API Specification Doc

(SPARQL Named Query Ontology and Service)

Version Date Description

1.0 05-05-2018 | Running simple queries

11 25-06-2018 | Running parameterized queries with multiple conditions

(@ 0170] [0 V20 3
INEFOAUCTION ... 3

1= U0 I 01 €= DG TSP 3
LN L] =Y o] o RO PP PPPPPPPPPPPP 4

(@] a1 70] (070) VA Tod =1 1 - WS 5

1O 11 1T PRSPPI 5
CONOITION. L. 6
HTTP MEINOUS ...ttt e e e e e e e e e anr s 7
] 0101V T 1T 1= I I 7
S0 [1] PSSP 7
YT oT0] K] PRSPPI 7

(0T a L@ TN L= YA AV 1 g 1 =] SR 9
REQUEST ...ttt e e e et e e e et r e e et e e e eaes 9

LS 2S] 010] 1S PSP UP 10
FUNQIUETY ettt ettt ettt oo e et e ettt b s e e e e e et e eee b b e e e e e e et e e nnbb e e e e eeeeeennnnnnn s 11
REQUEST ..t 11
L2200 1S P 11

ST ICES . 13
TTLREAUEISEIVICEceiiieiiiiiiitte ettt ettt e e e e et e e e e e e e e e e e e e e aaan 13
QUETNYBUIIAEISEIVICE.ccoiiiiiiiiiiiee 13
QUENY EXECULOI S EBIVICE ...ttt et e et e e e e e e e e ettt e e e e e e e e e e ae et eaaeaaas 14
GO S ANY . 15
(O] 01771 01110 0 1S PP PPPPPPPPPPPP 15

(LTS £ o V1o = PSSR 16

Ontology

Introduction

Ontology in computer science is a formal representation of properties and relations of data,
concepts and entities. Ontology in this project is stored in .ttl file. Terse RDF Triple Language
(Turtle) is a file format which is used in RDF (Resource Description Framework) data model for
expressing data. Semantic web modelling tool TopBraid Composer was used to create
ontology for project.

IRl and prefixes

IRIs may be written as relative or absolute IRIs or prefixed names.

A prefixed name is a prefix label and a local part, separated by a colon ":". A prefixed name is
turned into an IRI by concatenating the IRI associated with the prefix and the local part. The
'‘@prefix' or 'PREFIX' directive associates a prefix label with an IRI.

TopBraid Composer gives ability to define own prefixes.
Examples of prefixes defined by user:

Name Prefix

being <http://tutorial.topbraid.com/being#> .

animal | <http://tutorial.topbraid.com/animal#> .

person | <http://tutorial.topbraid.com/person#> .

query <http://tutorial.topbraid.com/query#> .

RDF Graph

Characteristic feature of RDF data model is a triple. It is a statement composed of three
elements: subject, predicate and object. Subject and object are represented as nodes in graph
and predicate is a relation between them (edge in graph). Picture 1.1 shows example of triple.

hasSpouse

Susanna

John

Lemon Shakespearse

Picture 1.1. Example of triple.

Data is retrieved from RDF format using SPARQL. SPARQL Protocol and RDF Query
Language is a RDF query language. Example of retrieving data is shown below.

hasSpouse
R Susanna

Shakespeare

Hamlet

Shakespeare

Picture 1.2. RDF graph.

Query below returns couples of owner and pet where owner has spouse.

SELECT DISTINCT ?owner ?pet

WHERE {
Powner person:hasPet ?pet
Powner person:hasSpouse ?spouse

Result:

owner pet

John Lemon | Henio

SPARQL query can contains filters to return more detailed results.
Query below returns couples of male owner and male pet where owner has spouse and pet is
male.

SELECT DISTINCT ?owner ?pet

WHERE {
Powner person:hasPet ?pet .
?Powner person:hasSpouse ?spouse .
?pet being:gender ?gender .

FILTER((?gender="male'))

}

Ontology Schema

Ontology which was used in project contains two classes: Query and Condition. First of them is
used to define queries and second allows user to specify filters.

Query

Query object contains following fields:

Field Description

name | Datatype Property, which helps user to understand query function

description | Datatype Property, explains the purpose of query

queryString | Datatype Property, which contains text of query

queryCondition | Object Property, defines Condition objects used in query

query:Query_ 1

rdf:type query:Query ;

query:description "Information about animals with wings." ;
query:name "Animals with wings" ;

query:queryCondition query:hasWings ;

query:queryString "SELECT *

Condition

WHERE { ?subject animal:hasWings

?object . ?subsubject (rdfs:subClassOf)*
?subject . ?instance a ?type .

