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Summary. Data stored in a data warehouse (DW) are retrieved and analyzed by
complex analytical applications, often expressed by means of star queries. Such
queries often scan huge volumes of data and are computationally complex. For
this reason, an acceptable (or good) DW performance is one of the important
features that must be guaranteed for DW users. Good DW performance can be
achieved in multiple components of a DW architecture, starting from hardware (e.g.,
parallel processing on multiple nodes, fast disks, huge main memory, fast multi-core
processor), through physical storage schemes (e.g., row storage, column storage,
multidimensional store, data and index compression algorithms), state of the art
techniques of query optimization (e.g., cost models and size estimation techniques,
parallel query optimization and execution, join algorithms), and additional data
structures improving data searching efficiency (e.g., indexes, materialized views,
clusters, partitions). In this chapter we aim at presenting only a narrow aspect of
the aforementioned technologies. We discuss three types of data structures, namely
indexes (bitmap, join, and bitmap join), materialized views, and partitioned tables.
We show how they are being applied in the process of executing star queries in three
commercial database/data warehouse management systems, i.e., Oracle, DB2, and
SQL Server.

Keywords: data warehouse, star query, join index, bitmap index, bitmap join
index, materialized view, query rewriting, data partitioning, Oracle, SQL Server,
DB2.

2.1 Introduction

A data warehouse architecture has been developed in order to integrate
and analyze data coming from multiple distributed, heterogeneous, and au-
tonomous data sources (DSs), deployed throughout an enterprise. A core com-
ponent of this architecture is a database, called a data warehouse (DW), that
stores current and historical data, integrated from multiple DSs. The content
of a DW is analyzed by various On-Line Analytical Processing (OLAP) ap-
plications for the purpose of discovering trends (e.g., demand and sales of
products), discovering patterns of behavior (e.g., customer habits, credit re-
payment history) and anomalies (e.g., credit card usage) as well as for finding
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dependencies between data (e.g., market basket analysis, suggested buying,
insurance fee assessment). OLAP applications execute complex queries, some
of them being predefined (e.g. reports), whereas others being executed ad-hoc
by decision makers.

The queries are expressed with multiple join, filtering, aggregate, and sort
operations and they process large (or extremely large) volumes of data. A
special class of analytical queries includes star queries that join a central
table with multiple referenced tables. The execution of analytical queries
may take hours or even days. For this reason, providing means for increasing
the performance of a data warehouse for analytical queries and other types
of data processing (e.g., data mining) is one of the important research and
technological areas.

2.1.1 Increasing DW Performance: Research and Technological
Advances

A DW performance depends on multiple components of a DW architecture.
The basic components include: (1) hardware on which a database/data ware-
house management system (DB/DWMS) is installed and computational ar-
chitectures, (2) physical storage schemes of data, (3) robustness of a query
optimizer, (4) additional data structures supporting faster data access.

Hardware Architectures

Hardware and various processing architectures, e.g., shared memory, shared
disk, shared nothing, have a substantial impact on the performance of a DW.
Multiple nodes with their processing power allow to process data in parallel.
Modern cluster, grid, and cloud architectures take advantage of parallel data
access and processing. A lot of research efforts focus on this area, e.g., [1,
2, 3]. Recent research and technological trends concentrate also on using
parallel processing of powerful graphic processing units, e.g,. [4, 5, 6, 7, 8] for
processing data. Another hot topic research and technological issue concerns
main memory databases and data warehouses, e.g., [9, 10, 11].

Physical Storage

In practice, a DW is implemented either in a relational server (the ROLAP
implementation) or in a multidimensional server (the MOLAP implementa-
tion). The ROLAP implementation can be based either on a row storage
(RS) (a typical one) or on a column storage (CS) (current trend). RS is more
suitable for transactional processing (inserts, deletes, updates). CS offers bet-
ter performance for applications that read and compute aggregates based on
the subset of table columns, thus it is better suited for OLAP processing.
An intensive research is conducted in the area of column store DWMSs, e.g.,
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[12, 13, 14] in order to develop efficient join algorithms, query materializa-
tion techniques, index data structures, and compression techniques [15], to
mention some of them. These and many other efforts resulted in commer-
cially available and open source column storage DWMS, e.g., Sybase IQ,
EMC Greenplum, C-Store/Vertica, MonetDB, Sadas, FastBit, Model 204.
The MOLAP implementation is based on other storage structures, like multi-
dimensional arrays and multidimensional indexes. In this technology research
is focused among others on developing efficient storage implementations, in-
dex structures, and compression techniques, e.g., [16, 17].

Query Optimizer

The way queries are executed strongly impacts the performance of a DW.
The process of optimizing query executions and building robust query op-
timizers has been receiving substantial focus from the research community.
Huge research literature exists on this issue, cf., [18]. Recently, research in
this area concentrates among others on join algorithms, e.g., [19], parallel
query optimization and execution, e.g., [20, 21], designing robust and more
intelligent query optimizers [22].

Querying

Typically, OLAP applications analyze all data in order to deliver reliable
results. Nonetheless, if volumes of data are extremely large, some researchers
propose to apply various techniques to computing approximate results, like
for example (1) sampling, based on histograms or wavelets, e.g., [23, 24], (2)
statistical properties of data, or (3) apply a probability density function, e.g.,
[25].

Data Structures

Query execution plans profit from additional data structures that make data
searching faster and reduce the volume of data that has to be retrieved.
Different data structures have been developed and applied in practice in
commercial DWMSs. Some of them include: (1) various types of indexes, like
join indexes, e.g., [26], bitmap indexes, e.g., [27, 28], and bitmap join indexes,
e.g., [29, 30], (2) materialized views and query rewriting techniques, e.g.,
[31], (3) table partitioning, e.g., [32, 33, 34]. In these areas multiple research
works focus on compressing bitmap indexes, e.g., [35, 36, 37, 28], algorithms
for materialized view selection and fast refreshing, e.g., [38, 31, 39, 40], and
finding the most efficient partitioning schemes, e.g., [41, 42].

Testing Performance

An important practical issue concerns the ability of evaluating the perfor-
mance of a DWMS and compare multiple architectures with this respect.
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To this end, multiple approaches to testing the performance and robustness
of a DWMS have been developed, e.g., [43, 44, 45, 46] and are being further
intensively investigated.

2.1.2 Chapter Focus

In this chapter we overview a narrow area only of the huge research and
technological area devoted to increasing a data warehouse performance. We
focus on the aforementioned data structures (indexes, materialized views,
and partitions) in ROLAP servers and illustrate their basic functionality and
usage in commercial DWMSs, i.e., Oracle, DB2, and SQL Server.

