Sieci komputerowe

Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska

Routing statyczny w Linuksie

Routing

Internet składa się z mniejszych, połączonych ze sobą sieci komputerowych.

Sieci łączone są przy pomocy routerów.

Urządzenie (komputer/router) korzysta z tablicy routingu zawierającej:

- adres sieci docelowej (destination),
- maskę podsieci (mask),
- bramę (gateway).

Tablica routingu

Sieć	Maska	Brama
192.168.1.0	255.255.255.0	10.0.0.1
192.168.2.0	255.255.255.0	10.0.0.2
192.168.3.0	255.255.255.0	10.0.0.3
192.168.4.0	255.255.255.0	10.0.0.4
10.0.0.0	255.0.0.0	-

- Pakiet o adresie docelowym 192.168.3.42 jest kierowany do sieci 192.168.3.0/24 przez bramę 10.0.0.3.
- Pakiet o adresie docelowym z sieci, w której jest urządzenie (w tablicy brak określonej bramy), np. 10.143.11.85, jest kierowany do tej sieci.
- Każdy kolejny router na ścieżce pakietu niezależnie podejmuje decyzję o tym, dokąd dalej przesłać pakiet.
- Przy wyznaczaniu trasy adres źródłowy pakietu nie jest brany pod uwagę.

Typy routingu

- Routing statyczny (static routing) zawartość tablicy routingu zdefiniowana przez administratora (na stałe).
- Routing dynamiczny (dynamic routing) tablica routingu wyznaczona jest przez protokół routingu (np. RIP, OSPF, IS-IS, IGRP) w czasie działania urządzenia.
- Routing sprzętowy realizowany przez hardware.

Routing – przykład (1)

	Sieć	Maska	Brama
D1	10.0.0.0	255.0.0.0	-
	20.0.0.0	255.0.0.0	-
K1	30.0.0.0	255.0.0.0	20.0.0.2
	40.0.0.0	255.0.0.0	20.0.0.2

Routing – przykład (2)

	Sieć	Maska	Brama
	10.0.0.0	255.0.0.0	20.0.0.1
D٦	20.0.0.0	255.0.0.0	-
R2	30.0.0.0	255.0.0.0	-
	40.0.0.0	255.0.0.0	30.0.0.2

Routing – przykład (3)

	Sieć	Maska	Brama
D2	10.0.0.0	255.0.0.0	30.0.0.1
	20.0.0.0	255.0.0.0	30.0.0.1
КJ	30.0.0.0	255.0.0.0	-
	40.0.0.0	255.0.0.0	-

Konfiguracja routingu statycznego (1)

ip route show

default via 150.254.44.1 dev wlp3s0 proto static metric 600 150.254.44.0/23 dev wlp3s0 proto kernel scope link src 150.254.45.101 metric 600

ip addr add 192.168.1.101/24 dev wlp3s0

ip route

default via 150.254.44.1 dev wlp3s0 proto static metric 600 150.254.44.0/23 dev wlp3s0 proto kernel scope link src 150.254.45.101 metric 600

192.168.1.0/24 dev wlp3s0 proto kernel scope link src 192.168.1.101 # ip route add 172.16.0.0/16 via 192.168.1.111

ip route

default via 150.254.44.1 dev wlp3s0 proto static metric 600 150.254.44.0/23 dev wlp3s0 proto kernel scope link src 150.254.45.101 metric 600

172.16.0.0/16 via 192.168.1.111 dev wlp3s0 192.168.1.0/24 dev wlp3s0 proto kernel scope link src 192.168.1.101 metric 600

ip route add default via 192.168.1.1
ip route del 172.16.0.0/16

Konfiguracja routingu statycznego (2)

route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 150.254.44.1 0.0.0.0 UG 600 0 0 wlp3s0 150.254.44.0 0.0.0.0 255.255.254.0 U 600 0 wlp3s0 0 # ifconfig wlp3s0:1 192.168.1.101 netmask 255.255.255.0 # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 150.254.44.1 0.0.0.0 UG 600 0 0 wlp3s0 150.254.44.0 0.0.0.0 255.255.254.0 600 0 wlp3s0 U 0 192.168.1.0 0.0.0.0 255.255.25.0 U 0 0 0 wlp3s0 # route add -net 172.16.0.0 netmask 255.255.0.0 gw 192.168.1.111 # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 150.254.44.1 0.0.0.0 UG 600 0 0 wlp3s0 150.254.44.0 0.0.0.0 255.255.254.0 U 600 0 0 wlp3s0 172.16.0.0 192.168.1.111 255.255.0.0 UG 0 0 0 wlp3s0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 wlp3s0 # route add default gw 192.168.1.1 # route del -net 172.16.0.0 netmask 255.255.0.0

Procedura wyboru trasy (1)

 Trasa do sieci, w której znajduje się adres docelowy o najdłuższej (najbardziej restrykcyjnej) masce.