FILTER((${hasWings}) && (?type = ?subsubject))

Condition object contains following Datatype Property fields:

O

Field

Description

defaultOperator

Default filter condition operator

defaultValue

Default filter condition value

conditionName

Helps user to understand the condition

conditionDesc

Explains the purpose of the condition

conditionType

Type of value in filter condition (xsd:boolean, xsd:string, etc.)

variable

Name of the variable used in filter condition

query:hasWings

rdf:type query:Condition ;
query:defaultOperator "=" ;
query:defaultValue "true" ;
query:conditionDesc "Animal has wings?" ;
query:conditionName "Wings" ;
query:conditionType "xsd:boolean" ;
query:variable "object" ;

HTTP Methods

showQueriesTTL

List all available definitions of queries with their conditions.

Request
Method URL
GET | api/showQueriesTTL/
Response
Status Example Response
200 [
{
"name": "Query_ 3",
"description”: "Persons in son-in-law relationship",
"label": "Son-in-law",
"uri": "http://topbraid.com/query#Query 3",
"query": "SELECT ?x ?spouse
WHERE { ?x person:hasDaughter ?daughter .
?spouse (person:hasSpouse)+|~person:hasSpouse
?daughter . ?spouse being:gender ?gender .
FILTER(?gender = 'male') . }",
"conditions": [
{
"name": "gender",
"description”: "Gender of son-in-law",
"label": "Gender",
"uri": "http://tutorial.topbraid.com/query#gender",
"defaultOperator": "=",
"defaultValue": "male",
"conditionType": "xsd:string",
"variable": "gender"
}
]
}
]
500 e

"error":"Something went wrong. Please try again."}

Parameter

Type

Description

name

string

Query / condition name in database

label

string

Query / condition name shown to user, easy for him to
understand

description

string

Query / condition short description. Explains the purpose of
guery / condition to user

uri

string

Unique URI of Query / condition. Consists of database
namespace and name of query / condition

query

string

Query formed in SPARQL language

conditions

list

List of definitions of query conditions

defaultOperator

string

Default query condition operator. Inserted into query every
time user doesn’t specify operator for this condition

defaultValue

string

Default query condition value. Inserted into query every time
user doesn’t specify value for this condition

conditionType

string

Query condition type (string / boolean / numeric)

variable

string

Variable name of query condition specified in SPARQL query

runQueryWithFilter

Run specific query with given operators and values of query conditions. Request body must
have specified form. Response is a list of result records.

Request
Method URL
POST | api/runQueryWithFilter/
Parameter Example value
queryRequest | {
"id": o,
"conditions": [
{
"operator": "=",
"uri": "http://topbraid.com/query#gender",
"value": "male",
"variable": "gender"
}
]
}
Parameter Type Description
id| string |Query internal APIid
conditions list Query conditions list
operator | string |Query condition operator specified by user
uri| string |Unique URI of query condition. Consists of database
namespace and name of query condition
value | string [Value of condition specified by user
variable | string [Variable name in condition specified in SPARQL query

Response

Status Example Response
200
{
"result": [

{
"varName": "person",
"varValue": "William_Shakespeare"

s

{
"varName": "spouse",
"varValue": "John_Lemon"

}

]
}
500 | {"error":"Something went wrong. Please try again."}
Parameter Type Description
result list List of query result variables and their values
varName | string [Name of query result variable. Result table can be built based
on these as its the column name
varValue | string |Value of query result variable

runQuery

Run specific query with default operators and values in query conditions. Used to determine
guery form readable for user when listing queries. Request body must have specified form.
Response is a list of result records.

Request

Method URL

POST | api/runQuery/

Parameter Example value

queryRequest | {
"id": o

Parameter Type Description

id| string |Query internal API ID

Response
Status Example Response
200 | [
{
"result": [
{
"varName": "person",
"varValue": "William Shakespeare"
}s
{
"varName": "spouse",
"varValue": "John_Lemon"
}
]
}
]
500 | {"error":"Something went wrong. Please try again."}

Parameter Type Description

result list List of query result variables and their values

varName| string |Name of query result variable. Result table can be built based
on these as its the column name

varValue| string [Value of query result variable

Services

TTLReaderService

Reads TTL file. Extracts model, queries and prefixes.

Query information is extracted from TTL file with following queries.
Query for listing all available queries:

SELECT DISTINCT ?uri ?name ?description ?query
WHERE {

?uri query:queryString ?query .
2uri query:name ?name .

