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Relational calculus and algebra

< Relational calculus = declarative (SQL)
< Relational algebra = procedural
= basic operators
- selection
e projection
e cartesian product
e union
- set difference
= derived operators
- intersection
- theta-join (natural, semi, equi, non-equi)
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Query optimization
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Parsing (SQL)

2 Query normalization

2 Lexical and syntactic correctness analysis
= existence of attributes and relations, access rights
= checking type compatibilities

2 Reject type incorrect normalized queries
= e.g., price='#23', birth_date='a12-01-2001x'

2 Reject queries whose execution is not necessary
= e.g., where 1=3
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Parsing (SQL)

< Transform to normalized (unified form)
= conjunctive NF (more frequently used)
(P11VP12V---VP1) Aee A (D1 VPV - VD)
= disjunctive NF
(P11AP12 A= AP1) VooV (D1 AP oA A Do)

L. mApaspim
= apply equivalence rules for logical .
L pVprs pVp
operators N
LpAlpAm)=pAp) A
LpVipe V)& (mVp) Vi
Do A(pe Vps) & (pLAp2) V(P Aps)
6. pVipeAps) = (VP AP Vips)
7. =(p1 Ap2) & ~p1V -p2
8. =(p V) & —pr A-p2
9. =(—p) = p
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Query decomposition

2 Remove redundant predicates LpApep
< Apply rules 2. pVpep
° Example 3. pAtrue & p
‘(_‘pl A (p1 V p2) A —pa) V pg‘ 4. pV true & truc
[21 A (p2 V p3) & (p1 Ap2) V (p1 A pa)) 5. pA false < false

(=p1 A ((p1 A=p2) V (p2 A—p2))) V 23 0. pV Julse < p

\p1 AP2Vps) & P Ap) V(oA pg]‘ ﬂ T. pAh—p e false
((=p1 A (pr A=p2)) V (=p1 A (p2 A —=p2))) V p3

[P A (p2 Aps) < (p1 A p2) Aps)
((=p1 Apt A—p2) V (=p1 Apa A —p2)) V p3 10. prV(pr Ape) & 1

p M —p < false

((false A =p2) V (—p1 A false)) V p3
[
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alse V false V p3 = p3|

8. pV op s true

9. mA(pVp2) & p




Transformation

Relational calculus (SQL) = Relational algebra

< Transforming a high-level query expressed in
relational calculus into an equivalent lower-level
query expressed in relational algebra = query
execution plan
» transformation correctness - the same query result

= more efficient performance of a transformed query <
optimization of algebraic query
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Transformation

select fName, IName

Cust Sales Prod from Cust c, Sales s, Prod p
! h where s.custiD=c.custID
# custlD ~| # custlD / # prodID =
fName # prodID prodName and s'p.rOd'IP. p.prot!I'D
IName quantity net_price and c.city !="Poznan
city year tax and p.tax = 23
and (s.year=2008 or s.year=2009 )

< Expressing query in relational algebra = operator

(query) tree
» leaves = relations (FROM clause)

* root = result with projected attributes (SELECT clause)
* intermediate nodes = relational algebra operators
< Straightforward transformation
(Cust x Sales x Prod)

¢ name,iName(Os custI D=c.custI DAs.prodl D=p.prodl DAe.city!='Poznan' Ap.taz=23A(s.year=2008Vs.year=2000)

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 8




Transformation

2 Optimizing query tree by applying transformation
rules
= multiple equivalent trees may be created

Cust Sales Prod select fName, IName
~ M from Cus c, Sales s
# custiD N #oustiD © # prodID where s.custlD=c.custID
fName # prodID prodName PP
IName quantity net_price and s.quantity=100

city year tax

1l

¥ P D
H(f;'\f'amﬁ.l:\"ame)(‘q(quantz'ty:IDOI\SalEs.cusﬁD:Cusi.custID)((' ust x ‘S“h""))

H(f!\"ame.l!\iame)(C'“""t sales.custI D=Cust.custI D ((Tquantity:lOO(S("Z(‘*"\))
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Transformation

