
Testing operations, clients and
metadata support

 in the iRODS system

Authors:
Sławomir Kubicki

Piotr Skoczek
Artur Wesołowski

Introduction

iRODS is an open source data management software. It’s main perks consist of:

data virtualization, data discovery, workflow automation, secure collaboration.
According to iRODS home page (“​iRODS strives to serve as the glue that can tie
together many existing storage technologies”) and iRODS-chat google group
(“Object Storage is currently supported”) it supports many ways to manage data
storage. Therefore understating how object storage and other storage
technologies work is essential to use iRODS full possibilities.

1. Object Storage.

Object-based storage is a computer data storage architecture that manages data
as objects. Objects are stored in a flat address space, which eliminates the
complexity and scalability challenges of the hierarchical file systems. Each object
typically includes the data, a variable amount of metadata, and a globally unique
identifier. Some of metadata are generated by the system, others can be
provided by the user or an external application.
Objects contain additional descriptive properties which can be used for better
indexing or management. As opposed to fixed metadata in file systems (filename,
creation date, type, etc.), object storage provides support for custom, object-level
metadata.
Object storage provides programmatic interfaces to allow applications to
manipulate data. Most API implementations are ReST-based, allowing the use of
standard HTTP calls.

2. The difference between object storage and file storage.
Data in file systems are stored hierarchically in subsequent folders, that create
the path to the specified file. Object-storage systems have a two-level structure
(bucket and object id).
Both systems contain metadata, however in file systems they are limited (file
name, creation date, modification date). In object storage system in addition to
basic metadata, created by system, there is possibility to create and modify
metadata defined by user.
In file storage data typically needs to be shared locally. In object storage data can
be stored across multiple regions and can be accessed from different places.
Some object systems do not allow modification of already existing files, the result
of modification is the creation of a new version of a given file. This means, among
others no need to manage locks and allow better scaling for a very large number
of files. This works well with binary data such as photos or movies.

3. Open Source Data Management Software – iRODS.
The Integrated Rule-Oriented Data System (iRODS) is an open data
management software that virtualizes resources to store them, so that users from

different zones can control the data regardless of where the data is physically
stored.
The objects are organized in collections. Objects in a collection do not have to be
physically stored in the same place. Storage resources are stored in iRODS
zones, each has a host name and path to the source file.
You can create metadata for both objects and collections, users, resources, and
other iRODS zones. The iRODS catalog for a given zone is located in a relational
database hosted in PostgreSQL, MySQL, or Oracle databases.
Security.
iRODS provides Secure Collaboration through three technologies:
Tickets, Permissions, and Federation.
Tickets.
They are used to provide public access to data objects and collections. The
owner of a data or collection object has the option of creating a ticket and making
it available to a non-iRODS user for reading or writing access. Tickets can be
revoked, and they can be set to automatically expire upon a specified date and
time or a specified number of reads or writes.
Permissions.
They work analogously to the UNIX file system permissions, the owner of a data
or collection object has the ability to assign read / write access to defined users
and groups in iRODS. Members of the group are selected by the administrator.
Federation.
iRODS Federation extends data sharing and publication beyond a single Zone.
Once the administrators of two iRODS Zones share a set of keys , the owner of a
Data Object or Collection can assign read and write permissions to users from
outside Zones.

Installation and configuration process

The software has been tested on three operating systems: Ubuntu 14, Ubuntu
16, CentOS 7.
The installation process was carried out in accordance with the documentation
provided by the iRODS authors.
IRODS server has been configured as ‘provider’ on every system. The selected
role, unlike the role of the consumer, offers zone management, and can provide
Storage Resources, which is why it was chosen.

Before installing software iRODS repository needs to be added to package
manager. Instruction how to do this can be found on ​https://packages.irods.org/​.

https://docs.irods.org/4.2.2/plugins/composable_resources/#storage-resources
https://packages.irods.org/

The iRODS setup script requires database connection information about an
existing database. iRODS neither creates nor manages a database instance
itself, just the tables within the database. Therefore, the database instance
should be created and configured before installing iRODS.
Software in accordance with the documentation supports following database
management systems: Oracle, MySQL, PostgreSQL. In our project, we used
PostgreSQL.
The particular type of database is encoded in /etc/irods/database_config.json.
Additionally, an iRODS database plugin is required, which for PostgreSQL can be
download with command:
- apt-get install irods-server irods-database-plugin-postgres (Ubuntu)
or:
- yum install epel-release & yum install irods-server
irods-database-plugin-postgres (CentOS)

Configuration files

/etc/irods/server_config.json

This file defines the behavior of the server Agent that answers individual requests
coming into iRODS. It is created and populated by the installer package.

