
Sensors data analyzer
Documentation

Authors:
Katarzyna Boczek 117317
Agnieszka Szymborska 117201

Table of Contents
Problem description..3

Introduction..3
Base project..3
Assumed extensions...4

System architecture..4
Environment setup (Ubuntu 16.04 LTS)..4

Python package installation...4
Apache Kafka installation..5
Apache Spark installation..5
MongoDB installation..6

Project implementation...7
Alert system...7
Pattern system..9

Summary...11

2

Problem description

Introduction
Nowadays the subject of smart homes, areas and cities is more and more popular and becoming
more and more important. Automatic control of light, heating, opening window, alarm systems, etc.
is very useful for many people because it can save some energy, money and time. For example, it
can help to reduce the loss of natural resources. Smart home management systems use wireless
communication standards such as Wi-Fi, ZigBee or GSM. New standards appear on the market
every now and then. They often offer larger ranges at lower costs. One of those standards is
a LoRaWAN standard (Low Power Wide Area Network). It uses a LoRa protocol that offers a range
of up to 5 kilometers in the city and 15 kilometers in open space.

Base project
Project described in this document is an extension of an intelligent sensors network in the master-
slave architecture. It uses LoRaWAN standard to send and receive temperature and humidity data.
That project was realized by three students of Poznań University of Technology (Bartosz Koperski,
Michał Panowicz and Agnieszka Szymborska, supervisor: Mariusz Nowak PhD) from March 2016
to January 2017. In the created system, sensors (slave devices) send values of temperature and
humidity measurements to the parent device (master device) using the radio protocol (range up to
50 meters). Then, the master device sends data received from sensors to the LoRaWAN gateway
(LORANK8) using the LoRaWAN standard. Data received by the gateway are stored in TTN (The
Things Network) server. They have to be saved in the local database so that they can be used later
for online and offline analysis. The TTN server sends that data to a special topic from where they
are read by the MQTT client that works in publish-subscriber pattern. The MQTT client is a script
written in Python language that puts read data to the local database. Finally, they are displayed to
the user on the chart. The whole process is shown on figure 1.

3

Figure 1: Data flow in the system

Assumed extensions
The project described here was realized during Data Warehouses and Analytical Processing course
led by Robert Wrembel Assoc. Prof., PhD DSc on Poznań University of Technology. The main
objectives of the project were:

• to design online processing data system architecture using external tools such as Apache
Kafka and Apache Spark,

• to implement the system that sends information to the devices if the temperature in the room
is too high or too low. This is important from the point of view of heating that room. If the
temperature is too high the radiator should be turned off and if the temperature is too low it
should be turned on,

• to implement the system that detects patterns in incoming events (sensors measurements).

System architecture

Apache Spark version: 2.1.0
Apache Kafka version: 0.10.2
Python version: 3.5

Environment setup (Ubuntu 16.04 LTS)
To work with Apache Kafka and Apache Spark you will need Java JDK. If you don’t have it you
can download it from Oracle site here.

Python package installation
• pip3 install kafka-python

4

Figure 2: System architecture

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

Apache Kafka installation
Firstly, you need to install ZooKeeper – an open source service for maintaining configuration
information, providing distributed synchronization, naming and providing group services.

• sudo apt-get install zookeeperd

After installation, it will be started automatically on port 2181 by default. You can check it with the
following command:

• netstat -ant | grep :2181

If the result looks like this:

• tcp6 0 0 :::2181 :::* LISTEN

The installation is valid.

The next step is to download Apache Kafka from the website here and to create folder /opt/Kafka
for it:

• sudo mkdir /opt/Kafka

Now, you have to move uncompressed downloaded Kafka to created folder /opt/Kafka:

• mv -r ̃/Download/<kafka_folder>/* /opt/Kafka/

Run server (from home folder level):

• sudo /opt/Kafka/bin/kafka-server-start.sh /opt/Kafka/config/server.properties

Create topic for Kafka:

• sudo /opt/Kafka/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor
1 --partitions 1 --topic <topic_name>

Expected result:

• Created topic <topic_name>

Apache Spark installation
Firstly, you have to install Spark’s Simple Build Tool. Execute following commands:

• echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/sbt.list

• sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 –recv
2EE0EA64E40A89B84B2DF73499E82A75642AC823

• sudo apt-get update

• sudo apt-get install sbt

• sudo apt-get install pandoc

5

https://kafka.apache.org/downloads

Now, download Apache Spark from the website here. Follow the instructions below to uncompress
package:

• tar xzvf <downloaded_package_name>

• mv <uncompressed_folder_name> /spark

• sudo mv spark/ /usr/lib/

• export SPARK_HOME=/usr/lib/spark

• export PATH=$SPARK_HOME/bin:$PATH

The next step is to configure Apache Spark. Go to configuration folder:

