
1

Robert WrembelRobert Wrembel

PoznaPoznańń University of TechnologyUniversity of Technology

Institute of Computing ScienceInstitute of Computing Science

PoznaPoznańń, Poland, Poland
Robert.Wrembel@cs.put.poznan.plRobert.Wrembel@cs.put.poznan.pl

www.cs.put.poznan.pl/rwrembelwww.cs.put.poznan.pl/rwrembel

On Building Integrated and On Building Integrated and
Distributed Database SystemsDistributed Database Systems

Distributed Query Processing and

Optimization

2Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Relational calculus and algebraRelational calculus and algebra

 Relational calculus  declarative (SQL)
 Relational algebra  procedural

 basic operators
• selection
• projection
• cartesian product
• union
• set difference

 derived operators
• intersection
• theta-join (natural, semi, equi, non-equi)

2

3Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query Query optimizationoptimization

parsing

transforming into rel. algebra

SQL query

algebraic optimization

rule based optimization cost based optimization

plan generatorplan generator plans generator

cost estimator
query execution plan

query execution plan

4Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Parsing (SQL)Parsing (SQL)

 Query normalization
 Lexical and syntactic correctness analysis

 existence of attributes and relations, access rights
 checking type compatibilities

 Reject type incorrect normalized queries
 e.g., price='#23', birth_date='a12-01-2001x'

 Reject queries whose execution is not necessary
 e.g., where 1=3

3

5Robert Wrembel, Poznań University of Technology, Institute of Computing Science

ParsingParsing (SQL)(SQL)

 Transform to normalized (unified form)
 conjunctive NF (more frequently used)

 disjunctive NF

 apply equivalence rules for logical
operators

6Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query decompositionQuery decomposition

 Remove redundant predicates
 Apply rules
 Example

4

7Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TranTranssformationformation

 Transforming a high-level query expressed in
relational calculus into an equivalent lower-level
query expressed in relational algebra  query
execution plan
 transformation correctness - the same query result
 more efficient performance of a transformed query 

optimization of algebraic query

Relational calculus (SQL)  Relational algebra

8Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

 Expressing query in relational algebra  operator
(query) tree
 leaves  relations (FROM clause)
 root  result with projected attributes (SELECT clause)
 intermediate nodes  relational algebra operators

 Straightforward transformation

5

9Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cus c, Sales s
where s.custID=c.custID
and s.quantity=100

 Optimizing query tree by applying transformation
rules
 multiple equivalent trees may be created

10Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TransformationTransformation

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

Cust Sales Prod

6

11Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Transformation rulesTransformation rules

 Relations R, S, T
 R is composed of attributes A={A1, A2, ..., An}
 S is composed of attributes B={B1, B2, ..., Bn}

1. Comutativity of binary operators

2. Associativity of binary operators

3. Grouping unary operators
 grouping subsequent projections
 grouping subsequent selections

12Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Transformation rulesTransformation rules

4. Commuting selection with projection

5. Commuting selection with binary operators

6. Commuting projection with binary operators

7. Commuting join with set operator

7

13Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Equivalent query treeEquivalent query tree

select fName, lName
from Cust c, Sales s, Prod p
where s.custID=c.custID
and s.prodID=p.prodID
and c.city != 'Poznań'
and p.tax = 23
and (s.year=2008 or s.year=2009)

Cust Sales Prod

14Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Join treesJoin trees

select fName, lName, quantity, prodName
from Cust c, Sales s, Prod p
where s.custID=c.custID and s.prodID=p.prodID

Cust Sales Prod Sales Prod Cust Cust Prod Sales

8

15Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Join treesJoin trees

 Linear: at least one operand is a base relation
 Bushy: both operands may be intermediate relations

 increased parallelism (distributed DBS)

A B C D E A B C D E

16Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Rule based optimizationRule based optimization

 Reduce the size of data
 apply selection before join
 join the smallest tables first
 if available, use index for a selection predicate
 if available, use index on a foreign key  use NL

9

17Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization costQuery optimization cost

 Optimizing
 total execution time (cost)

• reduces cost of every operation
 response time (elapsed from sending query to

execution to obtaining results)
• total cost may be larger
• operations may be performed in parallel