The chapter is organized as follows. In Section 2.2 we present basic data
warehouse concepts and an example data warehouse used throughout this
chapter. In Section 2.3 we present index data structures applied to the opti-
mization of star queries. In Section 2.4 we discuss a technique of materializ-
ing query results and using the materialized results for query optimization.
In Section 2.5 we present table partitioning techniques. Finally, Section 2.6
includes the chapter summary.

2.2 Basic Concepts

2.2.1 DW Model and Schema

In order to support various analyses, data stored in a DW are represented
in a multidimensional data model [47, 48]. In this model an elementary in-
formation being the subject of analysis is called a fact. It contains numerical
features, called measures that quantify the fact. Values of measures are an-
alyzed in the context of dimensions. Dimensions often have a hierarchical
structure composed of levels, such that Li → Lj, where → denotes hierarchi-
cal assignment between a lower level Li and upper level Lj, also known as a
roll-up or an aggregation path [49]. Following the aggregation path, data can
be aggregated along a dimension hierarchy.

The multidimensional model is often implemented in relational OLAP
servers (ROLAP) [50], where fact data are stored in a fact table, and level
data are stored in dimension tables. In a ROLAP implementation two ba-
sic types of conceptual schemas are used, i.e. a star schema and a snowflake
schema [50]. In the star schema each dimension is composed of only one
(typically denormalized) level table. In the snowflake schema each dimension
is composed of multiple normalized level tables connected by foreign key -
primary key relationships.

An example star schema that will be used throughout this chapter is shown
in Figure 2.1. It is composed of the Sales fact table, and three dimension
tables, namely Products, Customers, and Time. The Sales fact table is con-
nected with its dimension table via three foreign keys, namely ProductID,
CustomerID, and TimeKey. The fact table includes measure column Sale-
sPrice.
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Fig. 2.1. Example data warehouse star schema on sales of products

2.2.2 Star Queries

Based on a DW schema, analytical queries are executed in a DW. As men-
tioned earlier, such queries typically join multiple tables, filter and sort data,
as well as aggregate data at different levels of dimension hierarchies. Typ-
ically, the queries join a fact table with multiple dimension tables and are
called star queries.

An example star query computing the yearly sales (in years 2009 and 2010)
of products belonging to category ’electronic’ in countries of sales, is shown
below.

select sum(SalesPrice), ProdName, Country, Year
from Sales s, Products p, Customers c, Time t
where s.ProductID=p.ProductID
and s.CustomerID=c.CustomerID
and s.TimeKey=t.TimeKey
and p.Category in (’electronic’)
and t.Year in (2009, 2010)
group by ProdName, Country, Year;

2.3 Index Data Structures

Star queries can profit from applying some indexes in the process of retrieving
data. Three indexes, the most frequently used in practice include: a join index,
a bitmap index, and a bitmap join index, which are outlined in this section.

2.3.1 Join Index

A join index represent the materialized join of two tables, say R and S. As
defined in [51, 26], a join index is a table composed of two attributes. It stores
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the set of pairs (ri, sj) where ri and sj denote tuple identifiers from R and
S, respectively, that join on a given predicate. In order to make searching
the join index faster, it is assumed that the join index is physically ordered
(clustered) by one of the attributes. Alternatively, the access to the join index
can be organized by means of a B-tree or a hash index [30].

A join index can be created either on a join attribute or on a non-join
attribute of a table. In the second case, the index is organized in such a
way that it allows lookups by the value of the non-joined attribute in order
to retrieve the ROWIDs of rows from the joined tables that join with the
non-joined attribute value.

In the context of a data warehouse, a join index is applied to joining a di-
mension table and a fact table. The index is created either on a join attribute
of a dimension table or on another attribute (typically storing unique values)
of a dimension table. In order to illustrate the idea behind the join index let
us consider the example below.

Example 1. Let us consider tables Products and Sales from the DW schema
shown in Figure 2.1. Their content is shown in Table 2.1. For clarity pur-
pose, both tables include also explicit column ROWID that stores physical
addresses of records and that serve as row identifiers.

Table 2.1. Example tables in the star schema on sales of products (from Fig.2.1)

Sales Products
ROWID SalesPrice Discount ProductID ROWID ProductID ProdName Category
0AA0 ... 5 100 BFF1 100 HP Pavilion electronic
0AA1 ... 15 230 BFF2 230 Dell Inspiron electronic
0AA2 ... 5 100 BFF3 300 Acer Ferrari electronic
0AA3 ... 10 300
0AA4 ... 10 300
0AA5 ... 15 230

The join index defined on column ProductID is shown in Table 2.2.

Table 2.2. Example join index on ProductID

Products.ROWID Sales.ROWID

BFF1 0AA0

BFF1 0AA2

BFF2 0AA1

BFF2 0AA5

BFF3 0AA3

BFF3 0AA4
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As one can observe from the above example, the join index stores a ma-
terialized (precomputed) join of the Products and Sales tables. Thus, it will
optimize queries like:

select ...
from Sales s, Products p
where s.ProductID=p.ProductID ...

2.3.2 Bitmap Index

OLAP queries not only join data, but also filter data by means of query
predicates. Efficient filtering of large data volumes is well supported by the
so-called bitmap indexes [52, 27, 28, 53]. Conceptually, a bitmap index created
on attribute am of table T is organized as the collection of bitmaps. For each
value vali in the domain of am a separate bitmap is created. A bitmap is a
vector of bits, where the number of bits equals to the number of records in
table T . The values of bits in bitmap for vali are set as follows. The n-th
bit is set to 1 if the value of attribute am for the n-th record equals to vali.
Otherwise the bit is set to 0.

In order to illustrate the idea behind the bitmap index let us consider the
example below.

Example 2. Let us review the Sales fact table, shown in Table 2.3. The ta-
ble contains attribute Discount whose domain includes three values, namely
5, 10, and 15, denoting a percent value of discount. A bitmap index cre-
ated on this attribute will be composed of three bitmaps, noted as Bm5perc,
Bm10perc, and Bm15perc, respectively, as shown in Table 2.3.

The first bit in bitmap Bm15perc equals to 0 since the Discount value of
the first record in table Sales does not equal 15. The second bit in bitmap
Bm15perc equals to 1 since the Discount value of the second record in table
Sales equals to 15, etc.

Such bitmap index will offer a good response time for a query selecting
for example data on sales with 5% or 15% discounts. In order to find sales
records fulfilling this criterion, it is sufficient to OR bitmaps Bm5perc and
Bm15perc in order to construct a result bitmap. Then, records pointed to by
bits equal to ’1’ in the result bitmap are fetched from the Sales table. ��
At the implementation level, bitmap indexes are organized either as B-trees
[27] or as simple arrays in a binary file [54]. In the first case, B-tree leaves
store bitmaps and a B-tree is a way to organize indexed values and bitmaps
in files.