172.21.0.0/16 via 172.16.0.16 dev eth2 172.21.0.0/24 via 172.16.0.24 dev eth2 172.21.0.0/28 via 172.16.0.28 dev eth2

2. Jeśli wybór nie jest jednoznaczny – trasa o najmniejszym koszcie.

150.254.44.0/23 dev wlan0 proto kernel scope link src 150.254.45.39 metric 2003 150.254.44.0/23 dev wlan1 proto kernel scope link src 150.254.44.149 metric 1002

3. Jeśli wybór nie jest jednoznaczny – pierwsza w tablicy.

default via 150.254.44.1 dev wlan0 default via 150.254.130.42 dev eth0

Procedura wyboru trasy (2)

ip route

default via 150.254.31.1 dev enp0s26u1u2 proto static metric 100 default via 150.254.44.1 dev wlp3s0 proto static metric 600 150.254.6.8 via 150.254.44.1 dev wlp3s0 proto dhcp metric 600 150.254.31.0/25 dev enp0s26u1u2 proto kernel scope link src 150.254.31.15 metric 100

150.254.44.0/23 dev wlp3s0 proto kernel scope link src 150.254.45.101 metric 600

route -n

Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 150.254.31.1 0.0.0.0 UG 100 0 0 enp0s26u1u2 0.0.0.0 150.254.44.1 0.0.0.0 UG 600 0 wlp3s0 0 150.254.6.8 150.254.44.1 255.255.255.255 UGH 600 0 0 wlp3s0 150.254.31.0 0.0.0.0 255.255.255.128 U 100 0 0 enp0s26u1u2 150.254.44.0 0.0.0.0 255,255,254,0 U 600 0 0 wlp3s0

Forwarding

Ustawienie za pomocą pliku /proc/sys/net/ipv4/ip_forward:

- wartość 0 forwarding wyłączony,
- wartość 1 forwarding włączony,
- ustawienie na stałe: /etc/sysctl.conf.

```
# cat /proc/sys/net/ipv4/ip_forward
0
# echo 1 > /proc/sys/net/ipv4/ip_forward
1
# cat /proc/sys/net/ipv4/ip_forward
1
# sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0
# sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
```

Zadanie 1

- Połącz komputer z sąsiednimi komputerami, tak by wszystkie komputery w laboratorium były spięte w łańcuszek. Komputery mają być połączone ze sobą bezpośrednio. Użyj w tym celu portów p4p1 i p4p2.
- Ustal z koleżankami/kolegami spójną numeracje komputerów, tak by utworzyć następujące sieci między sąsiednimi komputerami:
 - dla komputerów 1 i 2: 10.0.1.0/24,
 - dla komputerów 2 i 3: 10.0.2.0/24,
 - ...
 - adresy komputera 1: 10.0.1.1/24,
 - adresy komputera N: 10.0.N-1.N/24, 10.0.N.N/24,
- Skonfiguruj adresy IP na interfejsach p4p1 i p4p2 i sprawdź czy możliwa jest komunikacja z innymi komputerami (np. przy pomocy polecenia ping).
- 4. Dodaj routing do innych sieci.
- 5. Co pokazuje traceroute/mtr?

Komunikaty redirect

(IP hosta: 172.16.1.1)

ping 10.1.1.1

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data. From 172.16.1.100: icmp_seq=1 Redirect Host(New nexthop: 172.16.1.200) 64 bytes from 8.8.8.8: icmp_seq=1 ttl=64 time=82.8 ms From 172.16.1.100: icmp_seq=2 Redirect Host(New nexthop: 172.16.1.200) 64 bytes from 8.8.8.8: icmp_seq=2 ttl=64 time=123 ms