• cd /usr/lib/spark/python

and execute the following command:

• python3 setup.py install

Then, create conf file from template in /usr/lib/spark/conf folder:

• cp spark-env.sh.template spark-env.sh

Open the created file:

• nano spark-env.sh

Add the following lines to that file:

• JAVA_HOME=<path_to_jvm> (e. g. /usr/lib/jvm/java-8-oracle)
SPARK_WORKER_MEMORY=4g

Create log4j.properties file from template in /usr/lib/spark/conf folder:

• cp log4j.properties.template log4j.properties

Open the created file:

• nano log4j.properties

Add following lines to that file:

• log4j.rootCategory=ERROR, console

Check configuration by executing the following command in /usr/lib/spark/bin folder:

• ./pyspark

MongoDB installation
Firstly, you have to import the key of MongoDB Repository:

• sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927

Create list file for MongoDB:

6

http://spark.apache.org/downloads.html

• echo "deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.2 multiverse" | sudo
tee /etc/apt/sources.list.d/mongodb-org-3.2.list

Execute command:

• sudo apt-get update

Install MongoDB package:

• sudo apt-get install -y mongodb-org

Create file to manage the MongoDB service:

• sudo nano /etc/systemd/system/mongodb.service

Add the following content to the created file:

• [Unit]
Description=High-performance, schema-free document-oriented database
After=network.target
[Service]
User=mongodb
ExecStart=/usr/bin/mongod --quiet --config /etc/mongod.conf
[Install]
WantedBy=multi-user.target

Finally, check installation:

• sudo systemctl start mongodb

• sudo systemctl status mongodb

Project implementation

Alert system
The first aim of the project was to create an alarm system. Its main task is to detect the deviations
from the accepted norm taking the set thresholds into account. For example it can detect too high or
too low temperatures in the room. We used the Apache Spark to implement that system. A script
reads the incoming data about the current temperature in the room from the Apache Kafka topic.
Then, a fixed number of messages is stored in the window. The data collected in that window are
grouped by the sensor identifiers from which they are derived. In the next step, for each of that
groups the average value of temperature is calculated based on the data in the window. Calculated
average values are compared to the set norm. If too much deviation is detected, a special message is
generated and saved to the specified file. The actuator can read that message and take
the appropriate action such as turning the radiator in or off.

7

Here is our script code:

alert_system.py

from __future__ import print_function

import sys
import json
from os import mkfifo, path

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

TIME_BETWEEN_READING = 1
BATCHES_IN_WINDOW = 3

TEMP_WANTED = 30
TEMP_DELTA = 0.5

FIFO_PATH = '/tmp/myfifo'

def write_partition(iterator):
elements = list(iterator)
if len(elements) > 0:

print(elements[0])

def main(fifo):
sc = SparkContext(appName="SensorDataAnalyzer")
ssc = StreamingContext(sc, TIME_BETWEEN_READING)

kafkaStream = KafkaUtils.createDirectStream(
ssc,
["testing"],
{"metadata.broker.list": "localhost:9092"}

)

map each row from the batch to get only the json object
lines_this_batch = kafkaStream.map(lambda x: json.loads(x[1]))

format received json object to print it on the screen
formated = lines_this_batch.map(

lambda x: '%s: Key: %s, Value: %s' % (x['time'], x['key'], x['value'])
)
formated.pprint()

create window for last three batches
window = lines_this_batch.window(BATCHES_IN_WINDOW * TIME_BETWEEN_READING)

map each element from window as a touple (key, value) where the value is also
a touple (sensorID, (temperature_measurement, 1))
avg_of_window = window.map(lambda x : (x['key'], (x['value'], 1)))

group created touples by the key and sum up the corresponding fields
from the value
avg_of_window = avg_of_window.reduceByKey(

lambda x, y : (x[0] + y[0], x[1] + y[1])

8

)

map each element and calculate the average temperature
avg_of_window = avg_of_window.map(

lambda (key, (elements_sum, elements_count)) : (
key,
elements_sum,
elements_count,
elements_sum / float(elements_count)

)
)

print the average
#avg_of_window.pprint()

search too high average
too_hot = avg_of_window.filter(lambda x : x[3] > TEMP_WANTED + TEMP_DELTA)

.map(lambda x : '%s|TOO_HOT' % x[0])
#too_hot.pprint()

search too low average
too_cold = avg_of_window.filter(lambda x : x[3] < TEMP_WANTED – TEMP_DELTA)

