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Abstract

Producing adequate amount of energy plays a significant role in to-
day’s energy economics. It is related with emergence of smart grids and
increasing impact of renewable energy sources. In this paper, we discuss
usage of popular machine learning algorithms to forecast power consump-
tion basing on weather data.

1 Energy Data
Data for the research is Campbell Creek Research House 3 data for 2013-2014[2]
and come from Oak Ridge National Laboratory, Building Technologies Research
and Integration Center. Contains end use breakdowns of energy use and various
indoor environmental conditions collected at a 15 minute time stamp from 1st
October 2013 to 1st October 2014.

Data was prepared to use in test - the empty values problem was fixed, and
all NA values were approximated with neighbour samples.

2 Algorithms Overview
To solve our problem it was necessary to find model, which could predict a
labelled value in base of another variables. This problem is kind of regression
problem. We applied 3 popular approaches of finding model - support vector
machines, decision trees and neural networks.

2.1 Reggresion
Regression is concerned with modeling the relationship between variables that
is iteratively refined using a measure of error in the predictions made by the
model.

Regression methods are a workhorse of statistics and have been co-opted
into statistical machine learning. This may be confusing because we can use
regression to refer to the class of problem and the class of algorithm. Really,
regression is a process.



The most popular regression algorithms are:

• Ordinary Least Squares Regression (OLSR),

• Linear Regression,

• Logistic Regression,

• Stepwise Regression,

• Multivariate Adaptive Regression Splines (MARS),

• Locally Estimated Scatterplot Smoothing (LOESS).

2.2 Support Vector Machines
Support Vector Machines (SVM) are set of algorithms, which try to determine
border between different decision classes. Formal definition is claiming that
there is a classificator, which dividing p-dimention decision space, by use of (p-
1) dimention hyperplanes. It is important to separate classes in wide margins.
It isn’t easy way, because usually borders aren’t clear, and objects from another
classes can be mixed. It is necessary to allow locate single objects from one
class in other side. SVM can be also used for solving non-linear classification
problems. The solution is using kernels - a functions which transforms objects
to higher hyperplane, what can simplify the process of finding borders. The
angle and position of hyperplanes and margins is calculated by decreasing value
of cost function by using quadratic programming (QP).
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Figure 2: Simple neural network.

2.3 Decision Trees
Decision trees methods use tree-like graphs to represent information. Nodes
indicate decision alternatives and leaves symbolize outcome. In every step of
this family of algorithms we split data into two or more as far as possible ho-
mogeneous subsets. Tree decides where to split basing on algorithms like a Gini
Index or Chi-Square.

The most popular decision trees algorithms are:

• Classification and Regression Tree (CART),

• Random Forest,

• Chi-square Automatic Interaction Detection (CHAID),

• Iterative Dichotomiser 3 (ID3),

2.4 Neural networks
Neural networks (NNs) can be defined as a function of a set of derived inputs
called hidden nodes. They are nonlinear functions of the original inputs of
neural network and they are organized in hidden layers. Each of the nodes
contains a activation function - transformation of a linear combination of the
input variables.

Patterns are presented to the network via the input layer, which communi-
cates to hidden layers using a system of weighted connections. Hidden layers
then link to output layer where the answer is output.

The two most popular types of neural networks are Feedforward neural net-
work and Recurrent neural network.



3 Implementation Of Selected Algorithms
To predict energy consumption we selected algorithms from each category in
chapter 2. As a pure regression algorithm we have Gaussian Processes. Support
vector machine family represent SVM nu,epsilon regression and variant with
Least Square method named LS-SVM. Tree based algorithms are Random Forest
and Bayesian Regression Trees. From neural network type we have Feed Forward
Neural Network and Bayesian Regularized Neural Networks.

3.1 Gaussian Processes
This function fits the following GP model, y(x) = + Z(x), x ∈ [0, 1]d, where
Z(x) is a GP with mean 0, V ar(Z(xi)) = σ2 , and Cov(Z(xi), Z(xj)) = σ 2Rij
. Entries in covariance matrix R are determined by corr and parameterized by
beta, a d-vector of parameters. For computational stability R-1 is replaced with
R -1 δlb , where Rδlb = R+ δ lbI and δlb is the nugget parameter described in
Ranjan et al. (2011).

