
1

Robert WrembelRobert Wrembel

PoznaPoznańń University of TechnologyUniversity of Technology

Institute of Computing ScienceInstitute of Computing Science

PoznaPoznańń, Poland, Poland
Robert.Wrembel@cs.put.poznan.plRobert.Wrembel@cs.put.poznan.pl

www.cs.put.poznan.pl/rwrembelwww.cs.put.poznan.pl/rwrembel

On Building Integrated and On Building Integrated and
Distributed Database SystemsDistributed Database Systems

Distributed Query Processing and

Optimization

2Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Relational calculus and algebraRelational calculus and algebra

 Relational calculus declarative (SQL)
 Relational algebra procedural

 basic operators
• selection
• projection
• cartesian product
• union
• set difference

 derived operators
• intersection
• theta-join (natural, semi, equi, non-equi)

2

3Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query Query optimizationoptimization

parsing

transforming into rel. algebra

SQL query

algebraic optimization

rule based optimization cost based optimization

plan generatorplan generator plans generator

cost estimator
query execution plan

query execution plan

4Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Parsing (SQL)Parsing (SQL)

 Query normalization
 Lexical and syntactic correctness analysis

 existence of attributes and relations, access rights
 checking type compatibilities

 Reject type incorrect normalized queries
 e.g., price='#23', birth_date='a12-01-2001x'

 Reject queries whose execution is not necessary
 e.g., where 1=3

3

5Robert Wrembel, Poznań University of Technology, Institute of Computing Science

ParsingParsing (SQL)(SQL)

 Transform to normalized (unified form)
 conjunctive NF (more frequently used)

 disjunctive NF

 apply equivalence rules for logical
operators

6Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query decompositionQuery decomposition

 Remove redundant predicates
 Apply rules
 Example

4

7Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TranTranssformationformation

 Transforming a high-level query expressed in
relational calculus into an equivalent lower-level
query expressed in relational algebra query
execution plan
 transformation correctness - the same query result
 more efficient performance of a transformed query

optimization of algebraic query

Relational calculus (SQL) Relational algebra

8Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

 Expressing query in relational algebra operator
(query) tree
 leaves relations (FROM clause)
 root result with projected attributes (SELECT clause)
 intermediate nodes relational algebra operators

 Straightforward transformation

5

9Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cus c, Sales s
where s.custID=c.custID
and s.quantity=100

 Optimizing query tree by applying transformation
rules
 multiple equivalent trees may be created

10Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

Cust Sales Prod

6

11Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Transformation rulesTransformation rules

 Relations R, S, T
 R is composed of attributes A={A1, A2, ..., An}
 S is composed of attributes B={B1, B2, ..., Bn}

1. Comutativity of binary operators

2. Associativity of binary operators

3. Grouping unary operators
 grouping subsequent projections
 grouping subsequent selections

12Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Transformation rulesTransformation rules

4. Commuting selection with projection

5. Commuting selection with binary operators

6. Commuting projection with binary operators

7. Commuting join with set operator

7

13Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Equivalent query treeEquivalent query tree

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

Cust Sales Prod

14Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Join treesJoin trees

select fName, lName, quantity, prodName
from Cust c, Sales s, Prod p
where s.custID=c.custID and s.prodID=p.prodID

Cust Sales Prod Sales Prod Cust Cust Prod Sales

8

15Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Join treesJoin trees

 Linear: at least one operand is a base relation
 Bushy: both operands may be intermediate relations

 increased parallelism (distributed DBS)

A B C D E A B C D E

16Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Rule based optimizationRule based optimization

 Reduce the size of data
 apply selection before join
 join the smallest tables first
 if available, use index for a selection predicate
 if available, use index on a foreign key use NL

9

17Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization costQuery optimization cost

 Optimizing
 total execution time (cost)

• reduces cost of every operation
 response time (elapsed from sending query to

execution to obtaining results)
• total cost may be larger
• operations may be performed in parallel

