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Relational calculus and algebraRelational calculus and algebra

 Relational calculus  declarative (SQL)
 Relational algebra  procedural

 basic operators
• selection
• projection
• cartesian product
• union
• set difference

 derived operators
• intersection
• theta-join (natural, semi, equi, non-equi)
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Query Query optimizationoptimization

parsing

transforming into rel. algebra

SQL query

algebraic optimization

rule based optimization cost based optimization

plan generatorplan generator plans generator

cost estimator
query execution plan

query execution plan
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Parsing (SQL)Parsing (SQL)

 Query normalization 
 Lexical and syntactic correctness analysis

 existence of attributes and relations, access rights
 checking type compatibilities

 Reject type incorrect normalized queries
 e.g., price='#23', birth_date='a12-01-2001x'

 Reject queries whose execution is not necessary
 e.g., where 1=3
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ParsingParsing (SQL)(SQL)

 Transform to normalized (unified form)
 conjunctive NF (more frequently used)

 disjunctive NF

 apply equivalence rules for logical 
operators
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Query decompositionQuery decomposition

 Remove redundant predicates
 Apply rules
 Example
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TranTranssformationformation

 Transforming a high-level query expressed in 
relational calculus into an equivalent lower-level 
query expressed in relational algebra  query 
execution plan
 transformation correctness - the same query result
 more efficient performance of a transformed query 

optimization of algebraic query

Relational calculus (SQL)  Relational algebra
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TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

 Expressing query in relational algebra  operator 
(query) tree
 leaves  relations (FROM clause)
 root  result with projected attributes (SELECT clause)
 intermediate nodes  relational algebra operators

 Straightforward transformation
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TransformationTransformation

select fName, lName
from Cus c, Sales s
where s.custID=c.custID
and s.quantity=100

 Optimizing query tree by applying transformation 
rules
 multiple equivalent trees may be created

10Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

Cust Sales Prod
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Transformation rulesTransformation rules

 Relations R, S, T
 R is composed of attributes A={A1, A2, ..., An}
 S is composed of attributes B={B1, B2, ..., Bn}

1. Comutativity of binary operators

2. Associativity of binary operators

3. Grouping unary operators
 grouping subsequent projections
 grouping subsequent selections
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Transformation rulesTransformation rules

4. Commuting selection with projection

5. Commuting selection with binary operators

6. Commuting projection with binary operators

7. Commuting join with set operator
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Equivalent query treeEquivalent query tree

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009 )

Cust Sales Prod
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Join treesJoin trees

select fName, lName, quantity, prodName
from Cust c, Sales s, Prod p
where s.custID=c.custID and s.prodID=p.prodID

Cust Sales Prod Sales Prod Cust Cust Prod Sales .....
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Join treesJoin trees

 Linear: at least one operand is a base relation
 Bushy: both operands may be intermediate relations

 increased parallelism (distributed DBS)

A B C D E A B C D E
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Rule based optimizationRule based optimization

 Reduce the size of data
 apply selection before join
 join the smallest tables first
 if available, use index for a selection predicate
 if available, use index on a foreign key  use NL
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Query optimization costQuery optimization cost

 Optimizing
 total execution time (cost)

• reduces cost of every operation
 response time (elapsed from sending query to 

execution to obtaining results)
• total cost may be larger
• operations may be performed in parallel

 Cost components
 I/O
 CPU
 data transfer

Total_cost = CPU_cost + I/O_cost + communication_cost
CPU_cost = CPU_instr_cost * #instructions
I/O_cost = disk_I/O_cost * #accesses
communication_cost = #messages + data_transmission
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Cost based optimizationCost based optimization

 Search space: the set of alternative query trees of an input 
query  obtained by applying transformation rules
 the most costly are joins  different types of join trees

 Cost model: describes the cost of a query tree (execution 
plan)

 Search strategy: explores search space in order to find 
optimal execution plan  

search space
generator

query

equivalent query trees

search algorithm

optimal execution plan
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Search spaceSearch space

 Search strategies
 Iterative improvement
 Simulated annealing
 Tabu search
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Iterative ImprovementIterative Improvement

 Only down steps are allowed
 DO UNTIL ending condition is reached

 select randomly a state
 DO UNTIL local minimum found

• Search the space by accepting only states with lower costs 
• LocalMin=minimum cost found

