
1

Robert WrembelRobert Wrembel

PoznaPoznańń University of TechnologyUniversity of Technology

Institute of Computing ScienceInstitute of Computing Science

PoznaPoznańń, Poland, Poland
Robert.Wrembel@cs.put.poznan.plRobert.Wrembel@cs.put.poznan.pl

www.cs.put.poznan.pl/rwrembelwww.cs.put.poznan.pl/rwrembel

On Building Integrated and On Building Integrated and
Distributed Database SystemsDistributed Database Systems

Transaction processing in DDBS

2R. Wrembel

TransactionTransaction

 A unit of interaction between a user and a
database
 consists of set of commands

 States
 committed
 aborted/rolled back

 Properties (ACID)
 atomicity
 consistency
 isolation
 durability

2

3R. Wrembel

Update anomalies Update anomalies (1)(1)

 Concurrent access of multiple users to the same
data
 reading
 writing

 Dirty read

4R. Wrembel

Update anomalies Update anomalies (2)(2)

 Lost update

3

5R. Wrembel

Update anomalies Update anomalies (3)(3)

 Nonrepetable reads
 T1 reading the same row multiple times sees its changes

6R. Wrembel

Update anomalies Update anomalies (4)(4)

 Inconsistent reads (inconsistent analysis)

4

7R. Wrembel

Update anomalies Update anomalies (5)(5)

 Phantoms
 if one executes a query at time T1 and re-execute it at time T2,

additional rows may have been added to the database, which may
affect the results;

 it differs from a nonrepeatable read in that with a phantom read,
data you already read hasn't been changed, but instead, more
data satisfies your query criteria than before

8R. Wrembel

Isolation LevelsIsolation Levels

 Serializable
 it prevents other users from updating or inserting

rows into the data set until the transaction is
complete

5

9R. Wrembel

Transaction managementTransaction management

 Scheduling  preserving consistency
 Deadlock detection
 Commit protocol

10R. Wrembel

Transaction schedulingTransaction scheduling

 Schedule
 a sequence of operations by a set of concurrent

transactions that preserves the order of the operations in
each of the individual transactions

 let schedule S consists of a sequence of the operations
from the set of T1, T2, ... Tn transactions

 for each transaction Ti in schedule S the original order of
operations in Ti must be the same in S

 Serial schedule
 a schedule where the operations of each transaction are

executed consecutively without any interleaved operations
from other transactions

 Nonserial schedule
 a schedule where the operations from a set of concurrent

transactions are interleaved

6

11R. Wrembel

SerializabilitySerializability

 Anomalies 1-5 resulted from parallel execution of
transactions

 Serial execution prevents from the anomalies
 Objective - serializability:

 find nonserial schedules that allow transactions to
execute concurrently in a way producing a database
state the same as produced by a serial execution

 If a set of transactions executes concurrently, we
say that a nonserial schedule is correct if it
produces the same results as a serial schedule 
such a schedule is called serializable

12R. Wrembel

Concurrency control techniquesConcurrency control techniques

 Methods used for ensuring serializability of
concurrent transactions
 Locking
 Timestamping
 Optimistic method

7

13R. Wrembel

LockingLocking

 A transaction has to obtain a shared (read) lock or an
exclusive (write) lock on a data item before executing
an operation on that item

 Two-phase locking protocol (2PL)
 growing phase

• all required locks are obtained
• no obtained locks are released

 shrinking phase
• all obtained locks are released
• no new locks are obtained nb of locks

obtained

time

shared

exclusive

shared exclusive

 x
x x

lock compatibility

14R. Wrembel

MultiversionMultiversion lockinglocking

 Versions of data are maintained by a system
 record R being updated has its version Rold before update
 transactions reading R (that is modified) access Rold

IS

IX

IS IX



x

lock compatibility





 Locking methods
 prevent conflicts by making transactions wait
 may cause in deadlocks

8

15R. Wrembel

TimestampingTimestamping (1)(1)

 No waiting transactions
 Conflicting transactions are rolled back and restarted
 Timestamp

 transaction timestamp: a unique identifier created by a
dbms that indicates the relative starting time of a
transaction

 data timestamp
• read_timestamp - TS of the last transaction that read a record
• write_timestamp - TS of the last transaction that modified a

record

16R. Wrembel

TimestampingTimestamping (2)(2)