 Cost components
 I/O
 CPU
 data transfer

Total_cost = CPU_cost + I/O_cost + communication_cost
CPU_cost = CPU_instr_cost * #instructions
I/O_cost = disk_I/O_cost * #accesses
communication_cost = #messages + data_transmission

18Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Cost based optimizationCost based optimization

 Search space: the set of alternative query trees of an input
query obtained by applying transformation rules
 the most costly are joins different types of join trees

 Cost model: describes the cost of a query tree (execution
plan)

 Search strategy: explores search space in order to find
optimal execution plan

search space
generator

query

equivalent query trees

search algorithm

optimal execution plan

10

19Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Search spaceSearch space

 Search strategies
 Iterative improvement
 Simulated annealing
 Tabu search

20Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Iterative ImprovementIterative Improvement

 Only down steps are allowed
 DO UNTIL ending condition is reached

 select randomly a state
 DO UNTIL local minimum found

• Search the space by accepting only states with lower costs
• LocalMin=minimum cost found

 IF LocalMin<MinCost THEN MinCost=LocalMin
 RETURN MinCost
 Ending condition

 time limit
 no cost improvement in a given time
 no cost improvement in a given number of steps

11

21Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Simulated AnnealingSimulated Annealing

 Down steps are always allowed
 Up steps are allowed only if the value of a

parameter (called Temperature) is high
 Temperature is being decreased in time the

preference of up steps decreases in time
 the probability of up steps = exp-Δ/Temperature

 Δ difference between current cost and cost of the
next state

 A state when only down steps are possible
freezing

 The algorithm terminates in freezing local
minimum cost is reached return the minimal
value of costs that was found

22Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TabuTabu SearchSearch

 While searching the space avoid already visited
states are represented as:
 visited states tabu list or
 already used plan transformations tabu list

 Probing several neighbour states select the one
with the lowest cost (up and down steps are
allowed)
 up climbing select the most gradual slope
 down climbing select the most steep slope

 Ending condition
 a given number of steps without improvement
 time limit

12

23Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Database statisticsDatabase statistics

 Table statistics
 #db blocks
 #db blocks with data
 #rows in table (table cardinality, card(R))
 avg free space size in db blocks
 avg record length
 #chained rows
 #distinct attribute values (attribute cardinality,

card(ΠAi(R))
 histograms (equi width, equi height)
 ...

24Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HistogramHistogram

• #rows: 1200
• value range: 10 - 80
• #buckets 6

#rows

column
value

10 30 40 45 55 70 80

200

13

25Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Database statisticsDatabase statistics

 Index statistics
 tree height
 #leaf blocks
 #unique values
 avg number of leaf blocks for one key value
 avg number of table blocks for one key value
 ...

26Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating size of intermediate Estimating size of intermediate
resultresult

 Size of a relation

 Join selectivity factor

 Assumptions
 attribute values are uniformly distributed
 attributes are not correlated

14

27Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Selection

28Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Projection
 A is a PK or Unique

 Cartesian product

 Union

 Difference

15

29Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Join
 upperbound: cardinality of cartesian product
 simple case: APK of R, BFK of S

• upperbound when every tuple in R joins with tuples in S

 in general:

 Maintain database statistics on cardinalities of
relations and attributes

30Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data accessaccess methodsmethods

 Full scan

 ROWID

DB_FILE_MULTIBLOCK_READ_COUNT

HWM

R
O

W
ID

30

16

31Robert Wrembel, Poznań University of Technology, Institute of Computing Science

ROWIDROWID

 Extended ROWID format: OOOOOO.FFF.BBBBBB.RRR
 O - object ID in a database
 F - relative file number in a tablespace
 B - block number in a file
 R - row number in a block

 Extended ROWID size (Oracle): 10B
 4B: for the object id
 1B: for the tablespace relative file number
 4B: for the block number
 1B: for the row number in the block

