounts and summing up the funds. In our tests, we evaluate
three scenarios with different percentage of RW transactions,

6

Benchmark service 10% RW 50% RW 90% RW
a) Default Hashtable 110398 119135 161415

b) Prolonged Hashtable 666 667 667
c) High-Contention Hashtable 103666 106608 120830

d) Bank 123183 155615 206042

Fig. 3. The results of the non-replicated benchmark execution

namely 10%, 50%, and 90%. In each scenario, the number of
accounts is 10000.

C. Evaluation Environment
We used a cluster of eight nodes, each equipped with a Xeon

Quad-core X3230 2.66GHz, L2 cache 2x4MB CPU, 4GB
RAM ECC DDR2, 800MHz, running OpenSUSE 10.3 (kernel
2.6.22.19) with Sun JRE 1.6.0. The nodes are connected via
a private 1Gb Ethernet network.

JPaxos was configured to have at most two concurrent
instances of consensus, the maximum batch size 64KB, and
no batching delay. All available CPU cores were utilized,
so the c parameter that reflects the number of physical on-
board cores (see II) is four. We experimentally established an
optimal number of worker threads in Paxos STM to be 20
for the Hashtable benchmark and 80 for the Bank benchmark
(these values were used in all of our tests). Such a high
number of threads (far exceeding the number of physical cores)
is necessary to fully exercise the hardware potential due to
threads blocking on network I/O operations.

D. Evaluation results and analysis
Below we discuss the results of benchmark tests. In Fig. 4,

we present throughput obtained using JPaxos and Paxos STM,
i.e. the number of transactions committed per second. We
also present the transaction abort rate (in Paxos STM), i.e.
the percentage of transactions aborted due to conflicts and
reexecuted (equal K

n+K 100% in our model in §II); the abort
rate gives useful insight into the level of contention.

1) Default Hashtable: Hashtable with default configuration
executed under JPaxos on two nodes, touches the score of
25000 requests per second (req/sec) (see Fig. 4-a). With
the number of nodes increasing the performance gradually
decreases stabilising at the level of around 17000 req/sec. This
drop results from higher coordination costs of maintaining
a higher number of replicas that the Paxos leader replica
must handle. The differences among scenarios including a
various mix of request types are minimal. However, slightly
(7-11%) better results are obtained in scenarios including more
read-write (RW) requests. The larger size of read-only (RO)
requests adds to the execution time, as well to the abcast time
since more data needs to be exchanged between nodes.

Results of Paxos STM evaluation show more differences
between various scenarios. Conversely to JPaxos, better results
are obtained with a higher percentage of read-only requests,
which do not require the server agreement phase and therefore
the costly abcast operation. The results in scenarios including
90% and 50% of read-write requests resemble the ones ob-
tained with JPaxos, but scaled up by a certain factor. Paxos

STM 50% scenario performance is roughly twice the JPaxos’.
One can observe that the best performance is obtained with a
small number of nodes and it falls with the increasing number
of nodes. The 90% scenario exhibits different characteristics.
It scales up with the number of nodes. It is the result of
Paxos STM’s ability to process read-only requests (which are
almost an order of magnitude more frequent than in other
scenarios) in a fully parallel manner with no communication
overhead. The higher number of nodes the more requests can
be processed. The top performance obtained for a maximum
number of nodes reaches almost 150000 requests per second.
In the other scenarios the predominant cost of abcast does not
allow to fully exercise the potential level of parallelism. The
abort rate in all scenarios is moderate and ranges from 0 to
12%, depending on the scenario.

The results obtained using a non-replicated Default Hash-
table greatly surpass the results of both JPaxos and Paxos STM
(see Fig. 3). This immense throughput of the latter is, however,
achieved at the cost of absolutely no fault tolerance. Note that
in the 10% RW scenario, Default Hash-table replicated using
Paxos STM outperforms its non-replicated, non-fault-torerant
variant if there are more than 4 replicas.

2) Prolonged Hashtable: Contrary to the first test, where
the cost of abcast in SM as well as TR was predominant, the
second test aims at mimicking a computation-heavy workload
(which corresponds to the request processing time dominance
in §II). The parameters of this test differ only in one aspect
compared to the Default Hashtable configuration—the execu-
tion of each request is prolonged by 1 ms.

JPaxos’s evaluation (see Fig. 4-b) show stunningly uniform
performance of 675 requests per second regardless of the
number of nodes involved in computation. It indicates that a
high execution time of requests entirely covers up any cost of
replica coordination. The system throughput is directly limited
by the time needed by replicas to actually execute the requests.