 Timestamping
 a concurrency control protocol that orders transactions in

such a way that older transactions (with smaller
timestamps) get priority in the event of conflict

 Transaction T is allowed to read or write record R if the
last update of R was done by an older transaction
 otherwise T is restarted and assigned a new TS
 new (younger) TS prevents T from continuously being

restarted

9

17R. Wrembel

TS ordering protocol TS ordering protocol (1)(1)

 Transaction T issues READ(x)
 x has already been updated by a younger transaction:

TS(T) < write_timestamp(x)
• rollback T
• assign a new TS to T
• restart T

 TS(T) >= write_timestamp(x)
• READ(x)
• assign read_timestamp(x):=max{TS(T), read_timestamp(x)}

18R. Wrembel

TS ordering protocol TS ordering protocol (2)(2)

 Transaction T issues WRITE(x)
 x has already been read by a younger transaction:

TS(T) < read_timestamp(x)
• rollback T
• assign a new TS to T
• restart T

 x has already been written by a younger transaction:
TS(T) < write_timestamp(x)

• rollback T
• assign a new TS to T
• restart T

 otherwise: execute T
• assign write_timestamp(x) = TS(T)

10

19R. Wrembel

Optimistic protocol Optimistic protocol (1)(1)

 Assumptions: conflicts are rare
 when transaction T is going to commit, a check is

performed to determine whether a conflict occured
 if so T has to be aborted and restarted

 Offers higher concurrency as no locking is used
 Costs of restarting conflicting transactions
 Phases

 read: reading and updating data
• local copies of updated data are used
• transaction T gets assigned the START(T) timestamp

 validation
• checking if serializability is not violated
• transaction T gets assigned the VALIDATION(T) timestamp

 write: writing updated data on disk
• transaction T gets assigned the FINISH(T) timestamp

20R. Wrembel

Optimistic protocol Optimistic protocol (2)(2)

 To pass the validation phase the following has to be
true

1. All transactons Ti with earlier timestamps must have
finished before transaction T started: FINISH(Ti) <
START(T)

2. If T starts before earlier transaction Te finishes, then
a) the set of records written by Te is not the same as read by T

and
b) Te completes its write phase before T enters its validation

phase: START(T)<FINISH(Te)<VALIDATION(T)
• it guarantees that writes are done serially, ensuring no

conflicts

11

21R. Wrembel

DistributedDistributed transactiontransaction managementmanagement

Data communications

Global transaction mgr

Local transaction mgr

Data communications

Global transaction mgr

Local transaction mgr

Data communications

Global transaction mgr

Local transaction mgr

22R. Wrembel

DistributedDistributed concurrencyconcurrency controlcontrol

 Distributed serializability
 if the schedule of transactions at each site is serializable

then the global schedule (the union of local schedules) is
also serializable if:

• Tm
S1 < Tn

S1, Tm
S2 < Tn

S2, ..., Tm
Sn < Tn

Sn

– m, n – is the number of a transaction T
– Si – is a site

 Methods
 locking protocols

• centralized 2PL
• primary copy 2PL
• distributed 2PL
• majority locking

 timestamping

12

23R. Wrembel

Centralized 2PL Centralized 2PL (1)(1)

 A single site maintains all locking info
 Only one lock manager in a distributed db can set

and release locks
 2PL for a global transaction initiated at site S1 -

Steps
1. Transaction coordinator at S1 divides transaction T

into a number of subtransactions
 If T updates a replica, then the coordinator must ensure

that all copies are updated - exclusive locks requested
on replicas

 Elect a replica for read (usually the local one)
2. Local transaction manager sets and releases locks as

instructed by the centralized lock manager (normal
2PL is used at local sites)

3. Centralized lock manager controls lock compatibility;
incompatible requests are put into a queue

24R. Wrembel

Centralized 2PL Centralized 2PL (1)(1)

 Straightforward implementation
 Easy deadlock detection - one lock manager maintains

all locks
 Low communication costs
 All lock info go to a single site - bottleneck
 Lower reliability - one central site