 IF LocalMin<MinCost THEN MinCost=LocalMin
 RETURN MinCost
 Ending condition

 time limit
 no cost improvement in a given time
 no cost improvement in a given number of steps
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Simulated AnnealingSimulated Annealing

 Down steps are always allowed
 Up steps are allowed only if the value of a 

parameter (called Temperature) is high
 Temperature is being decreased in time  the 

preference of up steps decreases in time
 the probability of up steps = exp-Δ/Temperature

 Δ difference between current cost and cost of the 
next state

 A state when only down steps are possible 
freezing

 The algorithm terminates in freezing  local 
minimum cost is reached  return the minimal 
value of costs that was found
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TabuTabu SearchSearch

 While searching the space avoid already visited 
states are represented as:
 visited states  tabu list or
 already used plan transformations  tabu list

 Probing several neighbour states  select the one 
with the lowest cost (up and down steps are 
allowed)
 up climbing  select the most gradual slope
 down climbing  select the most steep slope

 Ending condition
 a given number of steps without improvement
 time limit
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Database statisticsDatabase statistics

 Table statistics
 #db blocks
 #db blocks with data
 #rows in table (table cardinality, card(R))
 avg free space size in db blocks
 avg record length
 #chained rows
 #distinct attribute values (attribute cardinality, 

card(ΠAi(R))
 histograms (equi width, equi height)
 ...

24Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HistogramHistogram

• #rows: 1200
• value range: 10 - 80
• #buckets 6 

#rows

column
value

10             30   40    45     55             70            80

200



13

25Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Database statisticsDatabase statistics

 Index statistics
 tree height
 #leaf blocks
 #unique values
 avg number of leaf blocks for one key value
 avg number of table blocks for one key value
 ...
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Estimating size of intermediate Estimating size of intermediate 
resultresult

 Size of a relation

 Join selectivity factor

 Assumptions
 attribute values are uniformly distributed
 attributes are not correlated
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Estimating cardinalitiesEstimating cardinalities

 Selection
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Estimating cardinalitiesEstimating cardinalities

 Projection
 A is a PK or Unique

 Cartesian product

 Union

 Difference
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Estimating cardinalitiesEstimating cardinalities

 Join
 upperbound: cardinality of cartesian product
 simple case: APK of R, BFK of S

• upperbound when every tuple in R joins with tuples in S

 in general:

 Maintain database statistics on cardinalities of 
relations and attributes
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Data Data accessaccess methodsmethods

 Full scan

 ROWID

DB_FILE_MULTIBLOCK_READ_COUNT

HWM

R
O

W
ID

30
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ROWIDROWID

 Extended ROWID format: OOOOOO.FFF.BBBBBB.RRR
 O - object ID in a database
 F - relative file number in a tablespace
 B - block number in a file
 R - row number in a block

 Extended ROWID size (Oracle): 10B
 4B: for the object id
 1B: for the tablespace relative file number
 4B: for the block number
 1B: for the row number in the block

 Oracle also uses a 6-byte ROWID format internally
 Basic ROWID format: FFFF.BBBBBBBB.RRRR
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SortingSorting typestypes

 ORDER BY SELECT * FROM Cust

ORDER BY city DESC;

SELECT MIN(quantity)

FROM Sales;
 AGGREGATE

SELECT SUM(quantity)

FROM Sales

GROUP BY year;

 GROUP BY

SELECT DISTINCT city

FROM Cust;
 UNIQUE
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 Unique scan

BB--tree access typestree access types

• navigating via leaves
• applicable to sorting

• multiblock read

 Range scan

 Full scan

 Fast full scan
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JoinJoin algorithmsalgorithms -- nestednested looploop
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JoinJoin algorithmsalgorithms -- sort sort mergemerge

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

CC

BB

AA

DD

11

22

33

33

11

11

22

22

bb

ee

aa

cc

33 dd

sort

CC
CC
BB
BB

11
11
22
22

AA 33
DD 33

11
11
22
22

bb
ee
aa
cc

33 dd
33 dd

joinjoin

outer table inner table

36Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- hashhash joinjoin
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Query optimization "moment"Query optimization "moment"

 Static
 compilation time optimization
 problem of estimating sizes of intermediate results  non-

optimal execution
 a query execution plan can be reused (cached)
 R*

 Dynamic
 run time optimization
 exact sizes of intermediate results are known
 for every query its execution plan has to be optimized  no 

plan sharing
 Distributed INGRES

 Hybrid
 compilation time optimization
 if estimated sizes of intermediate results differ by a 

threshold from real ones  reoptimize at run time
 MERMAID
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Query optimization architecturesQuery optimization architectures