On the other hand, Paxos STM exhibits excellent scaling
capabilities. Performance increases with the number of nodes.
For the 10% RW scenario, it does so almost linearly. In
other scenarios the agreement coordination phase required by
(more frequent in these cases) RW requests introduces a slight
overhead. The fall of performance in case of 50% RW and
90% RW scenarios is small up to 3-4 replicas and slightly
raises for a higher number of nodes. Performance achieved
for the minimal number of nodes is almost four times higher
than in case of JPaxos since Paxos STM takes advantage of
the multicore hardware architecture. The abort rate is nearly
identical to the one from the previous test.

The throughput of a non-replicated Prolonged Hashtable is
similar to JPaxos and limited by the request execution time.
Now, the performance of the non-replicated service cannot be
matched to Paxos STM which is superior this time (see Fig. 3).
This result is justified by Lemma 4-(21), showing precisely
when TR can be faster for the execution-dominant workload.

3) High-Contention Hashtable: This benchmark test aims
at examining both replication approaches under high con-
tention. For this, the number of read and write operations in

7

0
20
40
60
80

100
120
140
160

 2 3 4 5 6 7 8

JP
ax

os
Th

ro
ug

hp
ut

 (x
10

00
 re

q/
s)

a) Default Hashtable
10%
50%
90%

0
2
4
6
8

10
12
14
16
18

 2 3 4 5 6 7 8

b) Prolonged Hashtable
10%
50%
90%

0

10

20

30

40

50

60

 2 3 4 5 6 7 8

c) High-Contention Hashtable
10%
50%
90%

0

10

20

30

40

50

 2 3 4 5 6 7 8

d) Bank
10%
50%
90%

0
20
40
60
80

100
120
140
160

 2 3 4 5 6 7 8

Pa
xo

s
ST

M
Th

ro
ug

hp
ut

 (x
10

00
 re

q/
s)

10%
50%
90%

0
2
4
6
8

10
12
14
16
18

 2 3 4 5 6 7 8

10%
50%
90%

0

10

20

30

40

50

60

 2 3 4 5 6 7 8

10%
50%
90%

0

10

20

30

40

50

 2 3 4 5 6 7 8

10%
50%
90%

0%
2%
4%
6%
8%

10%
12%
14%

 2 3 4 5 6 7 8

Pa
xo

s
ST

M
Ab

or
t r

at
e

Number of replicas

10%
50%
90%

0%

2%

4%

6%

8%

10%

12%

 2 3 4 5 6 7 8
Number of replicas

10%
50%
90%

0%
10%
20%
30%
40%
50%
60%
70%

 2 3 4 5 6 7 8
Number of replicas

10%
50%
90%

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

 2 3 4 5 6 7 8
Number of replicas

10%
50%
90%

Fig. 4. Benchmarks, where 10%, 50%, and 90% denote the percentage of read-write (RW) requests (or transactions).

RW requests grew 5 times compared to the Default Hashtable
benchmark configuration. The performance of JPaxos is very
similar to the one obtained from the first test (see Fig. 4-c). It
is due to the requests being executed by JPaxos sequentially,
thus not conflicting with each other. The main difference is the
lower performance of scenarios involving more RW requests.
Their performance is now closer to the performance of the
read-only dominated scenario, because the lengths of RO and
RW requests are now comparable.

The change of contention level has a much more visible
impact on Paxos STM. The abort rate now reaches up to 20%
for the 10% RW scenario (20 times more), 50% for 50%
RW scenario and, 70% for 90% RW scenario. This means
that in case of the highest contention level almost every RW
transaction is aborted at least once. The impact of such a high
abort rate can be easily observed in the throughput diagram.
The 50% RW and 90% RW scenarios, which are the most
affected by the contention increase, demonstrate the max. four
times throughput downfall. The throughput is diminished even
more for a higher number of nodes, where this decrease is
even larger—up to eight times. In the 10% RW case, the
throughput is roughly halved for a small number of nodes,
and then falls drastically when the number of nodes increases.
Note that only RW transactions may be aborted since RO
transactions are guaranteed to commit successfully. If 90%
of transactions are guaranteed to succeed then, in case of the
20% abort rate, the rest of transactions (all RW transactions)
are aborted twice on average. The higher is the number of
RW transactions performed (including the aborted re-runs),
the more this scenario resembles scenarios with a higher

base percentage of RW transactions, so its performance is
decreased.

Higher contention also has an impact on the execution of a
non-replicated High-Contention Hashtable service (see Fig. 3).
The lower performance can be attributed to higher packet
processing overhead and the execution time of RW requests.