 ​ ​~/.irods/irods_environment.json

 This is the main iRODS configuration file defining the iRODS environment.
Any changes are effective immediately since iCommands reload their environment on every
execution. It can also be located in /var/lib/irods/.irods.

Database

By default name of the database used by iRODS is ​ICAT​. Below there is list of basic tables
from ICAT database.

r_coll_main ​- contains information about collections (directories)
r_data_main ​- contains information about files. Data itself is stored in the filesystem
r_meta_main ​- contains user-defined metadata (name, value, unit, etc.; reference to
file owning metadata is not stored in this table)
r_objt_metamap ​- connects tables ​r_data_main ​and ​r_meta_main. ​Metadata is not
shared between files and this table does not contain any additional attributes so
purpose of this table is unclear
r_user_main ​- contains list of users
r_user_passwords ​- contains information about users’ hashed password

4. Problems encountered

Modifying metadata using commands
While using 'mod' command to modify metadata CAT_INVALID_ARGUMENT
error occurs, if Units Attribute (AttUnits) is non existent. Even though AttUnits is
optional, it is required to modify metadata, contrary to what iRODS manual
states. Interestingly modifying metadata without unit works fine in cloud browser,
but not in command line. Perhaps browser works around it by deleting and
reinserting metadata.
Figure below shows the failed attempt of changing metadata without unit:

Below expected behaviour is shown - value of attribute ‘test_zmiana’ changes
from 1 to 3:

CentOS 7 authentication ambiguity
On CentOS 7 postgres 9.2 installation comes with “ident” as default
authentication method, while iRODS expects to authenticate by password. This
can fixed by changing “ident” to “md5” in pg_hba.conf file.

5. Metalnx
After meeting all the requirements
(https://github.com/irods-contrib/metalnx-web/wiki/Dependencies), the
installation proceeded according to the assumptions described in the link –
Getting Started -
https://github.com/irods-contrib/metalnx-web/wiki/Getting-Started​. Installation
and test on two systems Ubuntu 14.04 and Ubuntu 16.04.
Requirements.

https://github.com/irods-contrib/metalnx-web/wiki/Getting-Started
https://github.com/irods-contrib/metalnx-web/wiki/Getting-Started

On both systems, the required files were installed according to the
instructions, with the exception of Java 1.8. For Ubuntu 14.04:

· sudo add-apt-repository ppa:webupd8team/java -y
· sudo apt-get update
· sudo apt-get install oracle-java8-installer.

PostgreSQL database was used for both systems.

Installation.
After following the next steps from the instructions, an error appears when
firing the installer. On step 7/13 the installer should test the connection to the
database using the given package - python-psycopg2. The connection,
however, is not tested, the installer displays the message: “No DB connection
test modules detected. Skipping DB connection test.”.
When negotiation with iRODS is set to use SSL:

· acPreConnect(*OUT) { *OUT="CS_NEG_DONT_CARE"; },
or
· acPreConnect(*OUT) { *OUT="CS_NEG_REQUIRE"; }

in core.re file (/etc/irods) the installation failed at step 11/13 – “Metalnx was
not able to contact iRODS server. Check your parameters and try again.”.
With core.re set to not use SSL (“acPreConnect(*OUT) {
*OUT="CS_NEG_DONT_CARE"; }”) installation process successful.

PAM & SSL Configuration

On ​PAM-&-SSL-Configuration​ there is post that explains how to configure
Metalnx to work with an iRODS grid set up to use SSL and PAM.
However, after a successful server reset there was a problem with logging in
(iinit).

https://github.com/irods-contrib/metalnx-web/wiki/PAM-&-SSL-Configuration

● remote addresses: 127.0.1.1 ERROR: _rcConnect: connectToRhost error,
server on localhost:1247 is probably down status = -1824000
CLIENT_NEGOTIATION_ERROR

● remote addresses: 127.0.1.1 ERROR: Saved password, but failed to connect
to server localhost

UI

Web application provides a graphical UI that can help simplify most
administration, collection management, and metadata management tasks.

The basic elements of UI are:

Dashboard

Shows Resources Map, current iRODS Servers, Storage Usage and
System Health.
Resources

Shows current resources, allows you to create new resources with a
given name, type, parent, zone and optional host and path.

