

Data visualizer with DB recording
feature - semester project

Introduction 2

Goals 2

Architecture and Design 3
Attribute class 3
Important program mechanics 4

Database 6

System requirements 8

User guide 8

Conclusion 10

Authors:
Jędrzej Kubiak

Mateusz Półtorak

Introduction
‘Data visualizer with DB recording feature’ is a semi-automated ​tool for users who
want to visualise data from excel files. Application allows you to choose columns
which you want to project on diagrams. You can also choose the diagram you like
the most - your choice will be written to the database. This feature can be used in
future to create fully-automated application via machine learning technique.

Application Overview

Goals
The overriding goal for ‘Data visualizer with DB recording feature’ ​is to visualize data
in quick and simple way. The idea is that generated diagrams are reasonable and
useful (in analytical meaning), with as little as possible ​participation of user. Unlike
traditional visualization products, our program allows users to provide reliable
diagrams without necessity of mastering complicated visualization applications.
The following goal is to create database which collect name of the best diagram -
chosen by the user and its metadata. This database was designed to enhance
application, we expect that gathered data can be used in ‘machine learning’
technology. This application enhanced with ‘machine learning’ technology would be
much more precise.

Architecture and Design

Attribute class

The class named ‘Attribute’ is responsible for metadata representation. It consist of
four essential description structures:

● type
● nominal
● array of raw data
● dictionary of values

1. Type​ (Numeric | Categorical | Date)

● Numeric type is a generalized representation of all numerical types. It stands

for integers, decimals, floats, etc.
● Categorical type is used when the data column consists of labels, such as (for

example) colors, cities, names.
● Date is detected only when .xlsx file contains a data label (for attribute) in

itself.

2. Nominal​ (Monomial | Binomial | Polynomial)

Nominal variable describes the number of unique values that the attribute has. It is
segmented for three ranges: <1>, <2> and (2;inf+>. These ranges correspond to
Nominal string values.

● Monomial - stands for attributes with only one value.
● Binomial - represents columns with two types of values, like “man/woman”,

“accepted/rejected”
● Polynomial - any quantity that is greater than 2.

3. Array of raw data

The array of raw data stores list of column records. These records can be different
than original .xlsx records because of filtering process which is executed in previous
stage (before creating attribute class). Order of records is preserved. Arrays of data
are mainly used for creating double charts, where program needs to know record’s
positions in array.

4. Dictionary of values

Main mechanism of records representation, simple dictionary with {key:value} tuples.
Dictionaries are passed directly to chart creating methods. Number of keys is
connected with number of distinct values in attribute.
Algorithm for dictionaries creation:
d{} is a dictionary

def​ attribute_to_dict(data):
 d = {}
 ​ for​ record​ in​ data:
 ​try​:
 d[record] += 1
 ​except​ KeyError:
 d[record] = 1
 ​ return​ d

Important program mechanics
● Reading values and clearing columns

Before ‘​Attribute ​Class​’ objects are created, each tuple of selected column is
checked for consistency of data. The main goal is to get rid of missing values.
There are two cases and two different ways to reject wrong records. It depends on
number of selected attributes in previous stage.
This process is executed by ​read_values(selection) function, where argument
selection​ is a list of selected columns.

a) If user chooses only one column for analysis,​ read_values ​method eliminates
all records with NULL value.

b) If user chooses two columns (col1, col2) where each column has records r​1​ to
r​n​, ​read_values​ function removes all pairs of (col1(r​i​), col2(r​i​)) records that
meet the condition (x or y) = NULL.

The cleared columns are processed into ‘​Attribute​ ​Class​’ objects.

● oneDict_twoLists() ​function

In most cases, graphs are constructed from simple dictionaries {key;value} (as
shown in the previous section). Graph values are dictionary.values() and graph
labels are made from dictionary.keys() list.
Making a graph that describes two attributes (where at least one is binomial),
requires knowledge of the correlation between them, so two separate dictionaries
are not enough.