 Centralized architecture
 access to statistics of all components of DDBS
 central query optimizer  bottleneck 

 Distributed architecture
 sites cooperate in order to create optimal plan
 higher network traffic (messages exchange)

 Hybrid architecture
 one site determines global plan
 local query is optimized locally on site
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Layers of distributed query Layers of distributed query 
processingprocessing

data localization

global optimization

local optimization

global 
schema, views

replicas,
fragments

local schema, 
physical design, 

statistics

SQL query

query in relational algebra on global schema

query in relational algebra on fragments and replicas

optimized query for data distribution

local optimization ...

co
n

tr
o

l 
si

te

parsing

transforming into rel. algebra

re
m

o
te

s
it

e
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Data localizationData localization

 Finding the location of queried data based on data 
distribution statistics
 eliminate useless fragments
 use appropriate replicas

 Create "optimal" algebraic query
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Global optimizationGlobal optimization

 Taking into consideration
 cardinalities of fragments
 communication, I/O, CPU costs

 Using
 reordering operations (esp. joins)
 semijoin reduction
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Distributed query optimizationDistributed query optimization
ProblemProblem

site1

site2

Cust

Prod

 Query optimizer needs to consider (global view 
of the system)
 sizes of relations
 sizes of intermediate results
 communication costs (network throughput)
 computation power of sites (CPU, I/O, memory)
 data structures at sites (indexes, partitions, 

clusters, ...)
 power of query optimizer (join algorithms, cost 

based, rule based, search space generation and 
searching)

 availability and location of fragments
 availability and location of replicas

select lName, prodName, quantity
from Cust@site1 c, Sales@site3 s, Prod@site2 p
where s.custID=c.custID and s.prodID=p.prodID
and c.city != 'Poznań' and p.tax = 23 and (s.year=2008 or s.year=2009 )

site3

Sales
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Distributed DB exampleDistributed DB example

 Horizontal fragmentation of Cust and Sales
 site1  Cust1: custID<=1000
 site2  Cust2: custID>1000
 site3  Sales1: custID<=1000
 site4  Sales2: custID>1000
 site5  executes query

site1 site2 site3 site4

site5
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DistributedDistributed DB DB exampleexample

site1

site3

site2

site4

site5
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Data localizationData localization

 DB is fragmented (partitioned)
 Global relation is represented by a reconstruction 

program that reconstructs the relation from its 
fragments

 Naive approach: construct generic query tree 
where each relation is represented by its 
reconstruction program  not optimal tree  apply 
reduction techniques
 reduction for primary horizontal fragmentation
 reduction for vertical fragmentation
 reduction for derived fragmentation
 reduction for hybrid fragmentation
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Data localization: RPHFData localization: RPHF

 Reduction for Primary Horizontal Fragmentation
 Cust fragmented and its reconstruction program 

exists
 Cust1: custID<=1000
 Cust2: custID>1000

 In generic query tree Cust is replaced by its 
reconstruction program

 After building a query tree, find out subtrees that 
produce empty relations (no results)
 reduction with selection
 reduction with join
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Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith selectionselection

 Generic query tree

select fName, lName
from Cust c
where custID>2000

Cust1
(custID<=1000)

Cust2
(custID>1000)

 Reduced query tree

Cust1
(custID<=1000)

Cust2
(custID>1000)
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Data localization: RPHFData localization: RPHF
Reduction with joinReduction with join

 Assumption: joined relations are fragmented 
according to a join attribute

 Distributing joins over unions + eliminating empty 
joins  applicable when the number of joins of 
fragments is small

 Possible parallel computation of joins of fragments
 Cust fragmented into

 Cust1: custID<=1000
 Cust2: custID>1000

 Sales fragmented into
 Sales1: custID<=500
 Sales2: 500<custID<=1000
 Sales3: 1000<custID<=1500
 Sales4: custID>1500
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Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith joinjoin

 Generic query tree select *
from Cust c, Sales s
where s.custID=c.custID

Cust1
custID<=1000

Cust2
custID>1000

 Reduced query tree

Sales1
custID<=500

Sales2
500<custID<=1000

Sales3
1000<custID<=1500

Sales4
custID>1500

Cust1 Cust2Sales1 Sales2 Sales3 Sales4Cust1 Cust2
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Data Data localizationlocalization: RVF: RVF