H(f."\:'ame.l:’\"ame)
select fName, IName

from Cust c, Sales s, Prod p T
where s.custiD=c.custID

and s.prodID=p.prodID
and c.city != 'Poznan’
and p.tax = 23 Ttaz=23
and (s.year=2008 or s.year=2009 ) T

0(5.year:2005 WV s.year=2009)

Oeity!=' Poznan'
Dqs.prod[D:p.pTO(HD

Ms.cust] D=c.custi D

Cust Sales Prod
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Transformation rules

2 RelationsR, S, T

S Ris composed of attributes A={A,, A,, ..., A}
< Sis composed of attributes B={B,, B,, ..., B}
1

. Comutativity of binary operators r x s« s xR
ReraSe SR
RUS& SUR
2. Associativity of binary operators
(BxS)xT e Rx(SxT)
(ReaS)aT < Rea(Seal)
(RUS)UT & RU(SUT)
3. Grouping unary operators
= grouping subsequent projections
= grouping subsequent selections
Ay Az, am (Day As o A Amgtse A () & Ay a5, 4, (R)
Up1(‘41)(”p2(‘41)u?)) i (IP1(4‘1leP2(4‘12)(R)
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Transformation rules

4. Commuting selection with projection
May o4, (Opea,y (a4, (R)) & Ay 4, (0pa,) ()

5. Commuting selection with binary operators
Tpa0 (B X 8) & (opa,)(R)) X S _
Tpaq) (B Mp(a;,8) 5) € 0pan(B) M4, By S
Tp(a) (RUT) & apay) (B) Uoyay(T)

6. Commuting projection with binary operators

Hc(B X .‘7) - 1_[41(]?) X HBI(S)- where C = ,11 U Bluil - A.Bl cB
(R iy, 5,) §) < Mo, (R) x4, 5,) g, (5)
Hc(ﬁ' U S) = HC’(R) U HC'(S)
7. Commuting join with set operator
(RUS)aT =(ReaT)U (SaT)
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Equivalent query tree

select fName, IName
from Cust c, Sales s, Prod p

where s.custiD=c.custID H(f."\'ame,t:’\fame}
and s.prodID=p.prodID
and c.city !="Poznan’ T
and p.tax = 23 .
and (s.year=2008 or s.year=2009 ) MNINH}:FMQ
(s name N ame) H(s.cusHD)

T(s.year=2008 V s.year=2000) T
i | Dqs.prodID:p.pTodID
tar=23
o

Teity!="Poznan’

Teity!='Poznan' G—(s.ysar:QDDB vV s.year=2009) Ttar=23

By prod! D=p.prodl T T

I

Cust Sales Prod

ls custl D=c.cust] [}

shnology, Institute of Computing Science 13

Cust Sales Prod

Join trees

select fName, IName, quantity, prodName
from Cust c, Sales s, Prod p
where s.custlD=c.custID and s.prodiD=p.prodID

/”\/ \ /“\/ \ /\/ \

Cust Sales Prod Sales Prod Cust Cust Prod Sales  ----
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Join trees

2 Linear: at least one operand is a base relation

2 Bushy: both operands may be intermediate relations
= increased parallelism (distributed DBS)

AN A
[ \3 C D E / (Z \)
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Rule based optimization

< Reduce the size of data
= apply selection before join
= join the smallest tables first
= if available, use index for a selection predicate
= if available, use index on a foreign key 2> use NL

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 16




Query optimization cost

< Optimizing
= total execution time (cost)
< reduces cost of every operation

= response time (elapsed from sending query to
execution to obtaining results)

- total cost may be larger
- operations may be performed in parallel
2 Cost components
= I/O
= CPU
= data transfer

Total_cost = CPU_cost + I/0O_cost + communication_cost
CPU_cost = CPU_instr_cost * #instructions

1/0_cost = disk_l/O_cost * #accesses
communication_cost = #messages + data_transmission

