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Data allocation problemData allocation problem

 Data allocation
 storing data (eg. tables, fragments of tables, 

replicas) in nodes of a distributed DB

 Uses
 fragmentation 
 replication

 Considers
 workload of nodes

• data reads  data should be "close" to their 
"consumers"

• data modifications (I, U, D)  need for synchronizing 
replicas
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 Originates from the problem of allocating files in a 
computer network

 NP-complete problem
n fragments, m nodes: (2m – 1)n

 Benefits from allocation depends on
 the "quality" of allocation
 capabilities/functionalities of a query optimizer

Data allocation problemData allocation problem
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Into which nodes to replicate?Into which nodes to replicate?

 Allocation algorithm has to take into consideration
 characteristics of queries in nodes
 data transmission (replica refreshing) costs between 

data
 storage costs
 computing power of nodes

 The problem is NP-complete
 no exact algorithms
 heuristics are applied
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Into which nodes to replicate?Into which nodes to replicate?

 Multiple heuristics
 M. T. Özsu, P. Valduriez, Distributed and Parallell Database 

Systems, ACM Computing Surveys, vol. 28, no. 1, 1996, 
pp.125-128

 Y-F. Huang, J-H. Chen, Fragment Allocation in Distributed 
Database Design, July 2000, pp. 491-506

 A. Brunstrom, S. T. Leutenegger, R. Simha, Experimental 
Evaluation of Dynamic Data Allocation Strategies in a 
Distributed Database With Changing Workloads, no. TR-95-2, 
1995, pp. 1-15

 P. M. G. Apers, Data Allocation in Distributed Database 
Systems, ACM Transactions on Database Systems, vol. 13, no. 
3, September 1988, pp. 263-304

 Static and dynamic algorithms
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How to balance load?How to balance load?

 Replica R1 is stored in nodes N1, N2, and N3
 Query Q issued at node N4 is going to access R1
 Select the node that answers Q in the shortest time
 Select the node that a workoad is evenly distributed 

between nodes
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How to balance load?How to balance load?

 Load balancer should know
 current load for each node
 metadata for query optimization at each node (data 

structures, histograms, data sizes and allocation 
parameters, ...)

 communication bandwidth with each node
 processing speed of each node
 query optimizer capabilities of each node
 discs transfer speed at each node
 ...
 heuristics

 Possible solution
 competing nodes  execute Q at all nodes that store R1 

and stop operations (after a while) on the nodes that 
respond with the largest delay 
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Best Fit algorithmBest Fit algorithm

 Intuitive approach
 Fragment Fi is stored in this node Sj, where the number 

of reads and modifications of Fi is the greatest
 Constraint: no replication  fragment is allocated in 

only ONE node

 Example
 processing characteristic
 nodes S1 i S4 access F1 i F2 with 

frequency 1 
• F1: 3 reads and 1 modification
• F2: 2 reads

 ...
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Best Fit Best Fit -- exampleexample

 Processing charact.
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Best Fit Best Fit -- exampleexample
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Best FitBest Fit

 Computationally simple and intuitive
 Does not use replication
 Small "accuracy" 

 only access frequencies are taken into consideration
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Profit optimization algorithmProfit optimization algorithm

 Algorytm selects all nodes, where it is profitable to place 
a fragment  supports replication

 Fragment Fi is placed in these nodes where profit from 
placing Fi there is greater than storage and modification 
costs 

 Fragment Fi is placed in node Sj, where read cost is 
greater than write cost of Fi from  any node in the 
system
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Profit optimization algorithmProfit optimization algorithm

 Cost of maintaining additional copy of fragment Fi in 
node Sj is computed as:
 total time of all local modifications of Fi in Sj +
 total time of all remote modifications of Fi from remote 

nodes (other than Sj)
 Profit of maintaining additional copy of fragment Fi in 

node Sj is computed as:
 remote query execution time (without replication) - local 

query execution time * frequency of querying Fi from Sj
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ExampleExample

 Processing characteristics

 Modification costs for allocation schemas of fragment F1
 F1 is allocated subsequently in S1, S2, ..., S5
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ExampleExample

 Processing characteristics

 Modification costs for allocation schemas of fragment F2
 F2 is allocated subsequently in S1, S2, ..., S5
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ExampleExample