Bitmap indexes allow to answer queries with the count function without
accessing tables, since answers to such queries can be computed by sim-
ply counting bits equaled to ’1’ a result bitmap. Moreover, such indexes of-
fer a good query performance for attributes of narrow domains. For such
attributes, a bitmap index will be much smaller than a traditional B-tree
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Table 2.3. Example bitmap index created on the Discount attribute

Sales bitmap index on Discount
SalesPrice Discount ... Bm5perc Bm10perc Bm15perc
... 5 ... 1 0 0
... 15 ... 0 0 1
... 5 ... 1 0 0
... 10 ... 0 1 0
... 10 ... 0 1 0
... 15 ... 0 0 1

index. Additionally, while evaluating queries with multiple predicates with
equality and inequality operators, a system processes bitmaps very fast by
AND-ing/OR-ing them.

The size of a bitmap index strongly depends on the cardinality (domain
width) of an indexed attribute, i.e., the size of a bitmap index increases when
the cardinality of an indexed attribute increases. Thus, for attributes of high
cardinalities (wide domains) bitmap indexes become very large (much larger
than a B-tree index). As a consequence, they cannot fit into main memory and
the efficiency of accessing data with the support of such indexes deteriorates
[55].

In order to reduce the size of bitmap indexes defined on attributes of high
cardinalities, two following approaches have been proposed in the research
literature, namely: (1) extensions to the structure of the basic bitmap index,
and (2) bitmap index compression techniques. In the first approach, two main
techniques, generally called binning as well as bit slicing, can be distinguished.

Extensions to the Structure of the Basic Bitmap Index

In [56] (called range-based bitmap indexing) and in [57, 58, 59] (called bin-
ning), values of an indexed attribute are partitioned into ranges. A bitmap
is constructed for representing a given range of values, rather than a distinct
value. Bits in a single bitmap indicate whether the value of a given attribute
of a row is within a specific range. This technique can also be applied when
values of an indexed attribute are partitioned into sets.

The technique proposed in [60] can be classified as a more general form of
binning. In [60] sets of attribute values are represented together in a bitmap
index. Such a technique reduces storage space for attributes of high cardinal-
ities. The selection of attribute values represented in this kind of an index is
based on query patterns and their frequencies, as well as on the distribution
of attribute values.

Another form of binning was proposed in [52]. This technique, called prop-
erty maps, focuses on managing the total number of bins assigned to all in-
dexed attributes. A property map defines properties on each attribute, such
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as the set of queries using the attribute, distribution of values for the at-
tribute, or encoded values of the attribute. The properties are represented as
vectors of bits. A query processor needs extension in order to use property
maps. Property maps support multi-attribute queries, inequality queries or
high selectivity queries, and they are much smaller than bitmap indexes.

The second technique is based on the so-called bit-sliced index [61, 62, 55].
It is defined as an ordered list of bitmaps, Bn, Bn−1, . . . , B1, B0, that are used
for representing values of a given attribute A, i.e., B0 represents the 20 bit, B1

represents the 21 bit, etc. Every value of an indexed attribute is represented
on the same number of n bits. As a result, the encoded values in a table form
n bitmaps. The bitmaps are called bit-slices. Data retrieval and computation
are supported either by the bit-sliced index arithmetic [63] or by means of a
dedicated retrieval function [55]. Additionally, a mapping data structure is re-
quired for mapping the encoded values into their real values [55].

Compression Techniques

The second approach that allows to reduce the size of a bitmap index de-
fined on an attribute of high cardinality is based on compression. Four main
loss-less techniques can be distinguished in the research literature, namely:
(1) Byte-aligned Bitmap Compression (BBC) [64], (2) Word-Aligned Hybrid
(WAH) [28, 65, 53, 66], (3) Position List WAH (PLWAH) [67, 35], and (4)
RL-Huffman [36] and RLH [68, 37].

All the aforementioned compression techniques apply the run-length en-
coding. The basic idea of the run-length encoding consists in encoding con-
tinuous vectors of bits having the same value (either “0” or “1”) into: (1) a
common value of all bits in the vector (i.e., either “0” for a vector composed
of zeros or “1” for a vector composed of ones) and (2) the length of the vector
(i.e., the number of bits having the same value). Before encoding, a bitmap
is divided into words. Next, words are grouped into the so-called runs. The
run is composed of words that can be either a fill or a tail. The fill represents
series of words that are composed of bits of the same value. The tail repre-
sents the series of words that are composed of both “0” and “1” bits. Fills
are compressed because of their homogeneous content, whereas tails are not.

BBC divides bit vectors into 8-bit words, WAH and PLWAH divide them
into 31-bit words, RLH uses words of a parameterized length, whereas RL-
Huffman does not divide a bitmap into words. PLWAH is the modification
of WAH. PLWAH improves compression if tail T that follows fill F differs
from F on few bits only. In such a case, the fill word encodes the difference
between T and F on some dedicated bits. Moreover, BBC uses four different
types of runs, depending on the length of a fill and the structure of a tail,
whereas the other compression techniques use only one type of a run. The
overall idea of the WAH compression is illustrated with the example below
taken from [28].
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Example 3. For the sake of simplicity let us assume that a 32-bit processor
is used. A bitmap being compressed is composed of 5456 bits, as shown
in Figure 2.2a. The WAH compression of the bitmap is executed in three
following steps.

In the first step, the bitmap is divided into groups composed of 31 bits,
as shown in Figure 2.2b. In the example, 176 such groups are created. In
the second step, adjacent groups containing identical bits are merged into
one group, as shown in Figure 2.2c. Since group 1 is heterogeneous, i.e., it
is composed of “0” and “1” bits, it is not merged with a group following it.
Groups 2 to 175 are homogeneous (composed of “0” bits) and they are merged
into one large group, denoted in Figure 2.2c as group 2-175. This group
includes 174*31 bits. The last group 176, similarly as group 1, is heterogeneous
and it cannot be merged with a group preceding it. As the result of group
merging, three final groups are created, as shown in Figure 2.2c.