4) Bank Benchmark: In this test (see Fig. 4-d), the JPaxos
throughput ranges from nearly 30000 to slightly above 20000,
similarly as in the case of Hashtable. There is no observ-
able difference between various scenarios. Even though RO
requests consist of a huge number of operations the in-
creased execution time has no significant impact on the overall
throughput. The factor that has the biggest impact on the
throughput is the abcast cost, which is similar for both types of
requests. Note that although the RO request requires a large
number of operations to be performed (all the accounts are
scanned), the amount of data being sent is limited to a single
word which depicts the type of the request.

In Paxos STM, the observed tendencies are different than
before. Contrary to the previous tests, where the scenarios in-
cluding more RO requests performed better, now the opposite
is true. The best results were obtained for 90% RW scenario.
This result can be explained by a higher execution time of RO
requests that is even more important in the TR approach due to
transactional processing overhead. Although RO requests have
higher execution times, they scale well with the number of
nodes, allowing Paxos STM to improve its performance from
10000 requests per second for two nodes up to 30000 for eight
nodes in case of 10% RW scenario, and up to 35000 in case
of 50% RW scenario. While the performance of Paxos STM

8

increases with the number of nodes, the performance of JPaxos
lowers slightly. In the 10% RW and 50% RW scenarios, both
tools obtain roughly equal throughput on 5 nodes. With the
lower number of nodes, JPaxos exhibits better performance,
while with 5 and more nodes Paxos STM is superior.

In case of 90% RW scenario one can notice exceptionally
good behaviour of Paxos STM. Usually in an abcast dominated
workload the speed of Paxos STM is limited by the speed of
abcast. Clearly, in this case, it is the opposite. It is the result
of a number of effects occurring simultaneously: very small
requests (each 76 bytes), extremely short transaction execution
times, and a high number of updating transactions performed
concurrently. In such circumstances replicas might have a lot
of transactions ready to commit at the same moment. In this
case, the abcast protocol may broadcast them all at once using
a single message. Thus, in practice, by optimizing abcast, we
will be able to considerably improve performance of TR.

The non-replicated Bank service again tops all the ap-
proaches with the best throughput, ranging from 120000 to
over 200000 (see Fig. 3). Yet again, this performance gain is
at the expense of no support for fault-tolerance.

E. Evaluation Summary
In most cases, a non-replicated service outperforms its the

SM- and TR-based replicated variant. It is however done at
the expense of providing absolutely no fault tolerance. In some
scenarios, however, the TR-based replicated service is the clear
winner. This is justified by our theory: Lemmas 2 and 4 show
precisely when SM- and TR-based replicated services can
outperform its non-replicated variant, considering abcast or
request dominant workloads. As expected (see II-A2), JPaxos
does not scale at all and is insensitive to high-contention
workloads. It performs poorly when the workload is execution
dominated since all requests have to be processed sequentially.
It is not the case with Paxos STM which takes the advantage
of multicore hardware and allows for concurrent distributed
processing on several nodes (see II-B3). This is especially
visible in the case of read-only transactions. However, TR
performance suffers under high contention. Abcast overhead
should be reduced as much as possible since otherwise it
may overshadow gains of parallelism and reduce scalability
(e.g., 10% RW scenario in Fig. 4-c). On the other hand, SM
outperforms TR in High-Contention Hashtable for 50% and
90% RW. Therefore one can see that no single solution would
fit all purposes. However, TR-based replication holds a lot of
promise.

IV. RELATED WORK

A lot of work was done on replication in distributed systems
in the past years (see [10] for a survey), and different mod-
els and replication techniques have emerged. Unfortunately,
various authors often use different terms to name similar
abstractions. Some models (such as state-machine replication,
originally proposed in [1]) evolved considerably since their
initial formulation. Below we briefly describe some of the
work most closely related to ours.

Our SM model can be used to describe performance of the
state-machine [1] as well as quorum-based [13] approach to
replication, each relying on a distributed agreement protocol.
The key idea of the former approach is processing all requests
in the same order by all replicas. On the other hand, the
fundamental idea of the quorum-based replication is that a
transaction is executed if the majority of sites vote to execute
it. Our TR model describes a variant of the primary-copy repli-
cation [14] that allows many concurrent master replicas. It is
called multi-primary passive replication [10] or, in the database
community, deferred update or multi-master replication; in the
classification of [3] (see Chapter 12), it is an eager, update
everywhere approach. As in the primary-backup replication,
update transactions can only be processed on a master replica,
with the updates propagated eagerly or lazily to slave replicas
[3], but many concurrent master replicas are allowed.