3.2 SVM epsilon regression
ksvm uses John Platt’s SMO algorithm for solving the SVM QP problem an
most SVM formulations. On the spoc-svc, kbb-svc, C-bsvc and eps-bsvr for-
mulations a chunking algorithm based on the TRON QP solver is used. For
multiclass-classification with k classes, k>2, ksvm uses the ‘one-against-one’-
approach, in which k(k-1)/2 binary classifiers are trained; the appropriate class
is found by a voting scheme, The spoc-svc and the kbb-svc formulations deal
with the multiclass-classification problems by solving a single quadratic problem
involving all the classes. If the predictor variables include factors, the formula
interface must be used to get a correct model matrix. In classification when
prob.model is TRUE a 3-fold cross validation is performed on the data and a
sigmoid function is fitted on the resulting decision values f. The data can be
passed to the ksvm function in a matrix or a data.frame, in addition ksvm also
supports input in the form of a kernel matrix of class kernelMatrix or as a list
of character vectors where a string kernel has to be used. The plot function for
binary classification ksvm objects displays a contour plot of the decision values
with the corresponding support vectors highlighted. The predict function can
return class probabilities for classification problems by setting the type param-
eter to "probabilities". The problem of model selection is partially addressed
by an empirical observation for the RBF kernels (Gaussian , Laplace) where the
optimal values of the statistics. When using an RBF kernel and setting kpar to
"automatic", ksvm uses the sigest function to estimate the quantiles and uses
the median of the values.



3.3 SVM nu regression
nu regression is newer version of SVR. The most important difference between
this algorithms is nu parameter, which is used to apply a penalty to the opti-
mization for points which were not correctly predicted.

The previous method (epsilon-SVR) use parameter epsilon, which could be
number from range [0, inf]. It means that there is no penalty associated with
points which are predicted within distance epsilon from the actual value.

This method use nu from range [0,1]. This parameter can simplify the model,
by decreasing amount of support vectors. This value represent limit, how many
best support vector will be used from all samples.

3.4 LS-SVM
LS-SVM [13] is variant of SVM where Least Square method were used to approx-
imate the position of hyperplanes. The algorithm is based on the minimization
of a classical penalized least-squares cost function. This approach decompose
quadratic programming problem to problem of linear programming of set linear
equations. The most popular method to solve this problem is KKT. LS-SVM is
more basic and efficient method than classical SVM.

It was possible to use LS-SVM method, with linking library Liquid-SVM
and calling the function lsSVM. The parameters of LsSVM function are:

• X - input matrix (or dataFrame) of training data

• Y - output matrix (or dataFrame) of response labels

• kpar- kernel parameters with set sigma parameter value to 2. This value
was calculated automatic. It means the standard deviation of kernel.

• gamma - parameter controls the shape of the separating hyperplane. In-
creasing gamma usually increases number of support vectors.

3.5 Feedforward neural network
FFNN[7] is an artificial neural network where in contrast to recurrent neural
network, signals are moving forward way only. From input nodes through hidden
layers to output nodes. There is no loops or cycles in network. For learning
phase it uses model developed by Widrow and Hoff ADALINE which stands for
Adaptive Linear Element. Its function uses weight w and bias b: yi = wxi + b.
Linear error is calculated by subtracting desired output and the output of the
linear combiner.

Listing 1: Sample usage of nnet package with sample iris data
l i b r a r y (" nnet ")

i r <− rbind ( i r i s 3 [ , , 1 ] , i r i s 3 [ , , 2 ] , i r i s 3 [ , , 3 ] )
t a r g e t s <− c l a s s . ind ( c ( rep (" s " , 50) , rep (" c " , 50) ,



rep ("v" , 50) ) )
samp <− c ( sample ( 1 : 5 0 , 2 5 ) , sample ( 51 : 100 , 25 ) ,

sample ( 101 : 150 , 25 ) )
nnetOutput <− nnet ( i r [ samp , ] , t a r g e t s [ samp , ] ,

s i z e = 2 , rang = 0 . 1 , decay = 5e−4, maxit = 200)

In this paper as a implementation of FFNN we used nnet [8] package from
CRAN repository. Moreover we use cmeans clustering algorithm from e1071
package. First, we divide our data into 100 fuzzy clusters. Next we run neural
net algorithm with initial weights of network set to maximum value of fit to
cluster. It helps us with randomness nature of neural networks algorithms.