100000....000000111000011100000000000000000000..........0000000000000111111111111.....1111011111

a) an example bitmap being compressed (5456 bits)

b) dividing the bitmap into 31-bits groups

5394 bits having value "0"

31 bits 31 bits

c) merging adjacent homogeneous groups

174 * 31 bits31 bits 31 bits

31 bits .....................

d) group encoding by means of a 32-bits word

1 0 000...00101011100 100000......0001110000111

31 bits of the first group 31 bits of the last group

31 bits 31 bits

0 0011111111......1111011111

bit=0: tail word
bit=1: fill word

bit=0: fill value

fill length 174 * 31 bits

bit=0: tail word

run 1 run 2

group 1 group 2 group 176

group 1 group 2-175 group 176

Fig. 2.2. The steps of the WAH compression

In the third step, the three final groups are encoded on 32-bit words as
follows (cf. Figure 2.2d). The first group represents the tail of the first run.
The most significant bit (the leftmost one) has value “0” denoting a tail. Next
31 bits are original bits of group 1. The second group (group 2-175 ) represents
the fill of the second run. The most significant bit (at position 31) is set to “1”
denoting a fill. The bit at position 230 is set to “0” denoting that all bits in
original group 2-175 have value “0”, i.e., the fill is used for compressing groups
whose all bits have value “0”. The remaining 30 bits are used for encoding
the number of homogeneous groups filled with “0.” In the example, there
are 174 such groups. The number of homogeneous groups is represented by
the binary value equaled to 000000000000000000000010101110, stored on the
remaining 30 bits. The last 31-bits group, denoted as group 176, represents
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the tail of the second run. The most significant bit in this group has value
“0” denoting a tail. The remaining 31 bits are original bits of group 176. ��
The compression techniques proposed in [36] and [37] additionally apply the
Huffman compression [69] to the run-length encoded bitmaps. The main dif-
ferences between [36] and [37] are as follows. First, in [36] only some bits in
a bit vector are of interest, the others, called ’don’t cares’ can be replaced
either by zeros or ones, depending on the values of neighbor bits. In RLH all
bits are of interest and have their exact values. Second, in [36] the lengths
of homogeneous subvectors of bits are counted and become the symbols that
are encoded by the Huffman compression. RLH uses run-length encoding for
representing distances between bits having value 1. Next, the distances are
encoded by the Huffman compression.

In practice, the commercial systems (Oracle DBMS) and prototype sys-
tems (FastBit) [70, 71, 54] apply bitmap compression techniques. Oracle uses
the BBC compression whereas FastBit uses the WAH compression.

Bitmap Indexes in Oracle

The Oracle DBMS [72] supports explicitly created bitmap indexes. A bitmap
index is created by means of the below command.

create bitmap index BIName on table(column);

As mentioned in Section 2.3.2, the size of a bitmap index increases with
the increase of the cardinality of the indexed attribute. In order to reduce
the size of such a bitmap index, Oracle DBMS applies a compression based
on BBC. When the sparsity of bitmaps exceeds a given threshold, Oracle
automatically compresses bitmaps. Figure 3(a) shows how the size of a bitmap
index depends on the cardinality of the indexed attribute. The cardinality was
parameterized from 4 to 65564 unique values. The experiment was conducted
on Oracle10g R2. The indexed table included 320 000 000 of rows. As a
reference, the size of the Oracle B*-tree is also included in the chart.

As we can observe from chart 3(a), with the increase of cardinality from
4 to 16 the size of the bitmap index increases. Next, for cardinality equal to
64, the size of the BI decreases that is caused by compressing the BI. Next,
with the increase of the cardinality above 64 we observe further increase in
the size of the compressed BI.

Bitmap indexes support fast computations of function count. Figure 3(b)
shows the computation efficiency of count(1) for various selectivities of a
query. The query selected from 0.39% to 50% of rows based on the values of
the indexed attribute. As a reference, the figure includes also the performance
of the Oracle B*-tree index. The characteristics of the indexes were tested on
identical attributes. It must be noticed that when count is replaced by other
aggregate functions, like for example sum, avg, the bitmap index performs
much worse, but still better than B*-tree. It is because, in order to compute
these aggregate functions data must be fetched from disk.
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Fig. 2.3. Comparison of some features of a bitmap index and a B*-tree index in
Oracle (# of rows in an indexed table: 320 000 000)

Bitmap Indexes in DB2

IN the DB2 DBMS, queries with predicates on multiple indexed attributes
can be optimized by means of the index AND-ing technique. In general, this
technique is based on determining the intersection of the sets of ROWIDs,
which are retrieved with the support of individual indexes on attributes used
in query predicates. The intersection is determined with the support of bloom
filters [73, 74]. The bloom filters transform each set of ROWIDs into a sep-
arate temporal bitmap. Multiple bitmaps can then be further processed by
AND-ing or OR-ing them, depending on query predicates. The bitmaps are
called dynamic bitmap indexes.
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As an example illustrating the application of a dynamic bitmap index
to the optimization of a query on one table, let us consider table Sales
with two B-tree indexes, one defined on attribute ProductID and one on
CustomerID. An example query with predicate ProductID in (’ThE1’,
’SoV1’, ’DeV1’) and CustomerID = 100 could be answered by applying
the index AND-ing technique with the support of a dynamic bitmap index as
follows. First, by using index on ProductID a bitmap is created that describes
rows fulfilling the predicate ProductID in (’ThE1’, ’SoV1’, ’DeV1’). Let
us denote the bitmap as BProd. Similarly, by using index on CustomerID
a bitmap, say BCust is created that describes rows fulfilling the predicate
CustomerID = 100. Second, the final bitmap is computed by AND-ing BProd

and BCust. Based on the final bitmap that is transformed back to ROWIDs,
rows fulfilling the predicates are retrieved.

As an example illustrating the application of dynamic bitmap indexes to
optimizing star queries, let us consider star query Q1 from Section 2.3.3.
In order to use the technique, a B-tree index has to be created on each
of the foreign keys. In the first step, every dimension table is semi-joined
with the Sales table in order to determine the set of Sales rows that join
with rows form each of the dimensions. Let the result of Sales � Products,
i.e., the set of ROWIDs fulfilling the predicate on ProdName is denoted as
SProd. Let the result Sales � Customers, i.e., the set of ROWIDs fulfilling
the predicate on Town is denoted as SCust. Finally, let Sales � T ime, i.e.,
the set of ROWIDs fulfilling the predicate on Year is denoted as STime.
In the second step, SProd, SCust, and STime are transformed to three bitmaps,
denoted as BProd, BCust, and BTime, respectively. In the third step, bitmaps
BProd, BCust, BTime are AND-ed. The final bitmap describes rows fulfilling
the whole query predicate. It is then transformed back to ROWIDs. Based
on the ROWIDs records are fetched from the Sales table. If some columns
from dimension tables are needed in the query result, then the final set of
sales rows is joined with appropriate rows from the dimensions.

Bitmap Indexes in SQL Server

Similarly as DB2, SQL Server [75] does not support explicitly created bitmap
indexes. Instead, it supports bitmap filters (this mechanism is available from
version 2005). However, bitmap filters are not bitmap indexes. The bitmap
filter represents (in a compact format) the set of values from one table being
joined, typically a dimension table. Based on the bitmap filter, rows from the
second joined table, typically a fact table, are filtered. Thus, the bitmap filter
is applied as a semi-join reduction technique but only in parallel execution
plans. A bitmap filter is automatically created by the SQL Server query op-
timizer when the optimizer estimates that such a filter is selective. A bitmap
filter is a main memory data structure.