Resources types:

Users

Allows adding / editing / deleting irods users.
Groups

Allows adding / editing / deleting user groups. Change of permissions
for given groups, and downloading information about the group in the form of
a csv document.
Collections

It allows you to manage data collections with the ability to freely
configure metadata for individual files.

All functions, including the ability to search for files based on their metadata, worked
correctly except for the Collections tab. Although the application provides for the
transfer / copying of a given file to a given collection, it stays in the same place.
Restarting the installer or the system does not bring any effects.

At some point, it was impossible to add new files to both old and newly created
collections. Although operations on the metadata of previously attached files still
work.

Other known issues can be find at
https://github.com/irods-contrib/metalnx-web/issues/.

6. iRODS Cloud Browser

Cloud browser is web application, which allows navigation and performing actions on
files stored in iRODS. Two versions were tested: 1.0.2.0-beta4
(​https://github.com/DICE-UNC/irods-cloud-browser/tree/1.0.2.0-beta4​) and
1.0.1-RELEASE
(​https://github.com/DICE-UNC/irods-cloud-browser/tree/1.0.1-RELEASE​).

Release version allows browsing files managed by iRODS and simple
operations on them like uploading, copying, renaming, deleting. It also allows for
performing operations on metadata. It consists of two independently deployed parts:
javascript frontend and JVM backend. In global.js file located in frontend application

https://github.com/DICE-UNC/irods-cloud-browser/tree/1.0.2.0-beta4
https://github.com/DICE-UNC/irods-cloud-browser/tree/1.0.1-RELEASE

variable host needs to be configured to point to backend service (the only thing to
remember is that this needs to be address from browser perspective, so in most
cases this won’t be ‘localhost’ even if both parts are deployed on the same machine).
Loging form can be simplified by creating irods-cloud-backend.groovy file and setting
there parameters like iRODS hostname and port, authentication method and iRODS
zone.

Unlike release version, beta version is deployed as single war file on tomcat.

Default SSL/TLS configuration of this version (CS_NEG_DONT_CARE) is
incompatible with default iRODS configuration. Documentation claims that this option
is recommended because it makes application agree upon whatever server wants to
do, but it does not work. For example for non-secure connection parameter
‘beconf.negotiation.policy’ in irods-cloud-backend.groovy file needs to be changed to
CS_NEG_REFUSE.

Modifying metadata in cloud browser 1.0.2.0-beta4

This version supports all previous features and additionally metadata-based

file search and ACL management. When appropriate file extension is set (like .txt)
application allows for in-browser editing files.

Problems encountered​:

1. When two users are editing file in browser, application doesn’t handle
concurrent modification very well. Neither pessimistic, nor optimistic locking is
used, in consequence lost update problem can occur.

2. When trying to use file search feature application is crashes (we were able to
reproduce it only when deploying cloud browser and irods on the same
server, so that irods hostname was set to localhost). After trying the most
basic search query application displayed information about ‘Unknown
exception’ and became irresponsive. Cloud browser logs provided no relevant

information about the exception and redeploying the war had no effect - one
could not log into the application anymore.

Exception is thrown after hitting ‘Search’ button

After exception was thrown no user could login to application

On the irods side the following lines where logged in the rodsLog file:

May 21 20:10:28 pid:1494 remote addresses: ::1 ERROR: [-]
/tmp/tmp0dyJrt/server/core/src/rsApiHandler.cpp:318:int sendApiReply(rsComm_t *,
int, int, void *, bytesBuf_t *) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:1258:irods::error
sendRodsMsg(irods::network_object_ptr, const char *, bytesBuf_t *, bytesBuf_t *,
bytesBuf_t *, int, irodsProt_t) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:355:irods::error
tcp_send_rods_msg(irods::plugin_context &, const char *, bytesBuf_t *, bytesBuf_t *,

bytesBuf_t *, int, irodsProt_t) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:475:irods::error
writeMsgHeader(irods::network_object_ptr, msgHeader_t *) : status
[SYS_HEADER_WRITE_LEN_ERR] errno [Broken pipe] -- message [wrote 0
expected 142]
 [-]
/tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:293:irods::error
tcp_write_msg_header(irods::plugin_context &, bytesBuf_t *) : status
[SYS_HEADER_WRITE_LEN_ERR] errno [Broken pipe] -- message [wrote 0
expected 142]