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 17

Cost based optimization

2 Search space: the set of alternative query trees of an input
query = obtained by applying transformation rules
= the most costly are joins = different types of join trees
2 Cost model: describes the cost of a query tree (execution
plan)
2 Search strategy: explores search space in order to find

optimal execution plan
query
v

search space
generator

v
A 2 A A A equivalent query trees
v

search algorithm

optimal execution plan

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 18




Search space

2 Search strategies
» Iterative improvement
» Simulated annealing
* Tabu search Desirect optimum Inerereciene opimurn

Start here b \
h Fa\snnpliﬂlm .‘. "“ \
fhno\
/ //;, 000“@//%0““\\\\
I:{M‘ A
;,’ ‘“Q

&“\\\\ S

7 h‘“ PN f/flll'
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Iterative Improvement

2 Only down steps are allowed

2 DO UNTIL ending condition is reached
= select randomly a state
= DO UNTIL local minimum found

- Search the space by accepting only states with lower costs
e LocalMin=minimum cost found

= IF LocalMin<MinCost THEN MinCost=LocalMin
2 RETURN MinCost
2 Ending condition
= time limit
* no cost improvement in a given time K e
= no cost improvement in a given number of steps

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 20
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Simulated Annealing

<> Down steps are always allowed
2 Up steps are allowed only if the value of a
parameter (called Temperature) is high
<> Temperature is being decreased in time > the
preference of up steps decreases in time
= the probability of up steps = exp-2/Temperature
= A - difference between current cost and cost of the
next state
2 A state when only down steps are possible >
freezing
< The algorithm terminates in freezing > local
minimum cost is reached - return the minimal
value of costs that was found

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 21

Tabu Search

2> While searching the space avoid already visited
states are represented as:
= visited states > tabu list or
= already used plan transformations - tabu list
2 Probing several neighbour states > select the one
with the lowest cost (up and down steps are
allowed)

= up climbing - select the most gradual slope

= down climbing - select the most steep slope
< Ending condition

= a given number of steps without improvement

= time limit

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 22
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Database statistics

< Table statistics

= #db blocks

= #db blocks with data

= #rows in table (table cardinality, card(R))

» avg free space size in db blocks

» avg record length

= #chained rows

= #distinct attribute values (attribute cardinality,
card(M,(R))

» histograms (equi width, equi height)

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 23

Histogram
#rows * #rows: 1200
« value range: 10 - 80
* #buckets 6
200 T
column
| | | | | | | value
T T T T T T T
10 30 40 45 55 70 80
Robert Wrembel, Poznan University of Technology, Institute of Computing Science 24
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Database statistics

< Index statistics
= tree height
= #leaf blocks
* #unique values
= avg number of leaf blocks for one key value
= avg number of table blocks for one key value

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 25

Estimating size of intermediate
result

2 Size of a relation
size(R) = card(R) = length(R)
2 Join selectivity factor

card(R><S)

SE, RS = —/——————
card(R) = card(S)

S Assumptions
= attribute values are uniformly distributed
= attributes are not correlated

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 26
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Estimating cardinalities

2 Selection card(crp (R)) = SF, (F) = card(R)

SF,(A = value) = g

y oy N value—min(A)
SF,(A < value) = Taz(A)—min(A)

SFy(A > value) = el _vaue,

SFo(p(A7) Ap(A;)) = SFa(p(4i)) * SFs (p(A;))

SFs(p(Ai) V p(A))) = SFo(p(Ai)) + SFo(p(A4;5)) — (SF5(p(Ai) A p(A4;)))
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Estimating cardinalities

o Projection |card(I1,(R))=card(R)|
= Ais a PK or Unique

° Cartesian product [card(R x S) = card(R) = card(S)|

2 Union |upper bound: card(R v S) = card(R) + card(S)

lower bound: card(R v S) = max{card(R), card(S)}

2 Difference

upper bound: card(R-S) = card(R)

lower bound: 0

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 28
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Estimating cardinalities

2 Join
= upperbound: cardinality of cartesian product
= simple case: A¢PK of R, B&FK of S
< upperbound when every tuple in R joins with tuplesin S
‘card(h’ P, S) = card(S)‘

* in general: ‘card(R >18) = SKy+ card(R) = card(S)‘

2 Maintain database statistics on cardinalities of
relations and attributes

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 29

HWM

DB_FILE_MULTIBLOCK_READ_COUNT

ZEF
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ROWID

° Extended ROWID format: OOOOOO.FFF.BBBBBB.RRR
= O - object ID in a database
= F - relative file number in a tablespace
= B - block number in a file
= R -row number in a block

