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RelationalRelational calculuscalculus andand algebraalgebra

� Relational calculus ���� declarative (SQL)

� Relational algebra ���� procedural

� basic operators

• selection

• projection

• cartesian product

• union

• set difference

� derived operators

• intersection

• theta-join (natural, semi, equi, non-equi)
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QueryQuery processorprocessor

� Transforming a high-level query expressed in
relational calculus into an equivalent lower-level
query expressed in relational algebra ���� query
execution plan

� transformation correctness - the same query result

� more efficient performance of a transformed query
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ExampleExample

select fName, lName
from Cus c, Sales s
where s.custID=c.custID
and quantity=100
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QueryQuery optimizationoptimization ""monentmonent""

� Static
� compilation time optimization
� problem of estimating sizes of intermediate results ���� non-

optimal execution
� a query execution plan can be reused (cached)
� R*

� Dynamic
� run time optimization
� exact sizes of intermediate results are known
� for every query its execution plan has to be optimized ���� no 

plan sharing
� Distributed INGRES

� Hybrid
� compilation time optimization
� if estimated sizes of intermediate results differ by a 

threshold from real ones ���� reoptimize at run time
� MERMAID
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QueryQuery optimizationoptimization architecturesarchitectures

� Centralized architecture

� access to statistics of all components of DDBS

� central query optimizer ���� bottleneck

� Distributed architecture

� sites cooperate in order to create optimal plan

� higher network traffic (messages exchange)

� Hybrid architecture

� one site determines global plan

� local query is optimized locally on site
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LayersLayers ofof queryquery processingprocessing

query decomposition

data localization

global optimization

local optimization

global
schema, views

replicas,
fragments

local schema, 
physical design, 

statistics

SQL query

query in relational algebra on global schema

query in relational algebra on fragments and replicas

optimized query for data distribution

local optimization ...
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OptimizationOptimization

� Global and local optimization

� Search space: the set of alternative query trees of an input
query ���� obtained by applying transformation rules
� the most costly are joins ���� different types of join trees

� Cost model: describes the cost of a query tree (execution
plan)

� Search strategy: explores search space in order to find
optimal execution plan  

search space
generator

query

equivalent query trees

search algorithm

optimal execution plan
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JoinJoin treestrees

select fName, lName, quantity, prodName
from Cust c, Sales s, Prod p
where s.custID=c.custID and s.prodID=p.prodID

Cust Sales Prod Sales Prod Cust Cust Prod Sales .....
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JoinJoin treestrees

� Linear: at least one operand is a base relation

� Bushy: both operands may be intermediate relations

� increased parallelism (distributed DBS)

A B C D E A B C D E
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QueryQuery optimizationoptimization costcost

� Optimizing
� total execution time (cost)

• reduces cost of every operation

� response time (elapsed from query beginning to 
obtaining results)
• total cost may be larger

• operations may be performed in parallel

� Cost components
� I/O

� CPU

� data transfer

Total_cost = CPU_cost + I/O_cost + communication_cost
CPU_cost = CPU_instr_cost * #instructions
I/O_cost = disk_I/O_cost * #accesses
communication_cost = #messages + data_transmission
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DatabaseDatabase statisticsstatistics

� #rows in table (table cardinality, card(R))

� avg record length

� #distinct attribute values (attribute cardinality, 
card(ΠAi(R))

� histograms (equi width, equi height)

� #db blocks

� ...
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EstimatingEstimating sizesize ofof intermediateintermediate
resultresult

� Size of a relation

� Join selectivity factor

� Assumptions

� attribute values are uniformly distributed

� attributes are not correlated
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EstimatingEstimating cardinalitiescardinalities

� Selection
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EstimatingEstimating cardinalitiescardinalities

� Projection

� Cartesian product

� Union

� Difference
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EstimatingEstimating cardinalitiescardinalities

� Join

� upperbound: cardinality of cartesian product

� simple case: A����PK of R, B����FK of S

• upperbound when every tuple in R joins with tuples in S

� in general:

� Maintain database statistics on cardinalities of
relations and attributes
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QueryQuery decompositiondecomposition

� Query normalization (SQL)

� Syntactical and semantical analysis (SQL)