May 21 20:10:28 pid:1495 remote addresses: ::1 ERROR: [-]
/tmp/tmp0dyJrt/server/core/src/rsApiHandler.cpp:318:int sendApiReply(rsComm_t *,
int, int, void *, bytesBuf_t *) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:1258:irods::error
sendRodsMsg(irods::network_object_ptr, const char *, bytesBuf_t *, bytesBuf_t *,
bytesBuf_t *, int, irodsProt_t) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:355:irods::error
tcp_send_rods_msg(irods::plugin_context &, const char *, bytesBuf_t *, bytesBuf_t *,
bytesBuf_t *, int, irodsProt_t) : status [SYS_HEADER_WRITE_LEN_ERR] errno
[Broken pipe] -- message [wrote 0 expected 142]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:475:irods::error
writeMsgHeader(irods::network_object_ptr, msgHeader_t *) : status
[SYS_HEADER_WRITE_LEN_ERR] errno [Broken pipe] -- message [wrote 0
expected 142]
 [-]
/tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:293:irods::error
tcp_write_msg_header(irods::plugin_context &, bytesBuf_t *) : status
[SYS_HEADER_WRITE_LEN_ERR] errno [Broken pipe] -- message [wrote 0
expected 142]

May 21 20:10:28 pid:1495 remote addresses: ::1 ERROR: [-]
/tmp/tmp0dyJrt/server/core/src/rsApiHandler.cpp:540:int
readAndProcClientMsg(rsComm_t *, int) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:201:irods::error
readMsgHeader(irods::network_object_ptr, msgHeader_t *, struct timeval *) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]

 [-] /tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:194:irods::error
tcp_read_msg_header(irods::plugin_context &, void *, struct timeval *) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]

May 21 20:10:28 pid:1494 remote addresses: ::1 ERROR: [-]
/tmp/tmp0dyJrt/server/core/src/rsApiHandler.cpp:540:int
readAndProcClientMsg(rsComm_t *, int) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]
 [-] /tmp/tmp0dyJrt/lib/core/src/sockComm.cpp:201:irods::error
readMsgHeader(irods::network_object_ptr, msgHeader_t *, struct timeval *) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]
 [-] /tmp/tmp0dyJrt/plugins/network/tcp/libtcp.cpp:194:irods::error
tcp_read_msg_header(irods::plugin_context &, void *, struct timeval *) : status
[SYS_HEADER_READ_LEN_ERR] errno [] -- message [only read [0] of [4]]

May 21 20:10:28 pid:1495 ERROR: Agent [1495] exiting with status = -4000
May 21 20:10:28 pid:1494 ERROR: Agent [1494] exiting with status = -4000
May 21 20:10:28 pid:1074 ERROR: Agent process [1494] exited with status [96]
May 21 20:10:28 pid:1074 ERROR: Agent process [1495] exited with status [96]

Problem seems to lie on application side - after the incident iRODS console
operations worked as before, another instance of cloud browser running on another
machine was also fine.

7. REST API

Project irods-rest (​https://github.com/DICE-UNC/irods-rest​) allows accessing iRODS
via REST. Application is provided as war file which is to deployed on servlet
container (it is mostly tested on tomcat). File ​irods-rest.properties​ needs to be
created in ​/etc/irods-ext/​ directory and populated with appropriate parameters
(​example​) Basic HTTP authentication is used to authenticate the user with their
iRODS username and password. By default XML response type is chosen, in order
to switch to JSON query param ​contentType=application/json​ needs to be set.

https://github.com/DICE-UNC/irods-rest
https://github.com/DICE-UNC/irods-rest/blob/4.1.10.0-RC1/etc/irods-ext/irods-rest.properties

Basic GET operations:

Below URLs should prefixed with protocol name, hostname and port. We also
assume that we operate on “tempZone” zone.

Get information about /home/rods
directory in zone “tempZone” and items
contained

GET
irods-rest/rest/collection/tempZone/hom
e/rods?listing=true

Displaying information about
/home/rods/qwe.txt file

GET
irods-rest/rest/dataObject/tempZone/ho
me/rods/qwe.txt

Downloading /home/rods/qwe.txt file GET
/irods-rest/rest/fileContents/tempZone/h
ome/rods/qwe.txt

Displaying metadata of
/home/rods/qwe.txt file

GET
/irods-rest/rest/dataObject/tempZone/ho
me/rods/asd.txt/metadata

Adding/modifying/deleting file/directory/metadata is done similarly using other HTTP
methods (POST, PUT) based on information provided in request body. Querying
objects based on attributes like object name, collection name, metadata, file size etc.
is supported. More informations can be found in docs:
https://github.com/DICE-UNC/irods-rest/blob/4.1.10.0-RC1/docs/iRODSRESTAPIDo
cumentation.pdf