> Extended ROWID size (Oracle): 10B
= 4B: for the object id
= 1B: for the tablespace relative file number
= 4B: for the block number
= 1B: for the row number in the block
2 Oracle also uses a 6-byte ROWID format internally

2 Basic ROWID format: FFFF.BBBBBBBB.RRRR

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 31

Sorting types

< ORDER BY SELECT * FROM Cust
ORDER BY city DESC;

2 AGGREGATE SELECT MIN(quantity)
FROM Sales;

2 GROUP BY SELECT SUM(quantity)
FROM Sales
GROUP BY year;

2 UNIQUE SELECT DISTINCT city
FROM Cust;

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 32
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B-tree access types

T T~

2 Unique scan | 4 b

< Range scan | Z > b

2 Full scan | poC navigating via leaves
« applicable to sorting

2 Fast full scan @ « multiblock read
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Join algorithms - nested loop

outer table inner table

A |3 2| a
B |2 L1 b
C 1 V2 c
D |3 3] d
Y1 e

A 3[3 d

B 2|2 a

B 2|2 c

C 111 b

C 101 €

D 3[3 d
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Join algorithms - sort merge

inner table

outer table

g|0|w|>
W= (N |W
=

=2 (WIN|=|N
D (|0 |T |

SO

O|> (w0
w|wN|=

/[

WININ|[=|—
Q|0 (D |D|T

join

O>mm|O0
w(w NN ==
W(W NN ==
alao|o|o|lo
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Join algorithms - hash join

outer table inner table
A 3] 2 a
B 2] 1 b
C 1) 2 c
D 3 3 d
@ 1 e
I

hash function: PK mod 3 @
hash function: FK mod 3

0

o>
w (W
ad

join

N -
(og] O
N -
©

= (OWIN=IN
D Qo |o|

=W (WIN|= (N

(@]lw]pd{vsl(@]vs]
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Query optimization "moment”

o Static
= compilation time optimization

= problem of estimating sizes of intermediate results = non-
optimal execution

= a query execution plan can be reused (cached)
u R*
< Dynamic
* run time optimization
= exact sizes of intermediate results are known

= for every query its execution plan has to be optimized = no
plan sharing

» Distributed INGRES
< Hybrid
= compilation time optimization

= if estimated sizes of intermediate results differ by a
threshold from real ones = reoptimize at run time

= MERMAID

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 37

Query optimization architectures

2 Centralized architecture
= access to statistics of all components of DDBS
= central query optimizer = bottleneck
2 Distributed architecture
= sites cooperate in order to create optimal plan
= higher network traffic (messages exchange)
2 Hybrid architecture
= one site determines global plan
= local query is optimized locally on site

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 38
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Layers of distributed query
processing

parsing |

[ |
y

| transforming into rel. algebra global
\l' schema, views

|query in relational algebra on global schema|

| data localization R,
3 fragments

| query in relational algebra on fragments and replicas |

control site
A

| global optimization |

K | optimized query for data distribution |
v local schema, o
| local optimization | | local optimization physical design, ®
2 R statistics %
£
(S

Rotr . >Ilnar'1 University of Technology, Instituf Tcience

=

Data localization

2 Finding the location of queried data based on data
distribution statistics

= eliminate useless fragments
= use appropriate replicas
2 Create "optimal" algebraic query

P global
transforming into rel. algebra |-._
| ~—1

schema, views

| quary in relational algebra on global schema |

data localization | |——— '*Plica
|__fragmants

| query in relational algebra on fragments and replicas |

global optimization

I optimized query for data distribution |

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 40
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Global optimization

< Taking into consideration
= cardinalities of fragments
= communication, I/0, CPU costs
< Using
= reordering operations (esp. joins)
= semijoin reduction (3L querp)