� Simplification (elimination of redundant
predicates) (SQL)

� Transformation into algebraic representation

� "optimization" of algebraic query

18Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization

� Finding the location of queried data based on data 
distribution statistics

� eliminate useless fragments

� use appropriate replicas

� Create "optimal" algebraic query
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GlobalGlobal optimizationoptimization

� Taking into consideration

� cardinalities of fragments

� communication, I/O, CPU costs

� Using

� reordering operations (esp. joins)

� semijoin reduction
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QueryQuery decompositiondecomposition
NormalizationNormalization

� Lexical and syntactic correctness analysis

� existence of attributes and relations, access rights

� checking type compatibilities

� Transform to normalized (unified form)

� conjunctive NF (more frequently used)

� disjunctive NF

� apply equvalence rules for logical
operators
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QueryQuery decompositiondecomposition
AnalysisAnalysis

� Reject type incorrect normalized queries

� Reject semantically incorrect normalized queries

� Reject queries whose execution is not necessary
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QueryQuery decompositiondecomposition
RedundancyRedundancy RemovalRemoval

� Remove redundant predicates

� Apply rules

� Example
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QueryQuery decompositiondecomposition
RewritingRewriting

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

� Expressing query in relational algebra ���� operator tree
� leaves ���� relations (FROM clause)

� root ���� result with projected attributes (SELECT clause)

� intermediate nodes ���� relational algebra operators

� Straighforward transformation

� Optimized tree by applying transformation rules
� multiple equivalent trees may be created
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QueryQuery decompositiondecomposition
RewritingRewriting

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

Cust Sales Prod
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TransformationTransformation rulesrules

� Relations R, S, T

� R is composed of attributes A={A1, A2, ..., An}

� S is composed of attributes B={B1, B2, ..., Bn}

1. Comutativity of binary operators

2. Associativity of binary operators

3. Grouping unary operators
� grouping subsequent projections

� grouping subsequent selections
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TransformationTransformation rulesrules

4. Commuting selection with projection

5. Commuting selection with binary operators

6. Commuting projection with binary operators

7. Commuting join with set operator
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EquivalentEquivalent queryquery treetree

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

Cust Sales Prod
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DistributedDistributed queryquery optimizationoptimization
ProblemProblem

site1

site2

Cust

Prod

� Query optimizer needs to consider (global view
on the system)

� sizes of relations

� sizes of intermediate results

� communication costs (network throughput)

� computation power of sites (CPU, I/O, memory)

� data structures at sites (indexes, partitions, 
clusters, ...)

� power of query optimizer (join algorithms, cost
based, rule based, search space generation and
searching)

� availability and location of fragments

� availability and location of replicas

select lName, prodName, quantity
from Cust c, Sales s, Prod p
where s.custID=c.custID and s.prodID=p.prodID
and c.city != 'Poznań' and p.tax = 23 and (s.year=2008 or s.year=2009 )

site3

Sales
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DistributedDistributed DB DB exampleexample

� Horizontal fragmentation of Cust and Sales

� site1 ���� Cust1: custID<=1000

� site2 ���� Cust2: custID>1000

� site3 ���� Sales1: custID<=1000

� site4 ���� Sales2: sustID>1000

� site5 ���� executes query

site1 site2 site3 site4

site5
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DistributedDistributed DB DB exampleexample

site1

site3

site2

site4

site5
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Data Data localizationlocalization

� DB is fragmented (partitioned)

� Global relation is represented by a reconstructng
mechanism ���� reconstruction program that
reconstructs the relation from its fragments

� Naive approach: construct generic query tree
where each relation is represented by its
reconstruction program ���� not optimal tree ���� apply
reduction techniques

� reduction for primary horizontal fragmentation

� reduction for vertical fragmentation

� reduction for derived fragmentation

� reduction for hybrid fragmentation
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Data Data localizationlocalization: RPHF: RPHF

� Reduction for Primary Horizontal Fragmentation

� Cust fragmented into

� Cust1: custID<=1000

� Cust2: custID>1000

� reconstruction program

� In generic query tree Cust is replaced by its
reconstruction program

� After building a query tree, find out subtrees that
produce emtpy relations (no results)