The deferred update systems often employ pessimistic con-
currency control based on the strict two-phase locking (S2PL)
[15]. Contrary, our TR model describes deferred update based
on atomic broadcast, which allows transactions to be executed
without blocking. Several authors demonstrated advantages of
using this technique to replicate databases and make them
tolerant to machine crashes (see e.g., [16], [17], [18], [19]).
Various optimizations of the basic scheme are possible, e.g.
readsets of update transactions do not need to be broadcast if
an additional communication phase is introduced to broadcast
the decision regarding committing or restarting a transac-
tion [20]. More recently, deferred update protocols tolerating
Byzantine faults are also investigated (see e.g., [21]).

There exists work on analytical performance evaluation of
transactional and replicated systems. But there is relatively
little work on formalization of replication schemes similar to
ours. Yu [22] defines an analytical model of various concur-
rency control schemes used in transactional processing. Ciciani
et al. [23] describe an analytical model designed to study the
tradeoff between replicating data in database systems using
various pessimistic, optimistic, and semi-optimistic concur-
rency control schemes. However, this study does not include
approaches based on group communication. Nicola and Jarke
[24] propose a 2D analytical queueing model of replication for
performance evaluation of distributed and replicated database
systems. Jiménez-Peris et al. [25], analytically and experimen-
tally compare various quorum-based data replication schemes.
The authors conclude that in most cases the read-only-write-
all-available approach outperforms quorum replication.

Paxos STM that we developed is a Distributed Software
Transactional Memory (DSTM) system. Most of these systems
extend the implementations of some non-distributed STMs
with replication protocols, which are often designed ad-hoc,
providing no fault-tolerance and depending on a central coor-
dinator. In contrast to such systems, we designed Paxos STM
from the ground up as a fault-tolerant distributed STM.

DiSTM [26] is an object-level DSTM implementing several
coherence protocols. Serialization of concurrent transactions
is ensured either by a distributed mutual exclusion algorithm,
or by a lease mechanism. Leases are managed by a designated

9

machine, which can be a bottleneck under high load. Anaconda
[27] alleviates some of the DiSTM shortcomings by extending
it with distributed object replication, caching mechanisms,
and a new three-phase pessimistic concurrency control pro-
tocol. However, neither DiSTM nor Anaconda provide fault
tolerance. The closest system to Paxos STM is D2STM [28],
which also implements an optimistic transaction certification
based on atomic broadcast and multiversioning. All objects
are replicated on each node, thus eliminating the problem of
fetching objects from remote locations. However, D2STM is
built as a local STM, extended to support replication. More
recently, D2STM has been equipped with the lease-based
mechanism to limit abort rate under high contention [29].

V. CONCLUSIONS AND FUTURE WORK

We analyzed and experimentally compared two approaches
for replication of services (or databases), both based on atomic
broadcast: replicated state machine (SM) and transactional
(deferred update) replication (TR). The key corollary one can
draw from our analytical model is that neither solution is
superior in all cases. This is due to the differences between the
two approaches in sensitivity to various workloads. Execution
dominated workloads are handled much better when using TR
since this approach can (inherently) execute multiple requests
concurrently, contrary to classical SM. In particular, TR allows
higher throughput than SM for read-write requests with a
majority of read operations that do not cause conflicts (which
is a typical workload of web services). However, performance
gains from parallel request execution may be overshadowed
by high costs of atomic broadcast, which is especially visible
in the abcast-dominated workloads. The predictions given by
our model are supported by the results of evaluation. For
our experimental evaluation, we have used JPaxos (SM) and
developed Paxos STM (TR). The tools are based on the same
implementation of the MultiPaxos algorithm, thus ensuring
fairness of the comparison. Since only TR exercises the ability
to scale, one would expect it to perform better than SM.
However, the results show that sometimes the overhead of
transactional machinery makes SM a better choice. One can
also observe the high footprint of using either replication
scheme compared to the performance of a non-replicated
(thus prone to failures) variant. However, the fault-tolerance
is worth the price. Moreover, the costs of expensive inter-
node communication can be partially compensated by parallel
request execution in TR. In workloads that exhibit high
request execution times this may even result in much higher
performance of TR compared to a non-replicated service. To
conclude, when considering replication as a mean of providing
fault tolerance one should carefully choose one or the other
solution based on the expected workload. In the future, we
would like to compare TR and SM under faulty scenarios,
using different protocols for recovery after crashes which are
already supported by JPaxos and Paxos STM. Our comparison
of SM and TR schemes is valid for services that require 1SR
only. It may also be interesting to design TR with support of
linearizability, and repeat the comparison.