P global
transforming into rel. algebra |-._
| ~—

schema, views

| quary in relational algebra on global schema |
= replisas,
datalocalization |-~ O

| query in relational algebra on fragments and replicas |

global optimization

| optimized quary for data distribution |

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 41

Distributed query optimization
Problem

select IName, prodName, quantity

from Cust@site1 c, Sales@site3 s, Prod@site2 p

where s.custID=c.custID and s.prodiD=p.prodID

and c.city !='Poznan’ and p.tax = 23 and (s.year=2008 or s.year=2009 )

2 Query optimizer needs to consider (global view

P — of the system)
[ Cust ‘ = sizes of relations
site1 = sizes of intermediate results
R = communication costs (network throughput)
{ " Sales ‘ computation power of sites (CPU, I/0, memory)
) data structures at sites (indexes, partitions,
site3 clusters, ...)
N = power of query optimizer (join algorithms, cost
’\"Pro’d' ‘ based, rule based, search space generation and
site2 searching)
= availability and location of fragments
Robert Wrembel, Poz = availability and location of replicas
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Distributed DB example

< Horizontal fragmentation of Cust and Sales
= sitel = Custl: custID<=1000
= site2 = Cust2: custID>1000
= site3 = Salesl: custID<=1000
= site4 = Sales2: custID>1000
= site5 = executes query

H(f!\"ame.h’\"am e)((q'“‘-qf Sales.custl D=Cust.cust] D ((-Tquantit.y:w(l(-S"-'-'Zf""'))

Hf:’\"am-e.l:’\fa.me

| ((-w“‘“fl U (—w“""fg) gales.cust] D=Cust.custI D Gq-uantity:lOO(S"""Ir""l U "5’("""32) site5

i N\

site1 site2 site3 site4

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 43

Distributed DB example

Hf:’\"am-e.l:’\"'a-me

T site5
Custl® U Cust2*

site3 Custl* = Custl =1 Salesl* Cust2* = Cust2 <1 Sales2* site4

site1 Sulesl* = oguaniiy=100(Salesl) Sales2* = guantity=100(Sales2) site2

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 44
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Data localization

< DB is fragmented (partitioned)
< Global relation is represented by a reconstruction
program that reconstructs the relation from its
fragments
< Naive approach: construct generic query tree
where each relation is represented by its
reconstruction program = not optimal tree = apply
reduction techniques
= reduction for primary horizontal fragmentation
= reduction for vertical fragmentation
= reduction for derived fragmentation
= reduction for hybrid fragmentation

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 45

Data localization: RPHF

< Reduction for Primary Horizontal Fragmentation
2 Cust fragmented and its reconstruction program
exists
= Custl: custID<=1000
= Cust2: custID>1000 [Cust = Custl U Cust2]
2 In generic query tree Cust is replaced by its
reconstruction program
< After building a query tree, find out subtrees that
produce empty relations (no results)
= reduction with selection
= reduction with join

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 46
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Data localization: RPHF
Reduction with selection

select fName, IName

from Cust ¢
where custiD>2000
2 Generic query tree 2 Reduced query tree
H(f."\fa.me.l:’\"am.e) H(f;’\:'mne.l:’\"am-e)
T eustI D>2000 L/[\
U :
TugtI D>2000 % Teust] D>2000
Cust1 Cust2 i Cus {  Cust2
(custiD<=1000) (custiD>1000) (custiD<=1 ):::". (custiD>1000)
Robert Wrembel, Poznan University of Technology, Institute of Computing Sclence ............. \ 47

Data localization: RPHF
Reduction with join

< Assumption: joined relations are fragmented
according to a join attribute
< Distributing joins over unions + eliminating empty
joins = applicable when the number of joins of
fragments is small
2 Possible parallel computation of joins of fragments
< Cust fragmented into
= Custl: custID<=1000
= Cust2: custID>1000
< Sales fragmented into
= Salesl: custID<=500
= Sales2: 500<custID<=1000
= Sales3: 1000<custID<=1500
= Sales4: custID>1500

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 48
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Data localization: RPHF
Reduction with join