� reduction with selection

� reduction with join
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Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith selectionselection

� Generic query tree

select fName, lName
from Cust c
where custID>2000

Cust1
(custID<=1000)

Cust2
custID>1000

� Reduced query tree

Cust1
(custID<=1000)

Cust2
custID>1000
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Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith joinjoin

� Assumption: joined relations are fragmented
according to a join attribute

� Distributing joins over unions + eliminating empty
joins ���� applicable when the number of joins of
fragments is small

� Possible parallel computation of joins of fragments

� Cust fragmented into
� Cust1: custID<=1000

� Cust2: custID>1000

� Sales fragmented into
� Sales1: custID<=500

� Sales2: 500<custID<=1000

� Sales3: 1000<custID<=1500

� Sales4: custID>1500
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Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith joinjoin

� Generic query tree select *
from Cust c, Sales s
where s.custID=c.custID

Cust1
custID<=1000

Cust2
custID>1000

� Reduced query tree

Sales1
custID<=500

Sales2
500<custID<=1000

Sales3
1000<custID<=1500

Sales4
custID>1500

Cust1 Cust2Sales1 Sales2 Sales3 Sales4Cust1 Cust2
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Data Data localizationlocalization: RVF: RVF

� Reduction for Vertical Fragmentation

� Reconstruction program: join

� Vertical fragments that have no attribtes in
common (except PK) with the list of projected
attributes in a query are useless

� Cust fragmented as follows

� Cust1 = ΠcustID,fName,lName(Cust)

� Cust2 = ΠcustID,city(Cust)
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Data Data localizationlocalization: RVF: RVF

select fName, lName
from Cust
where custID>2000

� Generic query tree

Cust1
fName, lName

Cust2
city

Cust2

� Reduced query tree

38Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

� Reduction for Derived Fragmentation

� Derived fragmentation: fragments of R and S that
have the same join attribute values are located at the
same site
� tuples of S are placed based on tuples of R

� 1:m relationship between R (1) and S (m)

� Prod fragmented as follows
� Prod1 = (tax<=7%)

� Prod2 = (tax>7%)

� Derived fragmentation of Sales based on Prod

semijoin PK-FK
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Data Data localizationlocalization: RDF: RDF

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=7

� Generic query tree

Prod1
tax<=7

Prod2
tax>7

Sales1
tax<=7

Sales2
tax>7

pushing
selection

down

Sales1 Sales2Prod1 Prod2
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Data Data localizationlocalization: RDF: RDF

moving
unions

up

Prod1 Sales1 Sales2 Sales1 Sales2

Prod1 Sales1

Prod1 Prod1

after eliminating useless subtree
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Data Data localizationlocalization: RHF: RHF

� Reduction for Hybrid Fragmentation

� Hybrid fragmentation: horizontal + vertical + 
derived ���� support SPJ queries

� Query graph optimization rules

� remove horizontal fragments fragmentation whose
predicates contradict with query predicates

� remove vertical fragments that have no attribtes in
common with projected attributes in a query

� distribute joins over unions of fragments and remove
useless joins
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Data Data localizationlocalization: RHF: RHF

� Prod fragmented (horizontally and vertically) as 
follows

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=23

� Sales not fragmented



22

43Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

� Generic query tree

Sales Prod11
tax<=7
prodName, tax

Prod21
tax>7
prodName, tax

Prod12
tax<=7
netPrice, tax

Prod22
tax>7
netPrice, tax

pushing
selection

down

Sales Prod21 Prod22
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DistributedDistributed joinsjoins

� Ordering joins

site1

site2

site3

Cust

Prod

Sales

� Possible join strategies

� send Cust to Sales, join, send result to Prod

� send Sales to Cust, join, send result to Prod

� send Sales to Prod, join, send result to Cust

� send Prod to Sales, join, send result to Cust

� send Prod and Cust to Sales, join

� send Prod and Sales to Cust, join

� send Cust and Sales to Prod, join

� Rule: send a smaller relation to a bigger one
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JoinJoin orderorder

� Join order is determined by:
� either the cardinality of relations ���� sort ascendingly

relations by their cardinality and join them "from the
smallest to the largest"