Acknowledgments The authors would like to thank Jan
Kończak, Nuno Santos, Tomasz Żurkowski, and André Schiper
for their work on the implementation of JPaxos.

REFERENCES

[1] F. B. Schneider, Replication management using the state-machine ap-
proach. ACM Press/Addison-Wesley, 1993, pp. 169–197.

[2] A. Schiper and M. Raynal, “From group communication to transactions
in distributed systems,” Communications of the ACM, vol. 39, Apr. 1996.

[3] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” in Proc. of SIGMOD ’96, 1996.

[4] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM TOPLAS, vol. 12, no. 3, 1990.

[5] P. A. Bernstein and N. Goodman, “Serializability theory for replicated
databases,” J. Comput. Syst. Sci., vol. 31, pp. 355–374, Dec. 1985.

[6] N. Shavit and D. Touitou, “Software transactional memory,” in Proc. of
PODCS ’95, Aug. 1995.

[7] T. Harris and K. Fraser, “Language support for lightweight transactions,”
in Proc. of OOPSLA ’03, Oct. 2003.

[8] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and
A. Schiper, “JPaxos: State machine replication based on the Paxos
protocol,” Faculté I&C, EPFL, Tech. Rep. 167765, Jul. 2011.

[9] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, pp. 133–169, May 1998.

[10] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replication: Theory
and Practice, ser. LNCS 5959. Springer, 2010.

[11] N. Santos and A. Schiper, “Tuning paxos for high-throughput with
batching and pipelining,” in Proc. of ICDCN ’12, 2012.

[12] P. T. Wojciechowski, T. Kobus, and M. Kokociński, “Model-driven
comparison of state-machine-based and deferred-update replication
schemes,” Poznań Univ. of Technology, Tech. Rep. RA-05/12, Apr. 2012,
available from http://www.cs.put.poznan.pl/pawelw/pub/TR-05/12.pdf.

[13] D. K. Gifford, “Weighted voting for replicated data,” in Proc. of SOSP
’79, Dec. 1979, pp. 150–162.

[14] M. Stonebraker, “Concurrency control and consistency of multiple
copies of data in distributed ingres,” IEEE TSE, vol. 5, 1979.

[15] P. A., Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-Wesley, 1987.

[16] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi, “Exploiting atomic
broadcast in replicated databases,” in Proc. of EuroPar ’97, Aug. 1997.

[17] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing transac-
tions over optimistic atomic broadcast protocols,” in Proc. ICDCS ’99.

[18] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: flexible
database clustering middleware,” in Proc. USENIX ATEC ’04, Jun. 2004.

[19] F. Pedone, R. Guerraoui, and A.Schiper, “The database state machine
approach,” Distributed and Parallel Databases, vol. 14, no. 1, Jul. 2003.

[20] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication,” in Proc. VLDB ’00, 2000.

[21] F. Pedone, N. Schiper, and J. E. Armendáriz-Iñigo, “Byzantine fault-
tolerant deferred update replication,” in Proc. of LADC ’11, Dec. 2011.

[22] P. S. Yu, “Modeling and analysis of transaction processing systems,” in
Performance Evaluation of Computer and Communication Systems, ser.
LNCS 729. Springer-Verlag, 1993.

[23] B. Ciciani, D. M. Dias, and P. S. Yu, “Analysis of replication in
distributed database systems,” IEEE Trans. on Knowl. and Data Eng.,
vol. 2, pp. 247–261, Jun. 1990.

[24] M. Nicola and M. Jarke, “Increasing the expressiveness of analytical
performance models for replicated databases,” in ICDT ’99, Jan. 1999.

[25] R. Jiménez-Peris, M. Patiño-Martı́nez, G. Alonso, and B. Kemme, “Are
quorums an alternative for data replication?” ACM Trans. Database
Syst., vol. 28, pp. 257–294, Sep. 2003.

[26] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham, and
I. Watson, “DiSTM: A software transactional memory framework for
clusters,” in Proc. of ICPP ’08, Sep. 2008.

[27] C. Kotselidis, M. Lujan, M. Ansari, K. Malakasis, B. Kahn, C. Kirkham,
and I. Watson, “Clustering JVMs with software transactional memory
support,” in Proc. IPDPS ’10, 2010.

[28] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM:
Dependable Distributed Software Transactional Memory,” in Proc. of
PRDC ’09, Nov. 2009.

[29] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based
replication of software transactional memory,” in Proc. of Middleware
’10, ser. LNCS 6452, 2010.

10