In order to illustrate the application of bitmap filters to the optimization
of a star query, let us consider star query Q1 from Section 2.3.3. It could be
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processed as follows. In the first step, bitmap filters are created. Bitmap fil-
ter BFProd is created, based on values (’ThinkPad Edge’, ’Sony Vaio’, ’Dell
Vostro’) from the Products dimension table. In parallel, bitmap filters on di-
mension tables Customers and Time are created, based on the predicates
Town=’London’ and Year=2009, respectively. Let us denote the filters as
BFCust and BFY ear, respectively. In the second step, BFProd is used for semi-
join reduction with the Sales table (let denote the intermediate result as tem-
porary table Salesreduced

Prod ). In the third step, bitmap filter BFCust is applied
as semi-join reduction operator to temporary table Salesreduced

Prod . Let us de-
note its result as Salesreduced

Prod Cust. In the fourth step bitmap filter BFY ear is
applied to Salesreduced

Prod Cust, resulting in temporary table Salesreduced
Prod Cust Y ear .

Finally, rows fulfilling the whole predicate of the query are fetched by means
of Salesreduced

Prod Cust Y ear. The order in which the bitmap filters are applied de-
pends on the selectivity of the filters. The most selective one should be applied
first.

2.3.3 Bitmap Join Index

The advantages of the join index and the bitmap index have been combined
in a bitmap join index [76, 30, 62]. This index, conceptually is organized
as the join index but the entries to the bitmap join index are organized as
a lookup by the value of a dimension attribute. Each entry to the bitmap
join index is composed of the ROWID of a row from a dimension table (or
an attribute uniquely identifying a row in a dimension table) and a bitmap
(possibly compressed) describing rows from a fact table that join with this
value. Similarly as for the join index, the access to the bitmap join index
lookup column can be organized by means of a B-tree or a hash index.

In order to illustrate the idea behind the bitmap join index let us consider
the example below.

Example 4. Let us return to Example 1 and let us define the bitmap join
index on attribute ProductID of table Products. Conceptually, the entries of
this index are shown in Table 2.4. The lookup of the index is organized by the
values of attribute ProductID. Assuming that the leftmost bit in each of the
bitmaps represents the first row in the Sales table, one can see that the first
and third sales row join with product identified by value 100, for example.

Table 2.4. Example bitmap join index organized as a lookup by attribute Prod-
ucts.ProductID

Products.ProductID bitmap

100 1 0 1 0 0 0

230 0 1 0 0 0 1

300 0 0 0 1 1 0
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Every indexed value (e.g. 100) in dimension table Products has associated
a bitmap describing records from fact table Sales that join with the dimension
record. ��
The bitmap join index takes the advantage of the join index since it allows to
materialize a join of tables. It also takes the advantage of the bitmap index
with respect to efficient AND, OR, NOT operations on bitmaps.

Bitmap Join Indexes in Oracle

Oracle also supports the bitmap join index that offers a very good perfor-
mance of star queries. As an example let us consider the below star query
Q1, that joins the Sales fact table with all of its dimension tables.

/* query Q1 */

select sum(SalesPrice)

from Sales, Products, Customers, Time

where Sales.ProductID=Products.ProductID

and Sales.CustomerID=Customers.CustomerID

and Sales.TimeKey=Time.TimeKey

and ProdName in (’ThinkPad Edge’, ’Sony Vaio’, ’Dell Vostro’)

and Town=’London’

and Year=2009;

In order to reduce the execution time of Q1, three bitmap indexes can be
created, as shown below.

create bitmap index BI_Pr_Sales

on Sales(Products.ProdName)

from Sales, Products

where Sales.ProductID=Products.ProductID;

create bitmap index BI_Cu_Sales

on Sales(Customers.Town)

from Sales, Customers

where Sales.CustomerID=Customers.CustomerID;

create bitmap index BI_Ti_Sales

on Sales(Time.Year)

from Sales, Time

where Sales.TimeKey=Time.TimeKey;

The query execution plan, shown below, reveals how the bitmap join in-
dexes are used. First, bitmaps for ’ThinkPad Edge’, ’Sony Vaio’, and ’Dell
Vostro’ are retrieved and OR-ed (cf. lines 10-12), creating a temporary
bitmap. Next, the bitmap for ’London’ is retrieved (cf. line 8) and it is AND-
ed with the temporary bitmap (cf. line 7). The result bitmap is then converted
to ROWIDs of records fulfilling the criteria (cf. line 6). In this query plan
table Time was accessed with the support of a B-tree index defined on its
primary key, rather than by means of the bitmap join index.
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-------------------------------------------------------------------------------------
|Id | Operation |Name |Rows |Bytes |Cost(%CPU)|Time |
-------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1| 58 | 13 (8)|00:00:01|
| 1 | SORT AGGREGATE | | 1| 58 | | |
| 2 | NESTED LOOPS | | 21| 1218 | 13 (8)|00:00:01|
| 3 | HASH JOIN | | 22| 1012 | 12 (9)|00:00:01|
| 4 | TABLE ACCESS FULL |PRODUCTS | 3| 51 | 3 (0)|00:00:01|
| 5 | TABLE ACCESS BY INDEX ROWID |SALES | 1155|33495 | 8 (0)|00:00:01|
| 6 | BITMAP CONVERSION TO ROWIDS | | | | | |
| 7 | BITMAP AND | | | | | |
| 8 | BITMAP INDEX SINGLE VALUE |BI_CU_SALES| | | | |
| 9 | BITMAP OR | | | | | |
|10 | BITMAP INDEX SINGLE VALUE|BI_PR_SALES| | | | |
|11 | BITMAP INDEX SINGLE VALUE|BI_PR_SALES| | | | |
|12 | BITMAP INDEX SINGLE VALUE|BI_PR_SALES| | | | |
|13 | TABLE ACCESS BY INDEX ROWID |TIME | 1| 12 | 1 (0)|00:00:01|
|14 | INDEX UNIQUE SCAN |PK_TIME | 1| | 0 (0)|00:00:01|
-------------------------------------------------------------------------------------

Alternatively, it is possible to create one bitmap join index on all of the di-
mension attributes. The example below command creates the bitmap join in-
dex on three attributes of the dimension tables, namely: Products.prodName,
Customers.Town, and Time.Year.

create bitmap index BI_Pr_Cu_Ti_Sales

on Sales(Products.ProdName, Customers.Town, Time.Year)

from Sales, Products, Customers, Time

where Sales.ProductID=Products.ProductID

and Sales.CustomerID=Customers.CustomerID

and Sales.TimeKey=Time.TimeKey;

With the support of this index, the aforementioned star query Q1 is exe-
cuted as shown below. As we can observe, its execution plan is much simpler
than before. The bitmap join index is accessed only once (cf. line 5).