 Cost components
 I/O
 CPU
 data transfer

Total_cost = CPU_cost + I/O_cost + communication_cost
CPU_cost = CPU_instr_cost * #instructions
I/O_cost = disk_I/O_cost * #accesses
communication_cost = #messages + data_transmission

18Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Cost based optimizationCost based optimization

 Search space: the set of alternative query trees of an input
query  obtained by applying transformation rules
 the most costly are joins  different types of join trees

 Cost model: describes the cost of a query tree (execution
plan)

 Search strategy: explores search space in order to find
optimal execution plan

search space
generator

query

equivalent query trees

search algorithm

optimal execution plan

10

19Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Search spaceSearch space

 Search strategies
 Iterative improvement
 Simulated annealing
 Tabu search

20Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Iterative ImprovementIterative Improvement

 Only down steps are allowed
 DO UNTIL ending condition is reached

 select randomly a state
 DO UNTIL local minimum found

• Search the space by accepting only states with lower costs
• LocalMin=minimum cost found

 IF LocalMin<MinCost THEN MinCost=LocalMin
 RETURN MinCost
 Ending condition

 time limit
 no cost improvement in a given time
 no cost improvement in a given number of steps

11

21Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Simulated AnnealingSimulated Annealing

 Down steps are always allowed
 Up steps are allowed only if the value of a

parameter (called Temperature) is high
 Temperature is being decreased in time  the

preference of up steps decreases in time
 the probability of up steps = exp-Δ/Temperature

 Δ difference between current cost and cost of the
next state

 A state when only down steps are possible 
freezing

 The algorithm terminates in freezing  local
minimum cost is reached  return the minimal
value of costs that was found

22Robert Wrembel, Poznań University of Technology, Institute of Computing Science

TabuTabu SearchSearch

 While searching the space avoid already visited
states are represented as:
 visited states  tabu list or
 already used plan transformations  tabu list

 Probing several neighbour states  select the one
with the lowest cost (up and down steps are
allowed)
 up climbing  select the most gradual slope
 down climbing  select the most steep slope

 Ending condition
 a given number of steps without improvement
 time limit

12

23Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Database statisticsDatabase statistics

 Table statistics
 #db blocks
 #db blocks with data
 #rows in table (table cardinality, card(R))
 avg free space size in db blocks
 avg record length
 #chained rows
 #distinct attribute values (attribute cardinality,

card(ΠAi(R))
 histograms (equi width, equi height)
 ...

24Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HistogramHistogram

• #rows: 1200
• value range: 10 - 80
• #buckets 6

#rows

column
value

10 30 40 45 55 70 80

200

13

25Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Database statisticsDatabase statistics

 Index statistics
 tree height
 #leaf blocks
 #unique values
 avg number of leaf blocks for one key value
 avg number of table blocks for one key value
 ...

26Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating size of intermediate Estimating size of intermediate
resultresult

 Size of a relation

 Join selectivity factor

 Assumptions
 attribute values are uniformly distributed
 attributes are not correlated

14

27Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Selection

28Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Projection
 A is a PK or Unique

 Cartesian product

 Union

 Difference

15

29Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Estimating cardinalitiesEstimating cardinalities

 Join
 upperbound: cardinality of cartesian product
 simple case: APK of R, BFK of S

• upperbound when every tuple in R joins with tuples in S

 in general:

 Maintain database statistics on cardinalities of
relations and attributes

30Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data accessaccess methodsmethods

 Full scan

 ROWID

DB_FILE_MULTIBLOCK_READ_COUNT

HWM

R
O

W
ID

30

16

31Robert Wrembel, Poznań University of Technology, Institute of Computing Science

ROWIDROWID

 Extended ROWID format: OOOOOO.FFF.BBBBBB.RRR
 O - object ID in a database
 F - relative file number in a tablespace
 B - block number in a file
 R - row number in a block

 Extended ROWID size (Oracle): 10B
 4B: for the object id
 1B: for the tablespace relative file number
 4B: for the block number
 1B: for the row number in the block

 Oracle also uses a 6-byte ROWID format internally
 Basic ROWID format: FFFF.BBBBBBBB.RRRR