 Processing characteristics

 Modification costs for allocation schemas of fragment F3
 F3 is allocated subsequently in S1, S2, ..., S5
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ExampleExample

 Profit for the allocation schema of fragment F1

 Processing characteristics
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ExampleExample

 Profit for the allocation schema of fragment F2

 Processing characteristics
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ExampleExample

 Profit for the allocation schema of fragment F3

 Processing characteristics
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ExampleExample

 Final allocation schema
 fragment Fi is allocated in all the nodes where profit>cost
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Problem formulationProblem formulation

 The following information is given
 characteristics and frequencies of queries
 characteristics and frequencies of DML operations
 network nodes
 throughput of media connecting nodes
 processing power of nodes

 The following is being searched
 allocation schema of fragments in nodes 

(redundancies are allowed) so that a given cost 
function is minimal/maximal
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Required dataRequired data

 Fragments F = {F1, F2, …, Fj}
 the size of every fragment (Fj) must be known  network 

communication costs
 Transactions T = {T1, T2, …, Ti}

 type (read, write)
 frequencies of executions 
 subsets of accessed data

 Nodes S = {S1, S2, …, Sk}
 discs capacities
 I/O characteristics
 CPU, …

 Network
 throughput
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InfoInfo aboutabout transactionstransactions

 RM (Retrieval Matrix)

00203T4

00300T3

01002T2

00032T1

F5F4F3F2F1

30000T4

01012T3

00030T2

21000T1

F5F4F3F2F1
 UM (Update Matrix)
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 Not all rows must be updated
or read (Selectivity Matrix)

0400T4

0102T3

0030T2

1320T1

S4S3S2S1

FRQ:

401000.5T4
00.50.152T3
0100.30.1T2

0.20.300.10.1T1
F5F4F3F2F1

SEL:(%)

 Access Frequency Matrix

InfoInfo aboutabout transactionstransactions
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Info about networkInfo about network

 Communication Cost Matrix - represents throughput 
between nodes

 Simplification: CCM is symmetrical

00.640.320.16S4
0.6400.640.48S3
0.320.6400.32S2
0.160.480.320S1

S4S3S2S1

CCM
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CostCost

 A cost may include
 the number of I/O operations (data volume)
 processor time
 network communication costs (data transfer)
 the size of a data buffer (cache)
 …
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CostCost

 Cost minimization may include
 cost of storing fragment Fj in node Sk
 cost of executing queries on Fj in node Sk
 cost of modifying Fj in all the nodes where Fj is

stored
 cost of network communication

 Optimization criteria
 minimization of response time
 maximization of trhougput of each node
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Static algorithmsStatic algorithms

 Executed during system's idle time
 Executed periodically 
 Computationally complex
 O(jk2i)

• j - number of table fragments 
• k - number of nodes storing data
• i - number of transactions
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Example algorithmExample algorithm

 Optimization goal
 allocate fragments in nodes so that:

min(CCtransfer + CCtransakcji)

CCtransfer – data transfer cost
CCtransakcji – transaction execution cost

 Input data
 RM(Ti, Fj) – Retrieval matrix
 UM(Ti, Fj) – Update matrix
 SEL(Ti, Fj) – Selectivity matrix
 FRQ(Ti, Sk) – Frequency matrix
 CCM(Sk, Sm) – Communication cost matrix

 Output data
 FAT(Fj, Sk) – Fragment Allocation Table
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Example algorithmExample algorithm

 Initiate the FAT (Fragment Allocation Table) matrix
 Algorithm - step 1

 for each transaction Ti, fragment Fj, node Sk do:
• IF

– the number of accesses to Fj by Ti in Sk and
– execution frequency of Ti in Sk > 0

• THEN leave the copy of fragment Fj in Sk
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Step 1
For Ti in T, Fj in F, Sk in S do

if (RM(Ti,Fj) * FREQ(Ti,Sk) > 0)
FAT(Fj,Sk) := 1

00203T4
00300T3
01002T2
00032T1

F5F4F3F2F1
RM

0400T4
0102T3
0030T2
1320T1

S4S3S2S1
FREQ:

00011S4

00111S3

01011S2

00000S1

F5F4F3F2F1

FAT - krok 1

Example algorithmExample algorithm
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Example algorithmExample algorithm