-----------------------------------------------------------------------------------------
|Id | Operation |Name |Rows |Bytes|Cost(%CPU)|Time |
-----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1| 29| 7 (0)|00:00:01 |
| 1 | SORT AGGREGATE | | 1| 29| | |
| 2 | INLIST ITERATOR | | | | | |
| 3 | TABLE ACCESS BY INDEX ROWID |SALES | 22| 638| 7 (0)|00:00:01 |
| 4 | BITMAP CONVERSION TO ROWIDS| | | | | |
| 5 | BITMAP INDEX SINGLE VALUE |BI_PR_CU_TI_SALES| | | | |
-----------------------------------------------------------------------------------------

Unfortunately, this bitmap join index cannot be used for answering queries
with predicates on one or two dimensions, like for example

ProdName in (’ThinkPad Edge’, ’Sony Vaio’, ’Dell Vostro’) and Town=

’London’

or

Town=’London’ and Year=2009

or

Year=2009
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On the contrary, the three independent bitmap join indexes defined ear-
lier, i.e., BI Pr Sales, BI Cu Sales, BI Ti Sales offer much flexible indexing
scheme as they can be used answering queries with predicates on some of the
dimensions.

2.4 Materialized Views and Query Rewriting

Execution time of complex, time consuming star queries can be reduced by
physically storing and re-using their previously computed results. This way,
a precomputed result is perceived by a query optimizer as another source of
data that can be queried. The precomputed result is commonly called a ma-
terialized view (MV). If a user executes query Q that computes values that
have already been stored in materialized view MVi, then a query optimizer
will rewrite original query Q into another query Q′ so that Q′ is executed on
MVi and Q′ returns the same result as original query Q. This technique of
automatic, in-background rewriting of users’ queries is called a query rewrit-
ing. Notice that a user’s query must not necessarily be exactly the same as
the query whose result was stored in a materialized view. In this case, a query
optimizer may join a materialized view with other MVs or tables, may further
aggregate and filter the content of a MV and may project columns of a MV,
in order to answer a user’s query [77]. In order to illustrate the idea behind
the query rewriting mechanism let us consider the example below.

Example 5. Let us return to the DW logical schema shown in Figure 2.1 and
let us assume that in this DW users execute the below queries. The first
one computes quarterly sales of product categories in countries. The second
one computes monthly and quarterly sales of products belonging to category
’electronic’.

select Category, Country, Quarter,

sum(SalesPrice) as SumSales

from Sales s, Products p, Customers c, Time t

where s.ProductID=p.ProductID

and s.CustomerID=c.CustomerID

and s.TimeKey=t.TimeKey

group by Category, Country, Quarter;

select ProdName, Country, Month,

sum(SalesPrice) as SumSales

from Sales s, Products p, Customers c, Time t

where s.ProductID=p.ProductID

and s.CustomerID=c.CustomerID

and s.TimeKey=t.TimeKey

and p.Category=’electronic’

group by ProdName, Country, Month

Both queries could be optimized by materialized view SalesMV1, shown
below, whose query makes available monthly and quarterly sales values of
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products and their categories for each country. Both of the above queries
could be answered by means of the materialized view by further aggregating
its content.

create materialized view SalesMV1

...

select ProdName, Category, Country, Month, Quarter,

sum(SalesPrice) as SumSales

from Sales s, Products p, Customers c, Time t

where s.ProductID=p.ProductID

and s.CustomerID=c.CustomerID

and s.TimeKey=t.TimeKey

group by ProdName, Category, Country, Month, Quarter ��

As we can see from the example, the definition of a materialized view includes
a query. Tables referenced in the query are called base tables.

Although in the above example one materialized view is used for rewriting
two queries, in practice, multiple materialized views need to be created in
order to optimize a certain workload of queries. For this reason, a challeng-
ing research issue concerns the selection of such a set of materialized views
that: (1) will be used for optimizing the greatest possible number of the most
expensive queries and (2) whose maintenance will not be costly. Several re-
search works have addressed this problem and they have proposed multiple
algorithms for selecting optimal sets of materialized views for a given query
workload, e.g. [78, 79, 80, 81]. Commercial DB/DWMSs, like, Oracle, DB2,
and SQL Server provide tools that analyze workloads and based on them,
propose sets of database objects, typically materialized views and indexes,
for optimizing the workloads.

2.4.1 Materialized Views in Oracle

In Oracle, a materialized view is created with the create materialized
view command. Its definition includes: (1) the moment when the view is filled
in with data, (2) its refreshing method (fast, complete, force), (3) whether the
materialized view is refreshed automatically or on demand, (4) row identifi-
cation method (required for incremental refreshing), (5) the view automatic
refreshing interval, and (6) a query computing the content of the materialized
view.

A command creating an example materialized view YearlySalesMV is
shown below.

create materialized view YearlySalesMV1

build immediate

refresh force

with rowid

as

select ProdName, Category, Quarter, Year,
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sum(SalesPrice) as SumSales

from Sales s, Products p, Time t

where s.ProductID=p.ProductID

and s.TimeKey=t.TimeKey

group by ProdName, Category, Quarter, Year;

The build immediate clause denotes that the view will be filled in with
data during the execution of the command. The refresh force clause de-
notes that the system automatically selects the refreshing mode (either fast,
i.e., incremental or complete). If the system is able to refresh the MV fast,
then this method is used. Otherwise the complete refreshing is used. The with
ROWID clause defines the method of identifying rows in the MV and its base
tables. In this example, rows will be identified based on their physical ad-
dresses (ROWIDs). Rows can also be identified based on their primary keys.
To this end, the with primary key clause is applied. Row identification is
required for incremental refreshing.

For some versions of Oracle (e.g., 10g) clause with rowid clashes with
clause enable query rewrite. The latter makes available a MV for query
rewriting. Normally, this clause is part of the MV definition, placed between
with rowid|primary key and as. In cases these clauses clash, one has to
make the view available for query rewriting by executing additional command
shown below.

alter materialized view MVName enable query rewrite;

Oracle materialized views will be used in query rewriting provided that:
(1) the cost-based query optimizer is used, (2) materialized views have been
enabled for query rewriting, (3) the system works in the query rewriting
mode, and (4) a user executing a query has appropriate privileges.