 Oracle also uses a 6-byte ROWID format internally
 Basic ROWID format: FFFF.BBBBBBBB.RRRR

32Robert Wrembel, Poznań University of Technology, Institute of Computing Science

SortingSorting typestypes

 ORDER BY SELECT * FROM Cust

ORDER BY city DESC;

SELECT MIN(quantity)

FROM Sales;
 AGGREGATE

SELECT SUM(quantity)

FROM Sales

GROUP BY year;

 GROUP BY

SELECT DISTINCT city

FROM Cust;
 UNIQUE

17

33Robert Wrembel, Poznań University of Technology, Institute of Computing Science

 Unique scan

BB--tree access typestree access types

• navigating via leaves
• applicable to sorting

• multiblock read

 Range scan

 Full scan

 Fast full scan

34Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- nestednested looploop

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

AA

BB

BB

CC

33

22

22

11

CC 11

DD 33

33

22

22

11

dd

aa

cc

bb

11 ee

33 dd

joinjoin

outer table inner table

18

35Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- sort sort mergemerge

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

CC

BB

AA

DD

11

22

33

33

11

11

22

22

bb

ee

aa

cc

33 dd

sort

CC
CC
BB
BB

11
11
22
22

AA 33
DD 33

11
11
22
22

bb
ee
aa
cc

33 dd
33 dd

joinjoin

outer table inner table

36Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- hashhash joinjoin

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

hashhash

AA 33

BB 22

CC 11

DD 33

hash

hash

0

1

2

BB
CC
BB
AA

22
11
22
33

DD 33
CC 11

22
11
22
33

aa
bb
cc
dd

33 dd
11 ee

hash function: FK mod 3

outer table inner table

join

hash function: PK mod 3

1

2

3

19

37Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization "moment"Query optimization "moment"

 Static
 compilation time optimization
 problem of estimating sizes of intermediate results non-

optimal execution
 a query execution plan can be reused (cached)
 R*

 Dynamic
 run time optimization
 exact sizes of intermediate results are known
 for every query its execution plan has to be optimized no

plan sharing
 Distributed INGRES

 Hybrid
 compilation time optimization
 if estimated sizes of intermediate results differ by a

threshold from real ones reoptimize at run time
 MERMAID

38Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization architecturesQuery optimization architectures

 Centralized architecture
 access to statistics of all components of DDBS
 central query optimizer bottleneck

 Distributed architecture
 sites cooperate in order to create optimal plan
 higher network traffic (messages exchange)

 Hybrid architecture
 one site determines global plan
 local query is optimized locally on site

20

39Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Layers of distributed query Layers of distributed query
processingprocessing

data localization

global optimization

local optimization

global
schema, views

replicas,
fragments

local schema,
physical design,

statistics

SQL query

query in relational algebra on global schema

query in relational algebra on fragments and replicas

optimized query for data distribution

local optimization ...

co
n

tr
o

l
si

te

parsing

transforming into rel. algebra

re
m

o
te

s
it

e

40Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localizationData localization

 Finding the location of queried data based on data
distribution statistics
 eliminate useless fragments
 use appropriate replicas

 Create "optimal" algebraic query

21

41Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Global optimizationGlobal optimization

 Taking into consideration
 cardinalities of fragments
 communication, I/O, CPU costs

 Using
 reordering operations (esp. joins)
 semijoin reduction

42Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Distributed query optimizationDistributed query optimization
ProblemProblem

site1

site2

Cust

Prod

 Query optimizer needs to consider (global view
of the system)
 sizes of relations
 sizes of intermediate results
 communication costs (network throughput)
 computation power of sites (CPU, I/O, memory)
 data structures at sites (indexes, partitions,

clusters, ...)
 power of query optimizer (join algorithms, cost

based, rule based, search space generation and
searching)

 availability and location of fragments
 availability and location of replicas

select lName, prodName, quantity
from Cust@site1 c, Sales@site3 s, Prod@site2 p
where s.custID=c.custID and s.prodID=p.prodID
and c.city != 'Poznań' and p.tax = 23 and (s.year=2008 or s.year=2009)

site3

Sales

22

43Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Distributed DB exampleDistributed DB example