13

25R. Wrembel

Primary copy 2PLPrimary copy 2PL

 For replicated data one copy is chosen as a primary one
 Distributing lock managers to several sites (not all)
 Update is executed first on the primary copy

 trans. coordinator must determine the location of the
primary copy and send locking request to its lock mgr

 only the primary copy is exclusively locked
 The protocol guarantees that only the primary copy is

current
 once the primary copy is updated, the update is

propagated to other copies, not necessarily as the same
transaction

 May be used when
 updates are infrequent
 sites do not always need the latest data version

 More difficult to detect deadlocks

26R. Wrembel

Distributed 2PLDistributed 2PL

 Distributing lock managers to every site
 A local lock manager is responsible for managing locks

at its site
 For non replicated data Distributed 2PL is equivalent to

standard 2PL
 For replicated data:

 any replica can be used for reading
 all replicas must be exclusively locked before updating

 Detecting and handling deadlocks is complex
 No bottleneck of centralized 2PL

14

27R. Wrembel

Majority lockingMajority locking

 Distributing lock managers to every site
 A local lock manager is responsible for managing locks

at its site
 For replicated data:

 before updating a replica, a transaction has to obtain locks
on over than the half of the replicas (instead of locks on all
replicas like in distributed 2PL)

 update propagation to unlocked replicas may be performed
later

 Lower numer of sites locked
 Detecting and handling deadlocks is complex

28R. Wrembel

Timestamp protocolTimestamp protocol

 Objective: to order transactions globally in such a way
that older transactions (with smaller TS) get priority in
the event of conflicts

 Unique TS generated locally and globally - problem
 system clock - not synchronized
 logical clock (incremented) - duplicate values at many

sites
 solution: local_TS || site_id

 Busy sites will generate younger TS  solution: TS
synchronization between sites
 each site includes its TS in inter-site messages
 on receiving a message a site compares its TS (localTS) to

the received TS (remoteTS)
• if localTS<remoteTS set localTS:=remoteTS + increment_by
• else do nothing

15

29R. Wrembel

Distributed deadlock managementDistributed deadlock management

 Let us consider 3 transactions
 T1 initiated at site S1 and requesting operation at S2
 T2 inititated at S2 and requesting operation at S3
 T3 inititated at S3 and requesting operation at S1

 Transaction locks

T3 T1S1

T1 T2S2

T2 T3S3

T1 T2

T3

local WFG global WFG
x1

y2

z3

30R. Wrembel

Deadlock detectionDeadlock detection

 In DDBS it is not sufficient for each site to build its
local WFG

 It is necessary to construct a global WFG that is
the union of local WFGs

 3 methods for handling deadlock detection in DDBS
 centralized
 hierarchical
 distributed

16

31R. Wrembel

Exercise 1Exercise 1

 Consider 5 transactions T1, T2, T3, T4, and T5
 T1 initiated at site S1 and requesting operation at site S2
 T2 initiated at site S3 and requesting operation at site S1
 T3 initiated at site S1 and requesting operation at site S3
 T4 initiated at site S2 and requesting operation at site S3
 T5 initiated at site S3

32R. Wrembel

Exercise 1Exercise 1

 Locking information for these transactions are as follows

A. Create WFGs for each of the sites
B. Create a global WFG to check if there is a global deadlock

17

33R. Wrembel

SolutionSolution

T1 T3
S1 S2 S3

T2 T1

T3 T4

T5 T4

T1 T4

T3 T5

T1

T2

T3

T4

T5

x1

x2 x8x7

x7 x5

34R. Wrembel

Centralized deadlock detection Centralized deadlock detection (1)(1)

 A single site is appointed as the Deadlock Detection
Coordinator (DDC)

 DDC is constructing and maintaining a global WFG
 Each lock manager periodically transmits its local WFG

to the DDC
 DDC is checking for cycles in a global WFG
 If one or more cycles exist, then the DDC has to break

each selected transaction to be rolled-back and
restarted

 DDC has to inform all the sites involved in processing
these transactions that they have to be rolled back and
restarted

18

35R. Wrembel

Centralized deadlock detection Centralized deadlock detection (2)(2)

 To minimize the amount of data sent, a local lock
manager sends only changes in WFG

 Such an architecture is less reliable as a failure of a
central site makes deadlock detection impossible

36R. Wrembel

Hierarchical deadlock detection Hierarchical deadlock detection (1)(1)