2 Generic query tree select *
Bs. cust D=c.custl ) from Cust c, Sales s

/’ \ where s.custiD=c.custID
U / U(\\
/\ Sales1 Sales3 Sales4

custiD<=500 1000<custiD<=1500custID>1500

Cust1 Cust2 Sales2
custlD<=1000 custiD>1000 500<custiD<=1000

< Reduced WU\
N4 N D] B

Cust1 Sales1 Cust1 Sales2 Cust2 Sales3 Cust2 Sales4

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 49

Data localization: RVF

2 Reduction for Vertical Fragmentation
2 Reconstruction program: join
2 Vertical fragments that have no attributes in
common with the list of attributes projected in a
query are useless
2 Cust fragmented as follows
- CUStl = I-IcustID,fName,IName(CMSt)
* Cust2 = M ygp,city(Cust)

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 50




Data localization: RVF

select fName, IName

from Cust
where custiD>2000
2 Generic query tree 2 Reduced query tree

H(f."\fa.me.l:’\"am.e)

Tcust! D>2000 H(f:’\"amﬁ.l;'\fame}
> TeustI D>2000
Cust1 Cust2 Cust1
fName, IName city
Robert Wrembel, Poznan University of Technology, Institute of Computing Science 51

Data localization: RDF

2 Reduction for Derived Fragmentation

< Derived fragmentation: fragments of R and S that
have the same join attribute values are located at the
same site
= tuples of S are placed based on tuples of R
= 1:m relationship between R (1) and S (m)

Cust | Sales | Prod

# custiD 6 # custiD >_ # prodiD
fName # prodiD prodName
IName quantity net_price
ity year tax

2 Prod fragmented as follows
* Prodl = (tax<=7%)
* Prod2 = (tax>7%)
< Derived fragmentation of Sales based on Prod
Salesl = Sales > <proqrp Prodl
Sales2 = Sales 1> ‘\ﬂm-gde!‘Off?

Robert Wrembel, Poznan University of Technology, Institute of Computing Sc&‘h semijoin PK- 52
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Data localization: RDF

select p.prodName, s.quantity
from Prod p, Sales s

where p.prodiD=s.prodID

and p.tax=7

< Generic query tree

ng.p-rod;’\"ame.s.q*u.antzty Hp.p-rod."\"ame.s‘quantzty
rx]p.prod[D:s‘pde[D [ p prodl D=s.prodl D
T, .
p.tar=T T /
selection
down U
,5\
Op.taxr=T __.-" Tp
Prod1 Prod2 Sales1 Sales2 pr°d1 Sales1 Sales2
tax<=7T  tax>7  tax=1 _ tax>7 g
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Data localization: RDF

Hp prodName,s.quantity H,D.,Di"ﬁds'\"ﬂﬂle.s‘q’u‘,ﬂ]’]t'l.f.y

Py prodl D=s.prodl D

moving

unions Ep prodl D=s.prodl D [ pprodl D=s.prodfL)
up -,
Op.tax="7 L Tp.tax=T
Prod1 Sales1 Sales2 Prod1
Hp prodName,s.quantity
[x]p‘pdeID:s.prodID
after eliminating useless subtree Tp.taz=T
Robert Wrembel, Poznan University of Technology, Institute of Computing Sciel Pr0d1 sales1 54

27



Data localization: RHF

2 Reduction for Hybrid Fragmentation
2 Hybrid fragmentation: horizontal + vertical +
derived = support SP] queries
< Query graph optimization rules
= remove horizontal fragments whose predicates
contradict with query predicates
= remove vertical fragments that have no attributes in
common with projected attributes in a query
= distribute joins over unions of fragments and remove
useless joins
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Data localization: RHF

< Prod fragmented (horizontally and vertically) as

follows
Prodll = H[prodep?‘od;‘\"ame.tar)(o—l‘arfg? (P?Od))

Prodl2 = H[prodID.ﬂefPr?'cc._ta.T)(Ufaxi:T(P'rOd))
Prod21 = H[prodID_prodName.tax](JtaT>T(P?'Od))
Prod22 = H[prodID_ﬂefPr?'ce._tarf)(Ufaxﬁi::-F'(P'rOd))

< Sales not fragmented

select p.prodName, s.quantity
from Prod p, Sales s

where p.prodiD=s.prodID

and p.tax=23
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Data localization: RHF