 Horizontal fragmentation of Cust and Sales
 site1 Cust1: custID<=1000
 site2 Cust2: custID>1000
 site3 Sales1: custID<=1000
 site4 Sales2: custID>1000
 site5 executes query

site1 site2 site3 site4

site5

44Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed DB DB exampleexample

site1

site3

site2

site4

site5

23

45Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localizationData localization

 DB is fragmented (partitioned)
 Global relation is represented by a reconstruction

program that reconstructs the relation from its
fragments

 Naive approach: construct generic query tree
where each relation is represented by its
reconstruction program not optimal tree apply
reduction techniques
 reduction for primary horizontal fragmentation
 reduction for vertical fragmentation
 reduction for derived fragmentation
 reduction for hybrid fragmentation

46Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localization: RPHFData localization: RPHF

 Reduction for Primary Horizontal Fragmentation
 Cust fragmented and its reconstruction program

exists
 Cust1: custID<=1000
 Cust2: custID>1000

 In generic query tree Cust is replaced by its
reconstruction program

 After building a query tree, find out subtrees that
produce empty relations (no results)
 reduction with selection
 reduction with join

24

47Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith selectionselection

 Generic query tree

select fName, lName
from Cust c
where custID>2000

Cust1
(custID<=1000)

Cust2
(custID>1000)

 Reduced query tree

Cust1
(custID<=1000)

Cust2
(custID>1000)

48Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localization: RPHFData localization: RPHF
Reduction with joinReduction with join

 Assumption: joined relations are fragmented
according to a join attribute

 Distributing joins over unions + eliminating empty
joins applicable when the number of joins of
fragments is small

 Possible parallel computation of joins of fragments
 Cust fragmented into

 Cust1: custID<=1000
 Cust2: custID>1000

 Sales fragmented into
 Sales1: custID<=500
 Sales2: 500<custID<=1000
 Sales3: 1000<custID<=1500
 Sales4: custID>1500

25

49Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith joinjoin

 Generic query tree select *
from Cust c, Sales s
where s.custID=c.custID

Cust1
custID<=1000

Cust2
custID>1000

 Reduced query tree

Sales1
custID<=500

Sales2
500<custID<=1000

Sales3
1000<custID<=1500

Sales4
custID>1500

Cust1 Cust2Sales1 Sales2 Sales3 Sales4Cust1 Cust2

50Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RVF: RVF

 Reduction for Vertical Fragmentation
 Reconstruction program: join
 Vertical fragments that have no attributes in

common with the list of attributes projected in a
query are useless

 Cust fragmented as follows
 Cust1 = ΠcustID,fName,lName(Cust)
 Cust2 = ΠcustID,city(Cust)

26

51Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RVF: RVF

select fName, lName
from Cust
where custID>2000

 Generic query tree

Cust1
fName, lName

Cust2
city

Cust1

 Reduced query tree

52Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

 Reduction for Derived Fragmentation
 Derived fragmentation: fragments of R and S that

have the same join attribute values are located at the
same site
 tuples of S are placed based on tuples of R
 1:m relationship between R (1) and S (m)

 Prod fragmented as follows
 Prod1 = (tax<=7%)
 Prod2 = (tax>7%)