32Robert Wrembel, Poznań University of Technology, Institute of Computing Science

SortingSorting typestypes

 ORDER BY SELECT * FROM Cust

ORDER BY city DESC;

SELECT MIN(quantity)

FROM Sales;
 AGGREGATE

SELECT SUM(quantity)

FROM Sales

GROUP BY year;

 GROUP BY

SELECT DISTINCT city

FROM Cust;
 UNIQUE

17

33Robert Wrembel, Poznań University of Technology, Institute of Computing Science

 Unique scan

BB--tree access typestree access types

• navigating via leaves
• applicable to sorting

• multiblock read

 Range scan

 Full scan

 Fast full scan

34Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- nestednested looploop

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

AA

BB

BB

CC

33

22

22

11

CC 11

DD 33

33

22

22

11

dd

aa

cc

bb

11 ee

33 dd

joinjoin

outer table inner table

18

35Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- sort sort mergemerge

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

CC

BB

AA

DD

11

22

33

33

11

11

22

22

bb

ee

aa

cc

33 dd

sort

CC
CC
BB
BB

11
11
22
22

AA 33
DD 33

11
11
22
22

bb
ee
aa
cc

33 dd
33 dd

joinjoin

outer table inner table

36Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin algorithmsalgorithms -- hashhash joinjoin

AA

BB

CC

DD

33

22

11

33

22

11

22

33

aa

bb

cc

dd

11 ee

hashhash

AA 33

BB 22

CC 11

DD 33

hash

hash

0

1

2

BB
CC
BB
AA

22
11
22
33

DD 33
CC 11

22
11
22
33

aa
bb
cc
dd

33 dd
11 ee

hash function: FK mod 3

outer table inner table

join

hash function: PK mod 3

1

2

3

19

37Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization "moment"Query optimization "moment"

 Static
 compilation time optimization
 problem of estimating sizes of intermediate results  non-

optimal execution
 a query execution plan can be reused (cached)
 R*

 Dynamic
 run time optimization
 exact sizes of intermediate results are known
 for every query its execution plan has to be optimized  no

plan sharing
 Distributed INGRES

 Hybrid
 compilation time optimization
 if estimated sizes of intermediate results differ by a

threshold from real ones  reoptimize at run time
 MERMAID

38Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Query optimization architecturesQuery optimization architectures

 Centralized architecture
 access to statistics of all components of DDBS
 central query optimizer  bottleneck

 Distributed architecture
 sites cooperate in order to create optimal plan
 higher network traffic (messages exchange)

 Hybrid architecture
 one site determines global plan
 local query is optimized locally on site

20

39Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Layers of distributed query Layers of distributed query
processingprocessing

data localization

global optimization

local optimization

global
schema, views

replicas,
fragments

local schema,
physical design,

statistics

SQL query

query in relational algebra on global schema

query in relational algebra on fragments and replicas

optimized query for data distribution

local optimization ...

co
n

tr
o

l
si

te

parsing

transforming into rel. algebra

re
m

o
te

s
it

e

40Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localizationData localization

 Finding the location of queried data based on data
distribution statistics
 eliminate useless fragments
 use appropriate replicas

 Create "optimal" algebraic query

21

41Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Global optimizationGlobal optimization

 Taking into consideration
 cardinalities of fragments
 communication, I/O, CPU costs

 Using
 reordering operations (esp. joins)
 semijoin reduction

42Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Distributed query optimizationDistributed query optimization
ProblemProblem

site1

site2

Cust

Prod

 Query optimizer needs to consider (global view
of the system)
 sizes of relations
 sizes of intermediate results
 communication costs (network throughput)
 computation power of sites (CPU, I/O, memory)
 data structures at sites (indexes, partitions,

clusters, ...)
 power of query optimizer (join algorithms, cost

based, rule based, search space generation and
searching)

 availability and location of fragments
 availability and location of replicas

select lName, prodName, quantity
from Cust@site1 c, Sales@site3 s, Prod@site2 p
where s.custID=c.custID and s.prodID=p.prodID
and c.city != 'Poznań' and p.tax = 23 and (s.year=2008 or s.year=2009)

site3

Sales

22

43Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Distributed DB exampleDistributed DB example