3.6 Random Forest
Random Forest is tree based algorithm where instead of creating one tree, we
are constructing multiple trees. It is known as a ensemble method because each
model "votes" their outcome, so number of weaker classifiers can form a powerful
model. Hence, one of advantages of this algorithm is reducing over-fitting.

Definition 1 (Random Forest) A random forest is a classifier consisting of
a collection of tree structured classifiers {h(x, θk), k = 1, ...} where the {θk} are
independent identically distributed random vectors and each tree casts a unit
vote for the most popular class at input x .[9]

In the experiment we used R language implementation from randomFor-
est [10] package. Number of decision trees to be grown was set to 200.

Listing 2: Invocation of random forest algorithm in experiment. Unlike other
algorithms there is no distinction between learning and predicting phase, bea-
cause results are already available in $predicted component of random forest
output object
randomForestOutput<−randomForest ( dataToTrain , yTraining ,

dataToTest , yTest , n t r ee =200)
randomForestOutput$predicted

3.7 Bayesian Additive Regression Trees
Bayesian additive regression trees (BART) were introduced in paper [3]. They
belong to group of ensemble-of-trees methods, which recently became popular
choices for forecasting in both regression and classification problems. Unlike
other methods such as random forests, it relies on an underlying Bayesian prob-
ability model rather than a pure algorithm.

BART is a Bayesian approach to nonparametric function estimation using
regression trees, which rely on recursive binary partitioning of p-dimentional
predictor space (where p is number of variables) into a set of hyperrectangles.
It can be considered a sum-of-trees ensemble, in which each tree is constrained



by a prior to be a weak learner. The formula of the BART model is presented
in Equation 1.

Y = f(X) + ε ≈ τM1 (X) + ...+ τMm (X), ε ∼ Nn(0, σ2In) (1)

In the above formula there are m distinct regression trees. Each of them are
composed of a tree structure (denoted by τ) and the parameters at the terminal
nodes (often called leaves), denoted by M . Together, they represent an entire
tree with its structure and set of leaf parameters.

Structure of a tree includes information on how any observation recurses
down the tree. For each internal node of the tree, there is a splitting rule:

xj < c, (2)

where xj is a splitting variable and c is a splitting value. During the pro-
cessing, an observation moves to the left child node if the above condition is
satisfied (otherwise, it moves to the right child node). The process continues
until a terminal node is reached, and then the observation reveives the leaf val-
ues of the terminal node. The sum of the leaf values arrived at by recursing
down all m trees is the observation’s predicted value.

BART consists of set of priors for the structure and the leaf parameters and
a likelihood for data in the terminal nodes. The aim of the priors is to provide
regularization - they are preventing any single regression tree from dominating
the total fit.

In this paper we used a popular implementation of BART algorithm for R
language called bartMachine [4]. The package is available on CRAN repository,
it is also included in popular caret framework.

Listing 3: Sample usage of bartMachine package
l i b r a r y (" bartMachine ")
s e t . seed (11)
n = 200
p = 5
X = data . frame ( matrix ( r un i f (n∗p ) , nco l=p ) )
y = 10∗ s i n ( p i ∗X[ , 1 ] ∗X[ , 2 ] ) + 20

∗ (X[ , 3 ] −.5)^2 + 10∗ X[ , 4 ] + 5 ∗ X[ , 5 ] + rnorm (n)

bart_machine = bartMachine (X, y )
summary( bart_machine )

3.8 Bayesian Regularized Neural Networks
Bayesian Regularized Neural Networks (also known as BRNN, Bayesian Regu-
larization for Feed-Forward Neural Networks) is a variant of feed-forward neural
networks, introduced in MacKay’s work [5]. In order to avoid overfitting during
the increase of number of inputs and neurons in a single layer neural network, he



used penalized estimation using Bayesian approaches. In his work, MacKay fit
a two layer neural network and developed algorithms used to obtain estimates
of all parameters using Empirical Bayes approach:

Definition 2 (Empirical Bayes approach) Let θ be the vector of weights,
biases and connections strengths and p(θ|σ2

θ) = MN(θ, σ2
θ) be a prior distribu-

tion, where MN stands for the multivariate normal distribution, and σ2
θ is a

variance common to all elements of θ. In Empirical Bayes approach, these two
steps are repeated iteratively until covergence:

• Obtain conditional posterior modes of the elements in θ, assuming that σ2
θ

and σ2
e are known. These modes are obtained by minimizing the augmented

sum of squares;

• Update the variance components by maximizing p(y|σ2
θ , σ

2
e).