 Derived fragmentation of Sales based on Prod

semijoin PK-
FK

27

53Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=7

 Generic query tree

Prod1
tax<=7

Prod2
tax>7

Sales1
tax<=7

Sales2
tax>7

pushing
selection

down

Sales1 Sales2Prod1 Prod2

54Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

moving
unions

up

Prod1 Sales1 Sales2 Sales1 Sales2

Prod1 Sales1

Prod1 Prod1

after eliminating useless subtree

28

55Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Reduction for Hybrid Fragmentation
 Hybrid fragmentation: horizontal + vertical +

derived support SPJ queries
 Query graph optimization rules

 remove horizontal fragments whose predicates
contradict with query predicates

 remove vertical fragments that have no attributes in
common with projected attributes in a query

 distribute joins over unions of fragments and remove
useless joins

56Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Prod fragmented (horizontally and vertically) as
follows

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=23

 Sales not fragmented

29

57Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Generic query tree

Sales Prod11
tax<=7
prodName, tax

Prod21
tax>7
prodName, tax

Prod12
tax<=7
netPrice, tax

Prod22
tax>7
netPrice, tax

1. removing vertical
fragments

2. pushing selection
down

Sales Prod11 Prod21

58Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed joinsjoins

 Ordering joins

site1

site2

site3

Cust

Prod

Sales

 Possible join strategies
 send Cust to Sales, join, send result to Prod

 send Sales to Cust, join, send result to Prod

 send Sales to Prod, join, send result to Cust

 send Prod to Sales, join, send result to Cust

 send Prod and Cust to Sales, join

 send Prod and Sales to Cust, join

 send Cust and Sales to Prod, join

 Rule: send a smaller relation to a bigger one

30

59Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin orderorder

 Join order is determined by:
 either the cardinality of relations sort ascendingly

relations by their cardinality and join them "from the
smallest to the largest"

 or the cardinalities of all the possible join sequences
 create the search space of possible joins and
estimate their cardinalities

A B C D E
relation cardinalitysmall large

60Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Using Using semijoinssemijoins

 Use semijoin to decrease the size (cost) of
intermediate relation

 Example: strategy

site1

site3

Cust

Sales

31

61Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UsingUsing semijoinssemijoins

 Example

site1

site3

Cust

Sales
site2

Prod

 Multiple sequences of semijoins
 the number of sequences grows expotentially with the

number of relations
 finding one optimal sequence is an NP-hard problem

62Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UsingUsing semijoinssemijoins

 Beneficial when the total amount of transmitted
data is smaller than with join reducing the
cardinality of an intermediate result

 Intermediate results cannot profit from additional
data structures (e.g., indexes) as base relations do

 Optimization of ΠAi transmission encode in a bit
array (bitmap) data size reduction

32

63Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Master site (where a query is initiated)
 global optimization of a query

input: query tree QT
output: minimum cost strategy strat
begin

{for each relation Ri QT
for each access path APij to Ri

{compute cost(APij)}
best_APi:=APij with minimum cost

}
{for each order (Ri1, Ri2, ..., Rin): i=1, ..., n!

build strategy
compute cost of the strategy

}
strat:= strategy with minimum cost
{for each site k storing relation in QT

send local strategy to k
}

end

select join sequence,
join algorithm, relation
transfers - join site
estimate cardinalities,
complexity of join
algorithms

access method
(index, full scan, ...)
 use statistics
and cost formulas

64Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Data transfer methods
 Ship-whole

 the whole relation R is transferred to the join site
 better when most of rows in R join
 better for small R

 Fetch-as-needed
 outer relation is sequentially read
 join value v is sent to the site of inner relation S
 inner tuples joining with v are sent back to the outer

relation
 better than few rows of S join

33

65Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Build strategy all possible scenarios for
transferring relations/tuples between sites

 Cost model includes
 local processing cost (I/O for retrieving relations/tuples)
 communication cost (amount of data transferred between

sites)
 Strategies that can be applied by the algorithm

1. transfer entire outer relation to the site of an inner
relation

2. transfer entire inner relation to the site of an outer
relation

3. fetch-as-needed tuples from an inner relation
4. move an inner and outer relation to a third site

66Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HillHill climbingclimbing algorithmalgorithm