 Horizontal fragmentation of Cust and Sales
 site1  Cust1: custID<=1000
 site2  Cust2: custID>1000
 site3  Sales1: custID<=1000
 site4  Sales2: custID>1000
 site5  executes query

site1 site2 site3 site4

site5

44Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed DB DB exampleexample

site1

site3

site2

site4

site5

23

45Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localizationData localization

 DB is fragmented (partitioned)
 Global relation is represented by a reconstruction

program that reconstructs the relation from its
fragments

 Naive approach: construct generic query tree
where each relation is represented by its
reconstruction program  not optimal tree  apply
reduction techniques
 reduction for primary horizontal fragmentation
 reduction for vertical fragmentation
 reduction for derived fragmentation
 reduction for hybrid fragmentation

46Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localization: RPHFData localization: RPHF

 Reduction for Primary Horizontal Fragmentation
 Cust fragmented and its reconstruction program

exists
 Cust1: custID<=1000
 Cust2: custID>1000

 In generic query tree Cust is replaced by its
reconstruction program

 After building a query tree, find out subtrees that
produce empty relations (no results)
 reduction with selection
 reduction with join

24

47Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith selectionselection

 Generic query tree

select fName, lName
from Cust c
where custID>2000

Cust1
(custID<=1000)

Cust2
(custID>1000)

 Reduced query tree

Cust1
(custID<=1000)

Cust2
(custID>1000)

48Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data localization: RPHFData localization: RPHF
Reduction with joinReduction with join

 Assumption: joined relations are fragmented
according to a join attribute

 Distributing joins over unions + eliminating empty
joins  applicable when the number of joins of
fragments is small

 Possible parallel computation of joins of fragments
 Cust fragmented into

 Cust1: custID<=1000
 Cust2: custID>1000

 Sales fragmented into
 Sales1: custID<=500
 Sales2: 500<custID<=1000
 Sales3: 1000<custID<=1500
 Sales4: custID>1500

25

49Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RPHF: RPHF
ReductionReduction withwith joinjoin

 Generic query tree select *
from Cust c, Sales s
where s.custID=c.custID

Cust1
custID<=1000

Cust2
custID>1000

 Reduced query tree

Sales1
custID<=500

Sales2
500<custID<=1000

Sales3
1000<custID<=1500

Sales4
custID>1500

Cust1 Cust2Sales1 Sales2 Sales3 Sales4Cust1 Cust2

50Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RVF: RVF

 Reduction for Vertical Fragmentation
 Reconstruction program: join
 Vertical fragments that have no attributes in

common with the list of attributes projected in a
query are useless

 Cust fragmented as follows
 Cust1 = ΠcustID,fName,lName(Cust)
 Cust2 = ΠcustID,city(Cust)

26

51Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RVF: RVF

select fName, lName
from Cust
where custID>2000

 Generic query tree

Cust1
fName, lName

Cust2
city

Cust1

 Reduced query tree

52Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

 Reduction for Derived Fragmentation
 Derived fragmentation: fragments of R and S that

have the same join attribute values are located at the
same site
 tuples of S are placed based on tuples of R
 1:m relationship between R (1) and S (m)

 Prod fragmented as follows
 Prod1 = (tax<=7%)
 Prod2 = (tax>7%)

 Derived fragmentation of Sales based on Prod

semijoin PK-
FK

27

53Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=7

 Generic query tree

Prod1
tax<=7

Prod2
tax>7

Sales1
tax<=7

Sales2
tax>7

pushing
selection

down

Sales1 Sales2Prod1 Prod2

54Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RDF: RDF

moving
unions

up

Prod1 Sales1 Sales2 Sales1 Sales2

Prod1 Sales1

Prod1 Prod1

after eliminating useless subtree

28

55Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Reduction for Hybrid Fragmentation
 Hybrid fragmentation: horizontal + vertical +

derived  support SPJ queries
 Query graph optimization rules

 remove horizontal fragments whose predicates
contradict with query predicates

 remove vertical fragments that have no attributes in
common with projected attributes in a query

 distribute joins over unions of fragments and remove
useless joins

56Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Prod fragmented (horizontally and vertically) as
follows

select p.prodName, s.quantity
from Prod p, Sales s
where p.prodID=s.prodID
and p.tax=23