Implementation of this algorithm for R language is available in the popular
brnn package [6]. In addition to above work, it uses the Nguyen and Widrow
algorithm to assign initial weights and the Gauss-Newton algorithm to perform
the optimization.

Listing 4: Sample usage of brnn package
l i b r a r y (" brnn ")

x1 = seq ( 0 , 0 . 2 3 , l ength . out=25)
y1 = 4∗x1+rnorm (25 , sd=0.1)
x2 = seq ( 0 . 2 5 , 0 . 7 5 , l ength . out=50)
y2 = 2−4∗x2+rnorm (50 , sd=0.1)
x3 = seq ( 0 . 7 7 , 1 , l ength . out=25)
y3 = 4∗x3−4+rnorm (25 , sd=0.1)
x = c ( x1 , x2 , x3 )
y = c ( y1 , y2 , y3 )

out = brnn (y~x , neurons=2)

4 Experiment
The aim of the experiment is to check which of selected algorithm is the best
in predicting energy usage. From the entire Campbell Creek Research House
3 dataset we chose 7 attributes for computations – power consumption and
outdoor weather factors:

• Total Energy Consumption

• Outside temperature, Weather station,

• Precipitation,



• Humidity, Weather station,

• Solar radiation, Weather station,

• Horizontal wind speed, Weather station,

• Wind direction, Weather station,

Of course Total Energy Consumption was the result of combination of other
attributes. In order to reduce amount of time needed for computations we lim-
ited number of samples. We took first 5000 samples as a training set and next
5000 samples as test set. In other words training set contains samples from
1st October 2013 to 22nd November and test set from 22nd November to 13rd
January 2014. All methods was tested multiple times to pick out values of
parameters (e.g. epsilon in svm or number of layers in neural network) that
guarantees best results. As a measure of how good algorithm is, we used mean
squared error. To provide results that could be reproduced before invocation of
neural network algorithms we called set.seed(1) function which set the seed of
R‘s random number generator. Times of learning phase and predicting phase
were measured ten times with system.time() function except random forest al-
gorithm where predicting phase was done during invocation of function creating
random forest classifier.



5 Results
Results of experiment are visualized in Figure 3, besides name of method in
legend there are values of Mean squared error. Black line represents actual values
of energy usage in test set. Graph is pretty much mixed, but we can read off
that Bayesian Regularized Neural Networks (orange) predicted a lot of outliers
values. Furthermore values from Feed Forward Neural Network (purple) clearly
fluctuate under actual ones. It also can be seen that prediction from Bayesian
Additive Regression (purple) Trees relatively project real power consumption.

Figure 3: The graph depicts energy consumption: real (black line) and predicted
by 8 used algorithms. The power consumption in Watt-hours is on Y-axis, on
X-axis we have time with 15 minutes step.

For more clarity of chart we used xts package to group 15 minutes step
outputs of sensors into days. It generated Figure 4.We can see that it confirms
statements based on Figure 3. Furthermore we can observed that Random
Forest algorithm (green) has interesting tendency, when real usage consumption
peaks Random Forest predicts low values and when real usage reaches minimum



then Random Forest peaks. This anomaly can be seen between February and
March. Moreover it shows similar runs of SVM-family methods.

Figure 4: This graph presents the same energy consumption data as graph
from Figure 3 – actual (black line) and predicted by 8 used algorithms, but
this time data is grouped by day. Consequently on Y-axis we have daily power
consumption in Watt-hours and on X-axis time with monthly labels.

Table 1 presents times of generating model for each method. The best was
SVM nu regression algorithm with average of 5 seconds. Next there were EPS
svm regression about 12 and 20 seconds. The worst was Feed Forward Neural
Network, it took over an hour to generate its classifier.