Problems encountered:

Application seem to not handle exceptions at all. For example when trying to access
non-existent file status 500 (server error) is returned and response contains
exception stacktrace generated by tomcat in HTML format, instead of XML or JSON.

https://github.com/DICE-UNC/irods-rest/blob/4.1.10.0-RC1/docs/iRODSRESTAPIDocumentation.pdf
https://github.com/DICE-UNC/irods-rest/blob/4.1.10.0-RC1/docs/iRODSRESTAPIDocumentation.pdf

HTML response after trying to access to non-existent file

8. Summary assessment

Evaluation
Criteria Criteria Explanation

Score
[1-5] Result

Installation
process

The product has been
tested on several
platforms - Ubuntu 14,
Ubuntu 16, CentOS 7.

There is an instruction provided under
https://docs.irods.org/4.2.2/getting_started/install
ation/.

- Ubuntu 14 5

The process of installation ran without any
problems. Provided documentation covered it
precisely and the system was up and working in
no time.

- Ubuntu 16 5 As above

- CentOS 7 5 As above

Metadata
management
(console)

Is it possible (and
simple) to
add/modify/delete
metadata?

creation 5
User can add metadata using imeta add
command. No errors ever occured

modification 1

Modifying metadata did not always work while
using imeta mod command -
CAT_INVALID_ARGUMENT error occured while
trying to modify metadata without Units Attribute.

removal 5 User can remove metadata using imeta rm

command. No errors ever occured

search 5
User can search data objects using imeta qu
command. No errors ever occured

Client
interfaces

Integration and
functionality.

- Cloud
Browser 3

Stable, older version supports only basic
operations on file and metadata. More recent,
beta version include also ACL management and
querying files by metadata but the second one
seems to still be unstable.

Metadata
management

creation 5 works as expected

modification 5 works as expected

removal 5 works as expected

search 2

In beta version when iRODS address is localhost
search feature crashes whole application, in
stable version it is not supported.

- MetaLnx

File metadata support,
using iRODS
functionality with GUI 3

The graphical interface is user-friendly, basic
irods functions work properly up to a certain
point. Although the application displays a
message that the file has been successfully
moved / copied to another collection, the file
remains in the same place. Without any
information about the error, the application
prevents adding new files to the collection.

Metadata
management

creation

GUI allows you to
define new attributes,
values and units for files
in the collection. The
number of metadata
declared in this way
depends only on the
user's preferences. 5

The presented functionality works without any
problems.

modification

The GUI allows you to
modify previously
created metadata using
the 'edit' button. Both
attributes, values, and
unit may change. 5

The change of data proceeds without any
problems. Old data is swapped, there are no
errors when overwriting.

removal

The user can delete
individual metadata as
well as selected
metadata sets. 5

The selected metadata is removed, without any
errors.

search

Metalnx allows you to
search for files using
metadata by specifying
a particular attribute
value and its unit. It is
possible to search for
attributes with the value
equal / different / having
/ not having the
searched value. It is
also possible to enter
additional criteria to
search for files
containing more
metadata. 5

There were no problems when searching for files
with given attributes.

- REST API

Metadata
management

creation 5 works as expected, uses PUT method

modification 1
Apparently this is not supported as single
operation.

removal 5

works as expected, uses POST method (it relies
on request body, which DELETE requests don’t
have)

search 5

Basic search queries work as expected. Syntax
of queries is relatively easy to pick-up using
documentation.

Security

Checking different
authentication methods
(Standard, GSI, PAM,
Kerberos). 4

Only standard authentication (password) was
tested. The documentation describes also other
methods of authentications, but they were not
tested. Authorization is supported via ACL
similar to those in UNIX. External Authorization
is not possible.

Bibliography:

● https://en.wikipedia.org/wiki/Object_storage
● https://searchstorage.techtarget.com/tip/Advantages-of-using-an-object-storag

e-system
● https://irods.org/
● https://groups.google.com/forum/#!topic/irod-chat/zd5hErrSQ-E
● https://github.com/DICE-UNC/irods-cloud-browser
● https://github.com/DICE-UNC/irods-rest

https://en.wikipedia.org/wiki/Object_storage
https://irods.org/
https://groups.google.com/forum/#!topic/irod-chat/zd5hErrSQ-E
https://github.com/DICE-UNC/irods-cloud-browser/tree/1.0.1-RELEASE
https://github.com/DICE-UNC/irods-rest