In order to illustrate the query rewriting process, let us consider the below
query. We assume that MV YearlySalesMV1 was created and made avail-
able for query rewriting. The query execution plan reveals that it was au-
tomatically rewritten on the YearlySalesMV, cf. row number 2 in the below
plan. This row denotes that the MV was sequentially scanned and its content
grouped (cf. row number 1) in order to compute the more coarse aggregate.

select ProdName, Year, sum(SalesPrice) as SumSales

from Sales s, Products p, Time t

where s.ProductID=p.ProductID

and s.TimeKey=t.TimeKey

and t.Year=2009

group by ProdName, Year;

-----------------------------------------------------------------------------------
|Id |Operation |Name |Rows |Bytes|Cost(%CPU)|Time |
-----------------------------------------------------------------------------------
| 0 |SELECT STATEMENT | | 159 | 3180| 4 (25)|00:00:01|
| 1 | HASH GROUP BY | | 159 | 3180| 4 (25)|00:00:01|
| 2 | MAT_VIEW REWRITE ACCESS FULL|YEARLYSALESMV | 159 | 3180| 3 (0)|00:00:01|
-----------------------------------------------------------------------------------
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As mentioned before, a MV can be refreshed fast, provided two conditions
are fulfilled. First, the MV query definition includes only the allowed con-
structs. The set of these constructs is extended from version to version of the
Oracle DBMS (cf. [72]). Second, each of the MV base tables has associated
its own materialized view log. The log records DML operations applied to the
base table. The content of the log is used for fast refreshing the MV.

The materialized view log is created by the below command (only its basic
form is shown). For a MV created with the with primary key clause the MV
log must include the same clause. The same applies to the with rowid clause.
In the first case the log will store the values of columns that constitute the
primary key of the table, whereas in the second case it will store the values
of ROWID. A MV log may include both clauses if it serves for both types of
MV. Apart from the primary key and ROWID column, a materialized view
log can store values of other columns whose changing values have impact on
the content of the MV. The list of these columns is denoted as col1, ...,
coln.

create materialized view log on BaseTable

with primary key|ROWID (col1, ..., coln),

sequence

including new values;

Including the sequence clause in a materialized view log definition results
in the creation of a column SEQUENCE$$ in the log. Its values represent the
order in which DML operations are executed on the base table for which the
log was created. Oracle advises to create this column for fast refreshing after
mixed insert, update, delete operations on the base table. The including
new values clause forces Oracle to store in the MV log old values of columns
listed in col1, ..., coln as well as their new values. Omitting this clause
results in storing only the old values of columns. This clause must be included
in the MV log definition in order to support fast refreshing MVs computing
aggregates.

2.4.2 Materialized Views in DB2

In DB2 a materialized view, called a materialized query table (MQT)
or a summary table, is created with the create table command with
additional clauses defining its maintenance. The clauses include: (1)
maintained by {system | user}, (2) refresh {immediate | deferred},
(3) data initially {immediate | deferred}, and (4) enable query
optimization.

A MQT can be maintained either by a system or by a user. In the first
case, the maintained by system clause is used. This is a default clause. For
a system-maintained MQT, one can define either automatic or non-automatic
refreshing mode. In the automatic mode, a MQT is refreshed automatically
as the result of changes in the content of its base tables. To this end, the
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definition of a MQT must include the refresh immediate clause. This re-
freshing mode requires that a unique key from each base table is included
in the select command defining the MQT. refresh deferred denotes that
a MQT has to be explicitly refreshed by explicit execution of the refresh
table command, with the syntax shown below.

refresh table TableName {incremental|not incremental}
The data initially immediate clause causes that the content of a MQT

is computed as part of the command creating the MQT. As a result, as soon
as the command is finished, the MQT is filled in with its materialized data.
The data initially deferred clause denotes that the content of the MQT
is not computed as part of the command creating the MQT. After being
created, the MQT is in the check pending state. In this state, the MQT
cannot be queried until the set integrity command has been executed on
the MQT.

The enable query optimization clause, similarly as in Oracle, makes a
MQT available for query rewriting. It is the default clause.

An example system-maintained MQT, called YearlySalesMV2, is shown
below. The MQT is filled in with data during its creation process (data
initially immediate), is refreshed immediately after changes have been
applied to its base tables (refresh immediate), and is made available for
query optimization (enable query optimization).

create table YearlySalesMV2

as

(select ProdID, ProdName, Year, sum(salesPrice) as SumSales

from Sales s, Products p, Time t

where s.ProductID=p.ProductID

and s.TimeKey=t.TimeKey

and t.Year=2009

group by ProdID, ProdName, Year)

data initially immediate

refresh immediate

maintained by system

enable query optimization;

In order to create a user-defined MQT, the maintained by user clause
has to be included in the definition of a MQT. This type of a MQT can be
refreshed only in the deferred mode and the refresh table command cannot
be applied to such a MQT. Thus, a user is responsible for implementing the
procedure of refreshing the MQT (by means of inserts, imports, triggers, etc.).
An example definition of a user-maintained MQT is shown below. After being
created, the MQT is in an inconsistent state and must be made consistent
by executing the set integrity command.

create table YearlySalesMV3

as

(select Year, sum(salesPrice) as SumSales
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from Sales s, Time t

where and s.TimeKey=t.TimeKey

group by Year)

data initially deferred

refresh deferred

maintained by user

set integrity for YearlySalesMV3 materialized query

immediate unchecked

A MQT created with the refreshed deferred clause can be incremen-
tally refreshed provided that a system maintains a log of changes that are
used for refreshing the MQT. This log is called a staging table. A staging ta-
ble is created by the create table command. After being created, a staging
table is in an inconsistent state and must be made consistent by executing
the set integrity command. The simple example below illustrates how to
create a staging table for MQT YearlySalesMV3.

create table YearlySalesMV3_ST for YearlySalesMV3 propagate immediate

set integrity for YearlySalesMV3 staging immediate unchecked

2.4.3 Materialized Views in SQL Server

In SQL Server, a materialized view, called indexed view, is created by creating
a unique clustered index on a view (cf. [75]). The index causes that the
view is materialized, i.e., the whole result set of a query defining a view
is persistently stored in a database. The definition of an indexed view has
to fulfill the following conditions. First, an indexed view requires a column
whose value is unique. A unique index is then created on this column that
results in clustering the data by this column. Second, an indexed view has to
be created with the schemabinding clause that prevents from modifying the
base tables of a view as long as the view exists. Third, all the view base tables
must be referenced by schemaname.tablename. Fourth, the query defining
a materialized view may not contain the following SQL constructs, among
others: exists, not exists, count(*), min, max, top, union, outer join,
non deterministic functions (e.g., GetDate), and subqueries.