 No semijoins, no replication, no fragmentation
 Heuristic for searching a solution space

 local minimum can be obtained
 global minimum may not be obtained the first step

eliminates more costly query trees that might lead to
a final query tree with a global minimum cost

 Uses: query graph, location of relations, statistics

34

67Robert Wrembel, Poznań University of Technology, Institute of Computing Science

select lName, prodName, quantity
from Cust@site1 cu, Sales@site2 s, Prod@site3 p,
Categ@site4 ca, Group@site5 g
where s.custID=cu.custID and s.prodID=p.prodID
and ...
and ca.categID=1

HC HC algorithmalgorithm

1. Compute initial query plan (IQP0)
 select the site where the final result will be computed site with

relation of the greatest cardinality involved in the query
 compute data transfer cost of relations from all other nodes

independently

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

assumption: uniformly
distributed data

68Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HC HC AlgorithmAlgorithm

1. Compute initial query plan (IQP0)

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

site2 (Sales)

site1 (Cust) site3 (Prod) site4 (Categ)site5 (Group)

50
20 1 2

initial cost(IQP0) = 50+20+1+2=73

IQP0

35

69Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HC HC algorithmalgorithm

2. Alter initial query plan IQP0 into QPi (i=1,2,...n)
QPi exploits transfer of one relation to the other
site for the purpose of joining it with the remote
relation
 compute cost(QPi) (include data transfer time and

local processing time)
 find min{cost(QPi)}
 if cost(IQP0)> min{cost(QPi)} replace IQP0 with QPi

 recursively apply step 2 on QPi until all joins are
resolved

70Robert Wrembel, Poznań University of Technology, Institute of Computing Science

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+2

1

2

HC HC algorithmalgorithm

QP1

cost(QP1) = 50+4+1+2=57

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+1

1

1
QP2

cost(QP2) = 50+4+1+2=56

36

71Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 11

DB1DB1

T2DB2DB2

select count(*)
from T1@DB1 ...

create view ...
select count(*) from T1 ...

V

select * from V@DB1 ...

T1

72Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 22

 executing query: T1 joinx T2

 large T1 is sent to DB2

T1

DB1DB1

T2

DB2DB2

T1 T1 joinjoinxx T2T2

T1readread T1T1

result

37

73Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 22

 Solutions
 create view
 if few rows from T2 join with T1 then use nested loops

instead of sort merge

DB1DB1

T2DB2DB2 T1 T1 joinjoinxx T2T2

createcreate view ...view ...
T1 join T2@DB2 on (T1.x=T2.x)T1 join T2@DB2 on (T1.x=T2.x)

V

select * from V@DB1 ...

T1

74Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UseUse ofof hintshints (Oracle)(Oracle)

 ORDERED
 use the order of tables in nested loop the same as in the

FROM clause (the leftmost table is the outer table)
 FULL

 use full table scan for an indicated table
 DRIVING_SITE

 indicate a database where the query is to be executed
 NO_MERGE

 execute a subquery first and then join its result with the
main query

 USE_NL, USE_MERGE, USE_HASH
 apply an indicated join algorithm

38

75Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queriesqueries -- examplesexamples

76Robert Wrembel, Poznań University of Technology, Institute of Computing Science

BibliographyBibliography

 S. K. Rahimi, F. S. Haug: Distributed Database Management
Systems. A Practical Approach. IEEE Computer Society, Wiley,
2010

 M. T. Özsu, P. Valduriez: Principles of Distributed Database
Systems. 3rd edition, Springer Verlag, 2011

 C. T. Yu, W. Meng: Principles of Database Query Processing for
Advanced Applications. Morgan Kaufmann, 1998

 T. Conolly, C. Begg: Database Systems - a Practical Approach to
Design, Implementation, and Management. Adison-Wesley, 2002

 K. Stocker, D. Kossmann, R. Braumandi, A. Kemper: Integrating
semi-join-reducers into state-of-the-art query processors. Proc. of
ICDE, 2001