?uri query:description ?description .

Query for listing all conditions of specified query:

SELECT DISTINCT *
WHERE {
Puri query:queryCondition ?condUri .
?condUri query:conditionName ?name .
OPTIONAL { ?condUri query:defaultValue ?default } .
?condUri query:conditionDesc ?description .
?condUri query:variable ?var .
?condUri query:conditionType ?type .
?condUri query:defaultOperator ?operator .
FILTER (
Puri = <QUERY_URI>)

Prefixes are extracted from TTL file and used by QueryBuilderService, every time a query is
composed.

QueryBuilderService

Handles queries.
The SPARQL query is composed based on request given by user. Conditions are built based on
given values and operators and then inserted into SPARQL query. If user didn’t provide value or

operator, the default ones are used.

Sends composed query to QueryExecutorService and handles the result.

QueryExecutorService

Runs parameterized query on “database”. In current version the TTL file serves as a database.
Queries are executed on model extracted from the TTL file.

Package org.apache.jena.query contains ARQ - a query engine for Jena, implementing
SPARQL.

Glossary

Conventions

Status - HTTP status code of response.

TTL - Terse RDF Triple Language.

All the possible responses are listed under ‘Responses’ for each method. Only one of
them is issued per request server.

All response are in JSON format.

All request bodies are in JSON format.

All request conditions are mandatory unless explicitly marked as

Users guide

This section aims to present how to use an application, including setting filters, executing
gueries and exploring results.

Home page of application contains list of available queries. Each query has name and
description. These attributes can help user to find specific query.

SPARQL Named Query Ontology and Service

Name Description Query

Wings MNames of animals SELECT ?name Zsubsubject WHERE { 7subject animal:hasWings ?object . ?subsubject {rdfsisubClassOf)* Tsubject . 7
with wings instance a ?type . Tinstance skos:prefLabel Tname . FILTER({7object = true) && (Ttype = Tsubsubject]) .}

Animals Information about SELECT * WHERE { ?subject animalhasWings Tobject . 7subsubject (rdfs:subClassOf)* ?subject . ?instance a Ttype .

with animals with wings FILTER{(7object = true) && (type = ?subsubject]) .}

wings

Son-in- Persons in son-in- SELECT 7x 7spouse WHERE { 7x personthasDaughter ?daughter . ?spouse (personthasSpouse)+|*personhasSpouse 7
law law relationship daughter . ?spouse being:gender 7gender . FILTER(?gender = 'male') .}

Pets People with pets SELECT DISTINCT * WHERE { ?x person:hasPet ?y . ?x being:gender ?gender . ?y being:gender ?petGender FILTER(?

gender = 'male’ && TpetGender = 'male') }

Mames Mames containing SELECT * WHERE { *x person:firstName ?name . FILTER(regex(str(?name), ‘a')). }
letterya\"

Picture 2.1. Home page of application.

After choosing one query from list, system will show filters connected to this query. User can
change operator and value of filter.

SPARQL Named Query Ontology and Service

Name Description Query

S RIS R <

Animals Information about SELECT * WHERE { 7subject animal:hasWings Tobject . 7subsubject (rdfs:subClassCf)” ?subject . Tinstance a Ttype .

with animals with wings FILTER((Tobject = true) && (?type = 7subsubject)) .}

wings

Son-in- Persons in son-in- SELECT ?x ?spouse WHERE { ?x personthasDaughter ?daughter . ?spouse (person:hasSpouse)+|*person:hasSpouse ?
law law relationship daughter . ?spouse being:gender 7gender . FILTER(7gender = ‘male’) .}

Pets Pecple with pets SELECT DISTIMCT * WHERE { ?x person:hasPet ?y . 7x being:gender 7gender . ?y being:gender ?petGender FILTER(?

gender = ‘male’ &8 petGender = 'male') .}

Names Names containing SELECT * WHERE { 7x person:firstMame ?name . FILTER(regex(str{?name), 'a)). }
letter \"a\"
Filter Name Description Variable Operator Value

Wings Has animal got wings? object haswWings fI= rue
‘J~z.

Picture 2.2. Selecting query.

To run query user need to choose Run Query button. System will show query result below.

Filter Name Description Variable Operator Value

Wings Has animal got wings? object haswings |- | |true
e B
Name Value

subsubject Peacock
name Edward
Name Value
subsubject Peacock
name James

Name Value

Result

subsubject Ara
name Jimmy
Name Value
subsubject Canary
name Buddy

Picture 2.3. Query result.