Table 2 shows times of predicting phase for each method. The best score
obtained Bayesian Regularized Neural Networks, prediction under one second
also achieved Feed Forward Neural Network. The worst was Bayesian Additive
Regression Trees with average about 20 seconds.



Measurement Gauss Eps-svm Nu-svm LSSVM Nnet RF BART BRNN
1 383.86 12.96 5.17 46.51 3835.81 23.63 282.18 30.8
2 371.4 12.92 4.89 52.04 3776.37 18.48 164.11 29.51
3 352.26 9.93 4.98 45.35 3777.55 18.97 162.14 29.04
4 378.41 12.83 2.22 46.78 3024.64 17.8 162.53 28.89
5 369.06 12.97 4.9 45.89 3871.75 19.26 210.1 34.35
6 408.5 11.81 5.02 43.21 3928.06 18.74 159.79 29.05
7 254.36 4.67 5.55 41.53 4246.39 21.46 159.11 29.39
8 397.89 13.61 1.77 39.41 3771.94 12.21 163.98 29.56
9 281.66 12.76 5.26 45.95 4053.45 20.74 161.58 29.63
10 475.98 15.03 6.25 46.11 3896.9 25.41 161.1 29.55
AVG 367.34 11.95 4.60 45.28 3818.29 19.67 178.66 29.98
STD DEV 62.52 2.86 1.44 3.40 315.42 3.58 39.45 1.62

Table 1: Time measurement in seconds for generating model of each model.

Measurement Gauss Eps-svm Nu-svm LSSVM Nnet RF BART BRNN
1 5,78 5,11 1,58 2,39 0,82 27,31 0,01
2 5,78 5,22 1,52 4,42 0,86 18,61 0,01
3 5,82 3,28 1,53 2,16 0,83 18,62 0,02
4 5,71 5,08 1,57 2,48 0,83 18,53 0,02
5 5,89 5,13 1,52 2,95 0,78 25,53 0,02
6 2,13 5,5 1,49 2,32 0,92 18,55 0,02
7 2,17 1,93 1,64 2,31 0,89 18,91 0,01
8 6,01 5,34 0,51 2,79 0,82 18,5 0,01
9 5,42 5,03 1,59 3,39 0,92 18,63 0,02
10 6,67 7,33 1,75 2,64 0,86 18,75 0,01
AVG 5,14 4,90 1,47 2,79 0,85 20,19 0,02
STD DEV 1,61 1,42 0,35 0,68 0,05 3,31 0,01

Table 2: Time measurement in seconds for predicting power consumption by
each model except Random Forest where prediction phase is contained in gen-
erating model.

Method Gauss Eps-svm Nu-svm LSSVM Nnet RF BART BRNN
MSE 87218,15 100915,9 87000,42 87182,2 161302,6 119832 76291,92 139988,3

Table 3: Mean squared error values for each method. The lower value of esti-
mator, the better algorithm predicted energy usage.



Gauss Eps-svm Nu-svm LSSVM Nnet RF BART BRNN
Gauss x n n n n n n n
Eps-svr x y n n y n y
Nu-svr x n n n n n
LSVM x n n n y
Nnet x n n n
RF x n y
BART x n
BRNN x

Table 4: T-student matrix. Y - null hypothesis that the data in x – y comes
from a normal distribution with mean equal to zero and unknown variance is
not true, n - is true

Table 4 shows comparisons of two-sample t-student test for algorithms ex-
ecution time. A two-sample location test of the null hypothesis such that the
means of two populations are equal. All such tests are usually called Student’s
t-tests, though strictly speaking that name should only be used if the variances
of the two populations are also assumed to be equal; the form of the test used
when this assumption is dropped is sometimes called Welch’s t-test. These tests
are often referred to as "unpaired" or "independent samples" t-tests, as they
are typically applied when the statistical units underlying the two samples being
compared are non-overlapping.

6 Conclusion
In this paper we described some popular machine learning algorithms and use
them for predicting power consumption. The best score achieved Bayesian Ad-
ditive Regression Trees. Results under 100000 obtained also Gaussian Processes,
SVM nu regression and LS-SVM. Neural Networks family methods disappointed
with low score plus computing of Feed Forward Neural Network lasted too long.
In term of quality for time ratio the best was SVM nu regression with second
score. Entire computation took average about only 6 seconds for this method.
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