.map(lambda x : '%s|TOO_COLD' % x[0])
#too_cold.pprint()

to_print = ssc.union(too_hot, too_cold)
#to_print.pprint()

to_print.foreachRDD(lambda rdd: rdd.foreachPartition(write_partition))

ssc.start()
ssc.awaitTermination()

if __name__ == "__main__":
if not path.exists(FIFO_PATH):

mkfifo(FIFO_PATH)
with open(FIFO_PATH, 'r+', 0) as fifo:

try:
#fifo.write('Starting\n')
main(fifo)

except KeyboardInterrupt:
#fifo.write('Ending\n')
print("\nThe End")

fifo.close()

You can run it using the following command from home folder level:

sudo /usr/lib/spark/bin/spark-submit --master local[2] --packages org.apache.spark:spark-
streaming-kafka-0-8_2.11:2.1.0 alert_system.py 2>&1

Pattern system
Another purpose of the project was to write a script to detect patterns in the incoming data. Just like
before this task was also done using Apache Spark. Each message received from the Apache Kafka
stream is inserted to the window (implemented as a list). When the window is full the values in it
are compared with one another to see if they fit to the wanted pattern.

9

Here is our script code:

patterns_system.py

from __future__ import print_function

import sys
import json

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

TIME_BETWEEN_READING = 1

WANTED_PATTERN = []

WINDOW = []

def checkPattern():
patternFound = True

for i in range(len(WANTED_PATTERN)):
if WINDOW[i + 1] - WINDOW[i] <= 0 and WANTED_PATTERN[i] == 'u':

patternFound = False
break;

if WINDOW[i + 1] - WINDOW[i] >= 0 and WANTED_PATTERN[i] == 'd':
patternFound = False
break;

if WINDOW[i + 1] - WINDOW[i] != 0 and WANTED_PATTERN[i] == 's':
patternFound = False
break;

if patternFound == True:
print("Znaleziono wzorzec! ", WINDOW)

def insertToWindow(rdd):
global WINDOW

for element in rdd.collect():
add element to the window
WINDOW.append(element['value'])

if window is too long, delete the oldest element
if len(WINDOW) > (len(WANTED_PATTERN) + 1):

WINDOW = WINDOW[1:]

if window is full, check if it corresponds to the pattern
if len(WINDOW) == (len(WANTED_PATTERN) + 1):

checkPattern()

def main():
sc = SparkContext(appName="SensorDataAnalyzer")
ssc = StreamingContext(sc, TIME_BETWEEN_READING)

kafkaStream = KafkaUtils.createDirectStream(
ssc,
["testing"],
{"metadata.broker.list": "localhost:9092"}

)

map each row from the batch to get only the json object
lines_this_batch = kafkaStream.map(lambda x: json.loads(x[1]))

lines_this_batch.foreachRDD(insertToWindow)

ssc.start()
ssc.awaitTermination()

10

def encodeWantedPattern():
global WANTED_PATTERN

directionChanges = sys.argv[1].split('-')

for change in directionChanges:
direction = change[0]
for _ in range(int(change[1:])):

WANTED_PATTERN.append(direction)

if __name__ == "__main__":
try:

encodeWantedPattern()
print(WANTED_PATTERN)
main()

except KeyboardInterrupt:
print("\nThe End")

You can run it using the following command from home folder level:

sudo /usr/lib/spark/bin/spark-submit --master local[2] --packages org.apache.spark:spark-
streaming-kafka-0-8_2.11:2.1.0 patterns_system.py <pattern>

where <pattern> is a pattern which you want to find. It must have the following structure:

<type><number>- … -<type><number>

<type> is a letter that represents the type of trend (d – down (lower temperature), u – up (higher
temperature) or s – stable (the same temperature)). <number> is a number of measurements in the
trend. For example a wanted pattern can look like this: d2-u2-d1 and the sample values that
corresponds to that pattern are: 20, 19, 18, 19, 20, 19.

Summary
Although we had a lot of problems with the configuration of new tools that we had never used
before, the main objectives of the project had been realized. Apache Kafka and Apache Spark are
not easy to get started because their documentation is incomplete but they are still very useful tools.
They let us create analyzing system with very little effort in writing code. Apache Kafka is very
helpful when we have to integrate data from multiple sources into one stream. If we did this project
again we would choose another programming language, e. g. Scala or Java because there is more
tutorials and examples for these languages. In addition, Apache Spark does not longer support
Python. We hope that our system will improve intelligent sensors system created before.

11

	Problem description
	Introduction
	Base project
	Assumed extensions

	System architecture
	Environment setup (Ubuntu 16.04 LTS)
	Python package installation
	Apache Kafka installation
	Apache Spark installation
	MongoDB installation

	Project implementation
	Alert system
	Pattern system

	Summary