 Reduction for Vertical Fragmentation
 Reconstruction program: join
 Vertical fragments that have no attributes in 

common with the list of attributes projected in a 
query are useless

 Cust fragmented as follows
 Cust1 = ΠcustID,fName,lName(Cust)
 Cust2 = ΠcustID,city(Cust)
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Data Data localizationlocalization: RVF: RVF

select fName, lName
from Cust
where custID>2000

 Generic query tree

Cust1
fName, lName

Cust2
city

Cust1

 Reduced query tree
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Data Data localizationlocalization: RDF: RDF

 Reduction for Derived Fragmentation
 Derived fragmentation: fragments of R and S that 

have the same join attribute values are located at the 
same site
 tuples of S are placed based on tuples of R
 1:m relationship between R (1) and S (m)

 Prod fragmented as follows
 Prod1 = (tax<=7%)
 Prod2 = (tax>7%)

 Derived fragmentation of Sales based on Prod

semijoin PK-
FK
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Data Data localizationlocalization: RDF: RDF

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=7

 Generic query tree

Prod1
tax<=7

Prod2
tax>7

Sales1
tax<=7

Sales2
tax>7

pushing
selection

down

Sales1 Sales2Prod1 Prod2
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Data Data localizationlocalization: RDF: RDF

moving
unions

up

Prod1 Sales1 Sales2 Sales1 Sales2

Prod1 Sales1

Prod1 Prod1

after eliminating useless subtree
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Data Data localizationlocalization: RHF: RHF

 Reduction for Hybrid Fragmentation
 Hybrid fragmentation: horizontal + vertical + 

derived  support SPJ queries
 Query graph optimization rules

 remove horizontal fragments whose predicates 
contradict with query predicates

 remove vertical fragments that have no attributes in 
common with projected attributes in a query 

 distribute joins over unions of fragments and remove 
useless joins
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Data Data localizationlocalization: RHF: RHF

 Prod fragmented (horizontally and vertically) as 
follows

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=23

 Sales not fragmented
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Data Data localizationlocalization: RHF: RHF

 Generic query tree

Sales Prod11
tax<=7
prodName, tax

Prod21
tax>7
prodName, tax

Prod12
tax<=7
netPrice, tax

Prod22
tax>7
netPrice, tax

1. removing vertical 
fragments

2. pushing selection 
down

Sales Prod11 Prod21
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DistributedDistributed joinsjoins

 Ordering joins

site1

site2

site3

Cust

Prod

Sales

 Possible join strategies
 send Cust to Sales, join, send result to Prod

 send Sales to Cust, join, send result to Prod

 send Sales to Prod, join, send result to Cust

 send Prod to Sales, join, send result to Cust

 send Prod and Cust to Sales, join

 send Prod and Sales to Cust, join

 send Cust and Sales to Prod, join

 Rule: send a smaller relation to a bigger one
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JoinJoin orderorder

 Join order is determined by:
 either the cardinality of relations  sort ascendingly

relations by their cardinality and join them "from the 
smallest to the largest"

 or the cardinalities of all the possible join sequences 
 create the search space of possible joins and 
estimate their cardinalities

A B C D E
relation cardinalitysmall large
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Using Using semijoinssemijoins

 Use semijoin to decrease the size (cost) of 
intermediate relation

 Example: strategy

site1

site3

Cust

Sales
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UsingUsing semijoinssemijoins

 Example

site1

site3

Cust

Sales
site2

Prod

 Multiple sequences of semijoins
 the number of sequences grows expotentially with the 

number of relations
 finding one optimal sequence is an NP-hard problem
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UsingUsing semijoinssemijoins

 Beneficial when the total amount of transmitted 
data is smaller than with join  reducing the 
cardinality of an intermediate result

 Intermediate results cannot profit from additional 
data structures (e.g., indexes) as base relations do

 Optimization of ΠAi transmission  encode in a bit 
array (bitmap)  data size reduction
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R* R* algorithmalgorithm

 Master site (where a query is initiated)
 global optimization of a query

input: query tree QT
output: minimum cost strategy strat
begin

{for each relation Ri QT
for each access path APij to Ri

{compute cost(APij)}
best_APi:=APij with minimum cost

}
{for each order (Ri1, Ri2, ..., Rin): i=1, ..., n!   