 Remove copies of allocated fragments in order to reduce 
refreshing costs
 remove copies for which profit < cost

 Algorithm - step 2
 for each Fj allocated in more than one node, repeat the insertion 

procedure until for each fragment profit > cost or there exists only 
one copy of Fj in DDBS

 if profit < cost in all nodes then leave Fj in this node where the 
value profit-cost is the greatest

Step 2 
For Fj in F do

While (NumFragCopy(Fj) > 1)
begin

Let Sk be the site with FAT(Fj,Sk)=1
and a minimum value of (Benefit(Fj,Sk)-Cost(Fj,Sk));
if ((Benefit(Fj,Sk) - Cost(Fj,Sk)) < 0)

FAT(Fj,Sk) = 0
end;
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0...9S4
0...7S3
0...4S2
0...0S1

F5...F1
Benefit(Fj,Sk)

0...3S4
0...4S3
0...6S2
0...0S1

F5...F1
Cost(Fj,Sk)

Example algorithmExample algorithm

00011S4

00111S3

01011S2

00000S1

F5F4F3F2F1

FAT from step 1

0...1S4

0...1S3

0...0S2

0...0S1

F5...F1

FAT - step 2

34Robert Wrembel, Poznań University of Technology, Institute of Computing Science

Example algorithmExample algorithm

 Check if all fragments have been allocated
 Algorithm - step 3

 if there exists a non allocated fragment that is being 
accessed, then allocate the fragment in these node where 
its accessing cost is the lowest

For Fj in F do
if (NumFragCopy(Fj) = 0 and UM(Ti,Fj) > 0)
begin

Sk = MinOperCost(Fj);
FAT(Fj,Sk) = 1;

end;
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0...0S4

1...0S3

0...1S2

0...0S1

F5...F1

FAT - step 3

Example algorithmExample algorithm

30000T4
01012T3
00030T2
21000T1

F5F4F3F2F1
UM

0...1S4

0...1S3

0...0S2

0...0S1

F5...F1

FAT - step 2

0400T4
0102T3
0030T2
1320T1

S4S3S2S1
FREQ:

sum:            0           2          7          1
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Example algorithm Example algorithm -- alternative alternative 
versionversion

 Steps 1 and 3 are the same as in the previous version of 
the algorithm

 Step 2 - removing fragments
 order all fragments by their decreasing weights
 the weight is computed based on the number of updates 

made by transactions initiated in remote nodes
 a copy is removed from a node when its weight is greater
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Dynamic algorithmsDynamic algorithms

 Applicable when the workload arriving to nodes and 
access characteristics to data change in time

 Static algorithms may deteriorate DDBS performance
 Dynamic algorithms support fragment relocation
 Dynamic algorithms

 Simple Counter
 Load Sensitive Counter
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Simple CounterSimple Counter

 One dedicated node maintains access counters for each 
fragment [Nodei, Fragmenti]

 An access counter counts the number of times a 
fragment is being accessed

 A system process periodically checks counters for each 
fragment

 Fragment Fi is relocated to the node with the greatest 
value of a counter
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Simple CounterSimple Counter

 The system process
 stores also statistics on: throughput, average response 

time, the number of transactions accessing fragments
 The frequency of checking counters is crucial

 must be high enough to be able to follow changes in a 
workload

 must not be too high in order to not continuously relocate 
data
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Simple CounterSimple Counter

 Advantages:
 offers sufficient allocation scheme when 

• a workload is relatively low
• the load of all nodes is similar
• workload changes stabilize in time

 Disadvantages:
 if all transactions come from the same node then all 

fragments may be relocated to this node  node 
overloading
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Load Sensitive CounterLoad Sensitive Counter

 Monitors system's load and the frequency of accessing 
fragments

 Fragment relocation is executed by the Simple Counter 
Algorithm

 Fragments are relocated only if a node load remains 
below a given threshold

 Algorithm parameters
 maximum % of data stored in a node
 maximum node load
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Dynamic algorithmsDynamic algorithms

 Features
 not efficient when the frequency of counter checking is 

too high
 not efficient when the workload changes quickly
 whe worst efficiency is when the system relocates 

fragments trying to follow the changing workload (too 
much fragment relocations)
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