In this case, a dictionary with pair of keys is constructed. {key1, key2; value}

try​:
 self.dd[(record1, record2)] += 1
except​ KeyError:
 self.dd[(record1, record2)] = 1

Double graphs requires two lists of values. One for class A, and one for class B (in
example above, class A is “Rejected” and class B is “Approved”). This is stage of the
process where function ​oneDict_twoLists()​ is used. It returns two lists with values,
one list with keys and two class names (for class A, class B).

oneDict_twoLists() ​algorithm:

def​ onedict_twolists(d): # argument ​d​ is a dictionary with double keys
 d1, d2 = {}, {}
 class1 = d.keys()[0][1] # defining name of the first class
 class2 = ‘’
 ​for​ key​ in​ d.keys():

 ​ if​ key[1] == class1:
 d1[key[0]] = d[key]
 ​else:
 class2 = key[1]# definition of the second class
 d2[key[0]] = d[key]
 # some key values can be equal zero, so they don’t append in dictionary. We look for
these keys and we generate missing data
 for​ key ​in​ d1.keys():
 ​ if​ key​ not in​ d2.keys():
 d2[key] = 0
 ​ for​ key ​in​ d2.keys():
 ​ if​ key ​not in​ d1.keys():
 d1[key] = 0
 list1, list2 = [], [] # here began lists creation
 keys = sorted(d1.keys()) # keys sorting
 ​for ​key ​in​ keys:
 list1.append(d1[key])
 list2.append(d2[key])
 ​ return​ list1, list2, class1, class2, keys

● Graph selection

For charts selection, two functions were applied. The first method analyzes the
possibilities, the second creates graphs.

‘analyse()’​ function checks types and nominals of ​‘Attribute Class’​ objects. It fills
‘chartList’ ​table with charts tags. Then, ​‘chartList’ ​table is used as a parameter for
‘createCharts()’​ function.

Database
Application connects to MySQL relational database management system.
Database consists of three tables, with the same relationships as shown below:

Table “Files” stores informations about loaded .xslx files. Every record is unique,
therefore there cannot be two records with the same path. IDs are generated
artificially, they increases as the number of data tuples increases.

Table “Choices” creates new records when user selects specific charts. “History_id”
column is incremented automatically with every new selection. Every choose has it’s
own history_id. “chartType” specifies the type of choosen chart.
Example: ​“User have selected attribute ‘place_of_birth’ and the proper chart was a
bar chart. It’s 144th time when user selects a chart.”
One record will be added to table:

history_id chartType

144 Bar chart

Table “Metadata” represents selected attributes characteristics. There are
informations about attribute name, type and nominal. Furthermore, for each
selection, foreign keys are created. Keys are connected with tables “files” and
“choices”. Each choose has it’s own set of attributes metadata and each file is linked
with many “metadata” records. It implies that each file is in relation with many
“choices” rows.

Environment and libraries
All code is written in Python 2.7
Graphs are generated with Matplotlib and Pandas libraries.
For GUI, we used TkInter library.
In addition, some calculations are done with Numpy functions.

Application was tested on platform containing:

● Intel Core i3-4000M CPU @ 2.4GHz
● 4 GB RAM
● Windows 7 Service Pack 1
● JetBrains PyCharm Community Edition

User guide
The interface itself is very simple and intuitive. Despite this, a user guide is always
required. This section describes the steps for navigating the interface.

1. The first initialization view is an empty window with file selection option.

2. In this example, user’s choice is the excel file with SwimRecords data.

3. Data inside .xslx file looks like below.

4. After file selection, all possible attributes (columns) appear in the window. User
has to choose one or two columns.

5. After selection and “Gotowe” click, graphs are presented. In this case, the user
has chosen “sex” attribute which stands for gender. We can see that all swim
records belong to men. Now, user has to click on interesting chart. Selection will
be stored in DB.

Conclusion
Altogether:

● we created efficient application for data visualization,
● user participation in data visualization process is reduced to simple activity,
● program can be enhanced with ‘machine learning’ feature, then some of the data

would be visualized without user participation,
● program can be enhanced with more types of charts (in actual version there are six

types).