< Generic query tree

Hp.prad;’\"ame.s.quantzty prrad:’\"ume s.quantity

rx]p.p-rod[D:s‘prrJd[D ) ) rx]p.prod[D:s‘prodID
1. removing vertical

fragments
2. pushing selection

Tp.tax=23 down

Pprodl D Mprodl D

U U Op tax=23 Tp.tar=23

Sales Prod11 Prod21 Prod22.."""=ﬁ Sales

i Pro Prod21
tax<=7 tax>7 1 x>7 R
prodName, tax prodName, ta'x..netPrice, tax netPw,
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Distributed joins

< Ordering joins

" — < Possible join strategies

| Cust, = send Cust to Sales, join, send result to Prod
site1 = send Sales to Cust, join, send result to Prod
.= send Sales to Prod, join, send result to Cust
[ Sales \ = send Prod to Sales, join, send result to Cust
site3 = send Prod and Cust to Sales, join
- = send Prod and Sales to Cust, join
{' Prod \ = send Cust and Sales to Prod, join
site2

2 Rule: send a smaller relation to a bigger one
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Join order

2 Join order is determined by:
= either the cardinality of relations = sort ascendingly
relations by their cardinality and join them "from the
smallest to the largest”
= or the cardinalities of all the possible join sequences
= create the search space of possible joins and
estimate their cardinalities

AN
AN

small large

relation cardinality
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Using semijoins

2 Use semijoin to decrease the size (cost) of
intermediate relation

Strategy 1: Rrda,, S < (Rr<a, a4, (5) a4, S

Strategy 2: Rpaa,, S < Rpda,, (St<a,a,, (R))

Strategy 3: Rda,, S < (Rraa, 114, (9)) s, (Se<a, 14, (R))

m

2 Example: strategy
’ Cuét ‘ 1. send Cust) = chsUD(Cu'Sﬂ to sited
site1 2. at sited compute Sales; = Sales > <oystr pCusty

3. send Sales; to sitel

’ Sales ] )
. 4. at sitel compute Cust <l oysi7p Salesy
site3
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Using semijoins

> Example " —
Cust | Prod

site1 JU— site2
Sales
site3

(Cust > <dpygrpSales) Hegrp (Sales & Ayoqrp Prod) Spearp Prod

(Cust & Geuarp(Sales b QaarpProd)) Newsp (Sales o Qg pProd) <yarp Prod

< Multiple sequences of semijoins

= the number of sequences grows expotentially with the
number of relations

» finding one optimal sequence is an NP-hard problem
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Using semijoins

< Beneficial when the total amount of transmitted
data is smaller than with join = reducing the
cardinality of an intermediate result

< Intermediate results cannot profit from additional
data structures (e.g., indexes) as base relations do

2 Optimization of M,; transmission = encode in a bit
array (bitmap) < data size reduction

Robert Wrembel, Poznan University of Technology, Institute of Computing Science 62

31



R* algorithm

< Master site (where a query is initiated)
= global optimization of a query

input: query tree QT
output: minimum cost strategy strat
begin

{for each relation R; QT

for each access path AP;; to R;

! thod
{compute cost(APij)}/— access metho

best_AP;:=AP;; with minimum cost o use statistics

} and cost formulas

(index, full scan, ...

)

{for each order (R;;, Rij2, ---, Rjp): i=1, ..., n!
build strategy ((..((bestAl; 0a o) oa i) 0 Rig)... a9 Rin)

compute cost of the strategy
} ¥

select join sequence,
join algorithm, relation
transfers - join site =

strat:= strategy with minimum cost
{for each site k storing relation in QT

send local strategy to k estimate cardinalities,
¥ complexity of join
end algorithms
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R* algorithm

< Data transfer methods
< Ship-whole
= the whole relation R is transferred to the join site
= better when most of rows in R join
= better for small R
2 Fetch-as-needed
= outer relation is sequentially read
= join value v is sent to the site of inner relation S

= inner tuples joining with v are sent back to the outer
relation

= better than few rows of S join
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R* algorithm