 Sales not fragmented

29

57Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Data Data localizationlocalization: RHF: RHF

 Generic query tree

Sales Prod11
tax<=7
prodName, tax

Prod21
tax>7
prodName, tax

Prod12
tax<=7
netPrice, tax

Prod22
tax>7
netPrice, tax

1. removing vertical
fragments

2. pushing selection
down

Sales Prod11 Prod21

58Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed joinsjoins

 Ordering joins

site1

site2

site3

Cust

Prod

Sales

 Possible join strategies
 send Cust to Sales, join, send result to Prod

 send Sales to Cust, join, send result to Prod

 send Sales to Prod, join, send result to Cust

 send Prod to Sales, join, send result to Cust

 send Prod and Cust to Sales, join

 send Prod and Sales to Cust, join

 send Cust and Sales to Prod, join

 Rule: send a smaller relation to a bigger one

30

59Robert Wrembel, Poznań University of Technology, Institute of Computing Science

JoinJoin orderorder

 Join order is determined by:
 either the cardinality of relations  sort ascendingly

relations by their cardinality and join them "from the
smallest to the largest"

 or the cardinalities of all the possible join sequences
 create the search space of possible joins and
estimate their cardinalities

A B C D E
relation cardinalitysmall large

60Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Using Using semijoinssemijoins

 Use semijoin to decrease the size (cost) of
intermediate relation

 Example: strategy

site1

site3

Cust

Sales

31

61Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UsingUsing semijoinssemijoins

 Example

site1

site3

Cust

Sales
site2

Prod

 Multiple sequences of semijoins
 the number of sequences grows expotentially with the

number of relations
 finding one optimal sequence is an NP-hard problem

62Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UsingUsing semijoinssemijoins

 Beneficial when the total amount of transmitted
data is smaller than with join  reducing the
cardinality of an intermediate result

 Intermediate results cannot profit from additional
data structures (e.g., indexes) as base relations do

 Optimization of ΠAi transmission  encode in a bit
array (bitmap)  data size reduction

32

63Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Master site (where a query is initiated)
 global optimization of a query

input: query tree QT
output: minimum cost strategy strat
begin

{for each relation Ri QT
for each access path APij to Ri

{compute cost(APij)}
best_APi:=APij with minimum cost

}
{for each order (Ri1, Ri2, ..., Rin): i=1, ..., n!

build strategy
compute cost of the strategy

}
strat:= strategy with minimum cost
{for each site k storing relation in QT

send local strategy to k
}

end

select join sequence,
join algorithm, relation
transfers - join site 
estimate cardinalities,
complexity of join
algorithms

access method
(index, full scan, ...)
 use statistics
and cost formulas

64Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Data transfer methods
 Ship-whole

 the whole relation R is transferred to the join site
 better when most of rows in R join
 better for small R

 Fetch-as-needed
 outer relation is sequentially read
 join value v is sent to the site of inner relation S
 inner tuples joining with v are sent back to the outer

relation
 better than few rows of S join

33

65Robert Wrembel, Poznań University of Technology, Institute of Computing Science

R* R* algorithmalgorithm

 Build strategy  all possible scenarios for
transferring relations/tuples between sites

 Cost model includes
 local processing cost (I/O for retrieving relations/tuples)
 communication cost (amount of data transferred between

sites)
 Strategies that can be applied by the algorithm

1. transfer entire outer relation to the site of an inner
relation

2. transfer entire inner relation to the site of an outer
relation

3. fetch-as-needed tuples from an inner relation
4. move an inner and outer relation to a third site

66Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HillHill climbingclimbing algorithmalgorithm

 No semijoins, no replication, no fragmentation
 Heuristic for searching a solution space

 local minimum can be obtained
 global minimum may not be obtained  the first step

eliminates more costly query trees that might lead to
a final query tree with a global minimum cost