build strategy
compute cost of the strategy

}
strat:= strategy with minimum cost
{for each site k storing relation in QT

send local strategy to k
}

end

select join sequence, 
join algorithm, relation
transfers - join site 
estimate cardinalities, 
complexity of join
algorithms

access method
(index, full scan, ...) 
 use statistics
and cost formulas
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R* R* algorithmalgorithm

 Data transfer methods
 Ship-whole

 the whole relation R is transferred to the join site
 better when most of rows in R join
 better for small R

 Fetch-as-needed
 outer relation is sequentially read
 join value v is sent to the site of inner relation S
 inner tuples joining with v are sent back to the outer 

relation
 better than few rows of S join
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R* R* algorithmalgorithm

 Build strategy  all possible scenarios for 
transferring relations/tuples between sites

 Cost model includes
 local processing cost (I/O for retrieving relations/tuples)
 communication cost (amount of data transferred between 

sites)
 Strategies that can be applied by the algorithm

1. transfer entire outer relation to the site of an inner
relation

2. transfer entire inner relation to the site of an outer
relation

3. fetch-as-needed tuples from an inner relation
4. move an inner and outer relation to a third site
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HillHill climbingclimbing algorithmalgorithm

 No semijoins, no replication, no fragmentation
 Heuristic for searching a solution space

 local minimum can be obtained
 global minimum may not be obtained  the first step 

eliminates more costly query trees that might lead to 
a final query tree with a global minimum cost

 Uses: query graph, location of relations, statistics
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select lName, prodName, quantity
from Cust@site1 cu, Sales@site2 s, Prod@site3 p,
Categ@site4 ca, Group@site5 g
where s.custID=cu.custID and s.prodID=p.prodID
and ...
and ca.categID=1

HC HC algorithmalgorithm

1. Compute initial query plan (IQP0)
 select the site where the final result will be computed  site with 

relation of the greatest cardinality involved in the query
 compute data transfer cost of relations from all other nodes 

independently

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

assumption: uniformly
distributed data
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HC HC AlgorithmAlgorithm

1. Compute initial query plan (IQP0)

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

site2 (Sales)

site1 (Cust) site3 (Prod) site4 (Categ)site5 (Group)

50
20 1 2

initial cost(IQP0) = 50+20+1+2=73

IQP0
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HC HC algorithmalgorithm

2. Alter initial query plan IQP0 into QPi (i=1,2,...n) 
QPi exploits transfer of one relation to the other 
site for the purpose of joining it with the remote 
relation
 compute cost(QPi) (include data transfer time and 

local processing time)
 find min{cost(QPi)}
 if cost(IQP0)> min{cost(QPi)} replace IQP0 with QPi

 recursively apply step 2 on QPi until all joins are 
resolved
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site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+2

1

2

HC HC algorithmalgorithm

QP1

cost(QP1) = 50+4+1+2=57

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+1

1

1
QP2

cost(QP2) = 50+4+1+2=56
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DistributedDistributed queryquery: : casecase 11

DB1DB1

T2DB2DB2

select count(*) 
from T1@DB1 ... 

create view ...
select count(*) from T1 ...

V

select * from V@DB1 ...

T1
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DistributedDistributed queryquery: : casecase 22

 executing query: T1 joinx T2

 large T1 is sent to DB2

T1

DB1DB1

T2

DB2DB2

T1 T1 joinjoinxx T2T2

T1readread T1T1

result
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DistributedDistributed queryquery: : casecase 22

 Solutions
 create view
 if few rows from T2 join with T1 then use nested loops

instead of sort merge

DB1DB1

T2DB2DB2 T1 T1 joinjoinxx T2T2

createcreate view ...view ...
T1 join T2@DB2 on (T1.x=T2.x)T1 join T2@DB2 on (T1.x=T2.x)

V

select * from V@DB1 ...

T1
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UseUse ofof hintshints (Oracle)(Oracle)

 ORDERED
 use the order of tables in nested loop the same as in the 

FROM clause (the leftmost table is the outer table)
 FULL

 use full table scan for an indicated table
 DRIVING_SITE

 indicate a database where the query is to be executed
 NO_MERGE

 execute a subquery first and then join its result with the 
main query

 USE_NL, USE_MERGE, USE_HASH
 apply an indicated join algorithm
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DistributedDistributed queriesqueries -- examplesexamples
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