< Build strategy = all possible scenarios for
transferring relations/tuples between sites
2 Cost model includes
» local processing cost (I/0 for retrieving relations/tuples)
= communication cost (amount of data transferred between
sites)
< Strategies that can be applied by the algorithm

1. transfer entire outer relation to the site of an inner
relation

2. transfer entire inner relation to the site of an outer
relation

3. fetch-as-needed tuples from an inner relation
4. move an inner and outer relation to a third site
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Hill climbing algorithm

2 No semijoins, no replication, no fragmentation
2 Heuristic for searching a solution space
* local minimum can be obtained

= global minimum may not be obtained = the first step
eliminates more costly query trees that might lead to
a final query tree with a global minimum cost

2 Uses: query graph, location of relations, statistics
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HC algorithm

1. Compute initial query plan (IQP?)
= select the site where the final result will be computed = site with
relation of the greatest cardinality involved in the query

= compute data transfer cost of relations from all other nodes
independently

select IName, prodName, quantity assumption: uniformly
from Cust@site1 cu, Sales@site2 s, Prod@site3 p, distributed data
Categ@site4 ca, Group@site5 g

where s.custiD=cu.custID and s.prodiD=p.prodID
and ...

and ca.categlD=1

Cust | Sales Prod Categ Group
# custiD —€ 4 cusip B— 5 prodiD W categlD 9— # grouplD

Name # prodiD prodiame categhame grouphame
IName quantity nat_price grouplD
ity yoar tax
card(Cust)=50 card(Prod)=20 card(Group)=2
site1 site3 site5
card(Sales)=2000 card(Categ)=5
site2 site4
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HC Algorithm

1. Compute initial query plan (IQP°)

Cust | Sales Prod Categ Group
fousiD € #cusiD P #prodiD at B # groupin
ateghame

Mama # peodiD prodMame grouphame
IName quantity nat_price
cily yoar tax
card(Cust)=50 card(Prod)=20 card(Group)=2
site1 site3 site5
card(Sales)=2000 card(Categ)=5
site2 site4

IQP?  site1 (Cust)

50

site2 (Sales

initial cost(IQP?) = 50+20+1+2=73
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HC algorithm

2. Alter initial query plan IQP? into QPi (i=1,2,...n) =
QP! exploits transfer of one relation to the other
site for the purpose of joining it with the remote
relation
= compute cost(QP) (include data transfer time and

local processing time)
= find min{cost(QP)}
= if cost(IQP°)> min{cost(QP)} replace IQP° with QP

= recursively apply step 2 on QP! until all joins are
resolved
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HC algorithm

Cust | Sales
# custiD € ¥ cusiD
M 8

site4 (Categ)

QP! site1 (Cust) site3 (prod)?_z___siteS (Group)
N (20/5)+1+2

site2 (Sales)
cost(QP") = 50+4+1+2=57

site4 (Categ)

QP2  sitel (Cust) site3 (Prod)?fsites((;mup)
N (20/5)+1+1
| cost(QP?) = 50+4+1+2=56 | site2 (Sales)
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Distributed query: case 1

..................................................................... > ‘ select * from V@DB1 . ‘
4
create view ... DB2 E
i select count(*) from T1 ... select count(*)

from T1@DB1 ...

T1
E- DB1
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Distributed query: case 2

o executing query: T, join, T,

2 large T, is sent to DB2

€ad T1 oo ,

T1 join, T2

DB1 DB2
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Distributed query: case 2

........................................................................... ,‘ select * from V@DB1 ‘

; DB2 [ T1 join, T2

create view ...
: T1 join T2@DB2 on (T1.x=T2.x)

T1 —

: DB1

2 Solutions
= create view

= if few rows from T, join with T, then use nested loops
instead of sort merge
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Use of hints (Oracle)

> ORDERED

= use the order of tables in nested loop the same as in the
FROM clause (the leftmost table is the outer table)

2 FULL

= use full table scan for an indicated table
2 DRIVING_SITE

= indicate a database where the query is to be executed
2 NO_MERGE

= execute a subquery first and then join its result with the
main query

2 USE_NL, USE_MERGE, USE_HASH
= apply an indicated join algorithm
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Distributed queries - examples
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