 Uses: query graph, location of relations, statistics

34

67Robert Wrembel, Poznań University of Technology, Institute of Computing Science

select lName, prodName, quantity
from Cust@site1 cu, Sales@site2 s, Prod@site3 p,
Categ@site4 ca, Group@site5 g
where s.custID=cu.custID and s.prodID=p.prodID
and ...
and ca.categID=1

HC HC algorithmalgorithm

1. Compute initial query plan (IQP0)
 select the site where the final result will be computed  site with

relation of the greatest cardinality involved in the query
 compute data transfer cost of relations from all other nodes

independently

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

assumption: uniformly
distributed data

68Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HC HC AlgorithmAlgorithm

1. Compute initial query plan (IQP0)

card(Cust)=50
site1

card(Sales)=2000
site2

card(Prod)=20
site3

card(Categ)=5
site4

card(Group)=2
site5

site2 (Sales)

site1 (Cust) site3 (Prod) site4 (Categ)site5 (Group)

50
20 1 2

initial cost(IQP0) = 50+20+1+2=73

IQP0

35

69Robert Wrembel, Poznań University of Technology, Institute of Computing Science

HC HC algorithmalgorithm

2. Alter initial query plan IQP0 into QPi (i=1,2,...n) 
QPi exploits transfer of one relation to the other
site for the purpose of joining it with the remote
relation
 compute cost(QPi) (include data transfer time and

local processing time)
 find min{cost(QPi)}
 if cost(IQP0)> min{cost(QPi)} replace IQP0 with QPi

 recursively apply step 2 on QPi until all joins are
resolved

70Robert Wrembel, Poznań University of Technology, Institute of Computing Science

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+2

1

2

HC HC algorithmalgorithm

QP1

cost(QP1) = 50+4+1+2=57

site2 (Sales)

site1 (Cust) site3 (Prod)

site4 (Categ)

site5 (Group)

50 (20/5)+1+1

1

1
QP2

cost(QP2) = 50+4+1+2=56

36

71Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 11

DB1DB1

T2DB2DB2

select count(*)
from T1@DB1 ...

create view ...
select count(*) from T1 ...

V

select * from V@DB1 ...

T1

72Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 22

 executing query: T1 joinx T2

 large T1 is sent to DB2

T1

DB1DB1

T2

DB2DB2

T1 T1 joinjoinxx T2T2

T1readread T1T1

result

37

73Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queryquery: : casecase 22

 Solutions
 create view
 if few rows from T2 join with T1 then use nested loops

instead of sort merge

DB1DB1

T2DB2DB2 T1 T1 joinjoinxx T2T2

createcreate view ...view ...
T1 join T2@DB2 on (T1.x=T2.x)T1 join T2@DB2 on (T1.x=T2.x)

V

select * from V@DB1 ...

T1

74Robert Wrembel, Poznań University of Technology, Institute of Computing Science

UseUse ofof hintshints (Oracle)(Oracle)

 ORDERED
 use the order of tables in nested loop the same as in the

FROM clause (the leftmost table is the outer table)
 FULL

 use full table scan for an indicated table
 DRIVING_SITE

 indicate a database where the query is to be executed
 NO_MERGE

 execute a subquery first and then join its result with the
main query

 USE_NL, USE_MERGE, USE_HASH
 apply an indicated join algorithm

38

75Robert Wrembel, Poznań University of Technology, Institute of Computing Science

DistributedDistributed queriesqueries -- examplesexamples

76Robert Wrembel, Poznań University of Technology, Institute of Computing Science

BibliographyBibliography

 S. K. Rahimi, F. S. Haug: Distributed Database Management
Systems. A Practical Approach. IEEE Computer Society, Wiley,
2010

 M. T. Özsu, P. Valduriez: Principles of Distributed Database
Systems. 3rd edition, Springer Verlag, 2011

 C. T. Yu, W. Meng: Principles of Database Query Processing for
Advanced Applications. Morgan Kaufmann, 1998

 T. Conolly, C. Begg: Database Systems - a Practical Approach to
Design, Implementation, and Management. Adison-Wesley, 2002

 K. Stocker, D. Kossmann, R. Braumandi, A. Kemper: Integrating
semi-join-reducers into state-of-the-art query processors. Proc. of
ICDE, 2001