� or the cardinalities of all the possible join sequences
���� create the search space of possible joins and
estimate their cardinalities

A B C D E
relation cardinalitysmall large
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UsingUsing semijoinssemijoins

� Use semijoin to decrease the size (cost) of
intermediate relation

� Example: strategy

site1

site3

Cust

Sales
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UsingUsing semijoinssemijoins

� Example

site1

site3

Cust

Sales

site2

Prod

� Multiple sequences of semijoins

� the number of sequences grows expotentially with the
number of relations

� finding one optimal sequence is an NP-hard problem

48Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UsingUsing semijoinssemijoins

� Beneficial when the total amount of transmitted
data is smaller than with join ���� reducing the
cardinality of an intermediate result

� Intermediate results cannot profit from additional
data structures as base relations do

� Optimalization of ΠAi transmission ���� encode in a 
bit array (bitmap) ���� data size reduction
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R* R* AlgorithmAlgorithm

� Master site (where a query is initiated)

� global optimization of a query

input: query tree QT
output: minimum cost strategy strat
begin

{for each relation Ri QT
for each access path APij to Ri

{compute cost(APij)}
best_APi:=APij with minimum cost

}
{for each order (Ri1, Ri2, ..., Rin): i=1, ..., n!   

build strategy
compute cost of the strategy

}
strat:= strategy with minimum cost
{for each site k storing relation in QT

send local strategy to k
}

end

select join sequence, join
algorithm, relation
transfers - join site ����

estimate cardinalities, 
complexity of join
algorithms

access method
(index, full scan, ...) 
���� use statistics and
cost formulas
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R* R* AlgorithmAlgorithm

� Data transfer methods

� Ship-whole

� the whole relation R is transfered to the join site

� better when most of rows in R join

� better for smal R

� Fetch-as-needed

� outer relation is sequentially read

� join value v is sent to the site of inner relation S

� inner tuples joining with v are sent back to the outer
relation

� better than few rows of S join
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R* R* AlgorithmAlgorithm

� Build strategy ���� all possible scenarios for transferring
relations/tuples between sites

� Cost model includes
� local processing cost (I/O for retrieving relations/tuples)

� communication cost (amount of data transferred between
sites)

� Strategies that can be applied by the algorithm
1. transfer entire external relation to the site of an internal

relation

2. transfer entire internal relation to the site of an external
relation

3. fetch-as-needed tuples from an internal relation

4. move an internal and external relation to a third site
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HillHill climbingclimbing algorithmalgorithm

� No semijoins, no replication, no fragmentation

� Heuristic for searching a solution space

� local minimum can be obtained

� global minimum may not be obtained ���� the first step 
eliminates more costly query trees that might lead to 
a final query tree with a global minimum cost

� Uses: query graph, location of relations, statistics
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HC HC algorithmalgorithm

1. Compute initial query plan (IQP0)
� select the site where the final result will be computed ���� site

with relation of the greatest cardinality involved in the query

� compute data transfer cost of relations from all other nodes
independently

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

select lName, prodName, quantity
from Cust c, Sales s, Prod p, Categ c, Group g
where s.custID=c.custID and s.prodID=p.prodID and ...
and c.categID=1

assumption: uniformly
distributed data
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HC HC AlgorithmAlgorithm

1. Compute initial query plan (IQP0)

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

site2 (Sales)

site1 (Cust) site3 (Prod) site4 (Categ) site5 (Group)

50
20 1 2

initial cost(IQP0) = 50+20+1+2=73

IQP0
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HC HC algorithmalgorithm

2. Alter initial query plan IQP0 into QPi (i=1,2,...n) ����
QPi exploits transfer of one relation to the other
site for the purpose of joining it with the remote
relation

� compute cost(QPi) (include data transfer time and
local processing time)

� find min{cost(QPi)}

� if cost(IQP0)> min{cost(QPi)} replace IQP0 with QPi

� recursively apply step 2 on QPi until all joins are
resolved
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site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 20/5+1+2

1

2

HC HC algorithmalgorithm

QP1

cost(QP1) = 50+4+1+2=57

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 20/5+1+1

1

1
QP2

cost(QP2) = 50+4+1+2=56
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