

Transforming JSON file to

relational form

Authors Specialization Project receiver

Tomasz Gil Data Processing Technology Roche

Łukasz Kobyłecki Project, Thursday 11:45

Description
In most conventional databases and data warehouses the typical method of

storing, analyzing and processing data is using a relational data form. It’s largely

supported and gives a very strict, coherent and often normalized way of presenting

data. Obviously, there are other data representation methods that are also widely

used, depending on the environment capabilities and requirements, which largely

differ from the relational form in many fields. One of them is JSON, used in network

communication, supporting loosely structured data.

Taking into consideration the above, there is no concrete or straightforward

way of converting JSON to relational form, especially because the very different

nature of the data representation. Relational form is fully structured while JSON is

semi-structured. Converting from the weakly structured JSON to more demanding

relational form requires certain assumptions which will largely affect the data which

one will obtain after conversion process.

Nevertheless, in certain scenarios we need to convert JSON data to relational

form. That could be due to data storage or analysis requirements, platform support

or business applications. For that reason, we created a console application that

solves that very problem, with minimal assumptions.

Assumptions
1. Application should be written in Node.js or Python. It has to be a console

application.

2. There are two variants of application output. It depends on application mode.

a. .sql file which contains CREATE TABLE statements of all transformed

tables

b. set of .csv files, each file name corresponds to table name and each

file content corresponds to table data

3. Application must have command line interface, for example can handle

parameters like:

a. -i, --input ​path/to/file.json

b. -m, --mode ​sql | csv

c. -o, --output ​/path/to/directory

4. Application must handle references between tables. It has to create valid

foreign key constraints.

5. Application must create logs. Logging and its details like log level or log file

should be controlled via configuration file or command line parameter.

6. Application must have configuration file. Application should not contain

hardcoded values.

7. Application must be installable with standard tools of used programming

language.

8. Application must contain a README.md file which describes the purpose of

use and describes how to use it.

9. Application name should be invented by the team.

Work progress
The entire project was held during 3 month period in close collaboration with

project owner from Roche. Initially we splitted known requirement into small,

manageable tasks. Timetable with milestone dates (delivery of the most substantial

parts of the application) can be seen below.

7.03.2019

- Meeting with project owner from Roche

- Setting project requirements

- Input data analysis

- Creating code repository

- Creating tasks and work planning

12.03.2019

- Programming language comparison - Node.js vs Python

- Environment setup

- First feedback phase from project owner

2.04.2019

- Command line interface

- Loading and parsing input file

- Creating json schema

- Sql mode transformation

- Configuration file

- Logging

- Basic README

9.04.2019

- Second feedback phase from project owner

- Application testing

25.04.2019

- Sql mode transformation update

- Input json preprocessing

- Csv mode transformation

- README improvement

6.05.2019

- Refining requirements with project owner from Roche

18.05.2019

- General improvements and refactoring

- First release

- Documentation

Documentation
Application package is available via NPM (node package manager), which is a global

package repository for JavaScript.

https://www.npmjs.com/package/json-to-rel

Software is open-source, the code is available in github repository.

https://github.com/tomaszgil/json-to-rel

https://www.npmjs.com/package/json-to-rel
https://github.com/tomaszgil/json-to-rel

Installation

Prerequisites

In order to successfully install and run the software, your system has to fulfill given

criteria:

- Node.js environment installed (version 10.15.3 or newer)

- NPM command line interface (version 6.9.0 or newer)

Installation process

You can install the application using NPM command line interface:

npm install ​--​global json​-​to​-​rel

Alternatively, you can use other dependency management tools like Yarn:

yarn global add json-to-rel

Application usage

You can run the application using a command line with a command:

json-to-rel -i input-file.json -m sql -o output-dir/

Full collection of parameters, that can be passed to our application through

command line, can be seen in a table below.

Parameter Description Short
flag

Long flag Possible
value

Required

Input file Path to a file with
input JSON object

-i --input path/to/fi

le.json

Yes

Output
directory

Path to a directory in
which the application
will store files with the
results of the
processing

-o --output path/to/di

rectory

Yes

Mode Type of data and files -m --mode sql | csv Yes

that will be generated

Logging Activating optional
logging to a file with
log’s level of detail
(the higher the value,
the more detailed the
log messages)

-l --loggin

g

0 | 1 | 2 No

Configuration
file

Path to file with
additional
configuration JSON
object

-c --config path/to/fi

le.json

No

You can optionally pass your own configuration in form of a JSON file. If the provided

values are valid, the application will override the default configuration with passed

properties. Example configuration file can be seen below.

{

 ​"​inputFileEncoding​"​:​ ​"​utf8​"​,

 ​"​outputFileName​"​:​ ​"​tables.sql​"​,

 ​"​rootTableName​"​:​ ​"​GENERATED​"​,

 ​"​surrogatePrimaryKeyName​"​:​ ​"​__ID​"​,

 ​"​logFile​"​:​ ​"​json2rel.log​"​,

 ​"​csvDelimiters​"​:​ ​{

 ​"​col​"​:​ ​"​;​"​,

 ​"​row​"​:​ ​"​\n​"

 ​}​,

 ​"​generatedAttributeName​"​:​ ​"​value​"​,

 ​"​truncateTableName​"​:​ ​false

}

Meaning of the parameters with possible values can be seen in a table below (all

keys are optional).

Parameter Key Value type

Input file encoding inputFileEncoding string

Output file name outputFileName string

Table name, that will be given to
the top most table

rootTableName string

Suffix, that will be appended to the
surrogate primary key column

surrogatePrimaryKeyName string

Log file name logFile string

Column delimiter in output CSV
files

csvDelimiters.col string

Row delimiter in output CSV files csvDelimiters.row string

Column name for attributes
without deducible name (arrays of
simple types)

generatedAttributeName string

Activating a function that shortens
table names

truncateTableName boolean

Output

The application offers two types of output, based on which application processing

and the output information slightly varies. For both output modes table names reflect

input JSON file structure.

1. SQL​. Output is a single SQL file with a set of ​create table statements

representing relational tables mapped from input JSON object. Each table

features a surrogate primary key. Tables are connected with foreign key

constraints. Syntax is compliant with Sqlite 3.

2. CSV​. Output is a collection of CSV files with file names corresponding to table

names. Each file contains a header with table column names and rows which

correspond to table records with values from input json object.

Development

For developing application the same initial prerequisites have to be met. We also

recommend installing ​git​ client.

1. Clone repository (if you don’t have ​git client installed, download the

repository from github link given above)

git clone https://github.com/tomaszgil/json-to-rel.git

2. Install project dependencies

npm install

3. Run application (pay attention to the way arguments are passed)

npm start -- --input /path/to/input --mode sql --output

/path/to/output

Building and testing

If you want to test and build the application you can do it by simulating package

installation and running the application

1. Simulate package installation. This will rebuild and make the application

accessible globally.

npm link

2. Run the application.

json-to-rel -i input-file.json -m sql -o output-dir/
3. Once you’re done, remove the application.

npm unlink