 Sites are organized hierarchically
 Each site sends its local WFG to a deadlock detection

site above in hierarchy
 It reduces the dependence on a centralized detection

site, reducing communication costs
 More complex implementation

19

37R. Wrembel

Hierarchical deadlock detection Hierarchical deadlock detection (2)(2)

 At leaves (level 1) local
deadlock detection is performed

 Level 2 nodes check for
deadlocks in two adjacent sites
(1-2 and 3-4)

 Level 3 nodes check for
deadlocks in four adjacent sites
(1-2-3-4 and 5-6-7-8)

 The root node is a global
deadlock detector

S1 S2 S3 S4 S5 S6 S7 S8

DD12 DD34 DD56 DD78

DD1234 DD5678

DD12345678

38R. Wrembel

Distributed deadlock detection Distributed deadlock detection (1)(1)

 External node Text is added to a local WFG to indicate an agent
at a remote site

 When transaction T1 at site S1 creates an agent at site S2 then
an edge is added to the local WFG from T1 to Text

 At site S2 and edge is added to te local WFG from Text to the
agent of T1

T3 T1S1

T1 T2S2

T2 T3S3

local WFG
T3 T1S1

T1 T2S2

T2 T3S3

local WFG for distributed
deadlock detection

Text

Text

Text

S2

S2

S3

S3

S1

S1

20

39R. Wrembel

DistributedDistributed deadlockdeadlock detectiondetection (2)(2)

T3 T1S1

T1 T2S2

T2 T3S3

local WFG for distributed
deadlock detection

Text

Text

Text

S2

S2

S3

S3

S1

S1

T3

T1

S1

T2

T3

S2

T1

T2

S3

Text

Text

Text

40R. Wrembel

DistributedDistributed deadlockdeadlock detectiondetection (3)(3)

 If local WFG contains a cycle that does not include Text
then the site has a deadlock  a DDBS has a deadlock

 A global deadlock potentially exists if the local WFG
contains a cycle involving Text
 since Text may represent different agents, the existence of

such a cycle does not mean that there is a deadlock
 to determine if there is a deadlock WFGs are being merged

 Transmitting a WFG
 site S1 transmits its WFG only to the site (Si) for which

transaction Tk (at S1) is waiting
 Si receives the WFG from S1 and merges it with its own

WFG
 after merging WFGs, Si check if there is a cycle not

involving Text
 if a cycle is not found, then the merged WFG is transmitted

to another site

21

41R. Wrembel

Distributed deadlock detection Distributed deadlock detection (4)(4)

 T1 is waiting for T2 WFG is transmitted from S1 to S2
and merged at S2

T3 T1S1

T1 T2S2

T2 T3S3

Text

local WFG

Text

Text Text

Text Text

T1 T2S2 Text TextT3

 T2 is waiting for T3 WFG is transmitted from S2 to S3
and merged at S3

T1 T2S3 Text TextT3 T3

cycle not involving Text  global deadlock

42R. Wrembel

Exercise 2Exercise 2

 Locking information for transactions are as follows

 Using the distributed detection algorithm check whether
a deadlocks takes place

22

43R. Wrembel

SolutionSolution

T1 T3
S1

S2

S3

T2

T3 T4

T5

T1 T4

T3 T5

Text

Text

T1 T3T2 T4

T5 T4T3

44R. Wrembel

22--Phase CommitPhase Commit

initial

waiting/collecting

decided

completed

prepare sent

global
decition sent

acknowledgement
received

COORDINATOR PARTICIPANT

initial

prepared

aborted committed

prepare received

abort sent commit sent

23

45R. Wrembel

33--Phase Commit Phase Commit (1)(1)

initial

waiting/collecting

decided
(aborted)

completed

prepare sent

abort
received

COORDINATOR PARTICIPANT

initial

prepared

aborted

committed

prepare received

prepared
received

prepare sent
pre-committed

decided
(committed)

abort sent

pre-committed

46R. Wrembel

33--Phase Commit Phase Commit (2)(2)

 Both the coordinator and participants still have
periods of waiting, but the important feature is
that all operational processes have been informed
of a global decision to commit by the PRE-COMMIT
message prior to the first process committing

 Participants can act independently in the event of
failure