The below example illustrates commands creating indexed view
YearlySalesMV2. The create view command defines the view with a query.
The second command creates a unique cluster index on columns ProdID,
ProdName, and Year. As a consequence, the whole result set of the query is
materialized.

create view YearlySalesMV2

with schemabinding

as

select ProdID, ProdName, Year, sum(salesPrice) as SumSales

from Sales s, Products p, Time t

where s.ProductID=p.ProductID
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and s.TimeKey=t.TimeKey

and t.Year=2009

group by ProdID, ProdName, Year

create unique clustered index Indx_ProdID

on YearlySalesMV(ProdID, ProdName, Year)

Similarly as in Oracle and DB2, in the Developer and Enterprise editions
of SQL Server, an indexed view can be used by a query optimizer for query
rewriting. In other editions of SQL Server, in order to force a query optimizer
to rewrite a query based on an indexed view, the query must explicitly ref-
erence the indexed view and must include hint noexpand. In order to force
a query optimizer to use base tables, rather than an indexed view, a query
must include option expand views. Both of them are used in the below two
query templates.

select Column1, Column2, ...

from Table, IndexedView with (noexpand)

where ...

select Column1, Column2, ...

from Table, IndexedView

where ...

option (expand views)

Indexed views, similarly as traditional indexes are automatically refreshed
by a system. The refreshing mode is immediate and incremental, as for tra-
ditional indexes. Notice that, non-clustered indexes can also be created on a
materialized view in order to support quicker access to the view content.

2.5 Partitioning

Partitioning is a mechanism of dividing a table or index into smaller parts,
called partitions. Due to space limitations, in this chapter we will focus only
on table partitioning.

The most benefit from partitioning is achieved if every partition is stored
on a separate disc. This way, multiple partitions can be accessed in parallel
without disc contest.

There are two types of partitioning, namely horizontal and vertical. When
a table, say T , is partitioned horizontally, its content is divided into dis-
junctive subsets of rows. Every partition includes identical schema, that is
the schema of T . When table T is partitioned vertically, it is divided into
disjunctive subsets of columns (except a primary key that exists in every
partition) and includes all rows from the initial table.

Partitioning is guided by three following rules, namely completeness, dis-
jointness, and reconstruction. Completeness states that when table T was
partitioned into P1, P2, ..., Pn then every row from T or its fragment must
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be stored in one of these partition. This criterion guarantees that after par-
titioning no data will disappear. Disjointness states that when table T was
partitioned into P1, P2, ..., Pn then every row or its fragment from T must
be stored in exactly one partition. An exception to this rule is vertical parti-
tioning where ever vertical partition stores a primary key of T . This criterion
guarantees that partitioning does not introduce data redundancy. Reconstruc-
tion states that there mus be a mechanism of reconstructing original table
T from its partitions. In horizontal partitioning the reconstruction of T is
done by unions of the partitions, whereas in vertical partitioning it is done
by joining the partitions.

In horizontal partitioning rows from an original table are placed in par-
titions based on partitioning criteria. In this type of partitioning rows are
divided into subsets based on the value of a selected attribute (or attributes),
called a partitioning attribute. With this respect, there are several techniques
of partitioning rows based on a partitioning attribute. The first one is hash-
based. In this technique, rows are placed in partitions based on a hash function
that for each row takes as its argument the value of a partitioning attribute
and returns the number of a partition where the row is to be stored. The
second one is range-based. In this technique, every partition has defined the
range of values of a partitioning attribute it can store. The third technique
is value-based. In this technique, every partition has defined the set of values
it can store. The fourth technique is based on the round robin algorithm.

Inserting, updating, and deleting data from partitioned tables are man-
aged by a system. If a row is inserted, it is a system that select the right
partition where the row will be stored. If a row is deleted, then the system
finds a right partition where the row was stored. If the value of a partition-
ing attribute of an existing row is updated, then depending on a system and
system parameters, a system may move an updated row from one to another
partition.

In this chapter we focus on horizontal partitioning, which is natively sup-
ported by Oracle, DB2, and SQL Server. Vertical partitioning must be sim-
ulated in these three DB/DWMSs. Typically, vertical partitioning of table
T is simulated by creating n separate tables Ti, each of which contains the
subset of columns of T . Additionally, each of Ti must contain a primary key
column(s) used for the reconstruction of the original table T . The reconstruc-
tion can be implemented by a view on top of tables Ti.

Vertical partitioning is supported in commercial and open source systems
that use column storage, e.g., Sybase IQ, EMC Greenplum, C-Store/Vertica,
MonetDB, Sadas, FastBit, Model 204.

2.5.1 Partitioning in Oracle

Oracle supports multiple partitioning techniques, namely: range, interval, list,
hash, virtual column, system, reference, and composite. In this section, we
will briefly overview the partitioning techniques.
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Range Partitioning

In the range partitioning, each partition has defined its own ranges of val-
ues it can store. The ranges are applicable to a partitioning attribute. For
example, the below table Sales Range TKey includes five partitions named
Sales 1Q 2009, ..., Sales Others. Partition Sales 1Q 2009 accepts rows whose
values of partitioning attribute TimeKey are lower than ’01-04-2009’. Parti-
tion Sales 2Q 2009 accepts rows whose values of the partitioning attribute
fulfill the condition ’01-04-2009’ ≤ TimeKey < ’01-07-2009’, etc. Notice, that
in range partitioning partitions must be ordered by the ranges. Partition
Sales Others is defined with the MAXVALUE keyword. It allows to store all the
other records having the value of TimeKey greater or equal to ’01-01-2010’.
Clause tablespace allows to point a tablespace where a partition is to be
physically stored (an Oracle tablespace is a database object that allows to
logically organize multiple files under one name).

create table Sales_Range_TKey

(ProductID varchar2(8) not null references Products(ProductID),

TimeKey date not null references time(TimeKey),

CustomerID varchar2(10) not null references Customers(CustomerID),

SalesPrice number(6,2))

PARTITION by RANGE (TimeKey)

(partition Sales_1Q_2009

values less than (TO_DATE(’01-04-2009’, ’DD-MM-YYYY’))

tablespace Data01,

partition Sales_2Q_2009

values less than (TO_DATE(’01-07-2009’, ’DD-MM-YYYY’))

tablespace Data02,

partition Sales_3Q_2009

values less than (TO_DATE(’01-10-2009’, ’DD-MM-YYYY’))

tablespace Data03,

partition Sales_4Q_2009

values less than (TO_DATE(’01-01-2010’, ’DD-MM-YYYY’))

tablespace Data04,

partition Sales_Others

values less than (MAXVALUE) tablespace Data05);

Interval Partitioning

A special type of a range partition is an interval partition whose partitioning
attribute is typically of type date. The difference between these two partitions
is that interval partitions are automatically created by a system when needed.
If data not fitting into existing partitions are to be inserted, then appropriate
new partitions are created to store the data. Interval partitions are created
by using the interval keyword followed by the definition of the interval.
The interval is defined by means of a system function NumToYMInterval
whose fist argument is the value (length) of an interval and the second one
is its measurement unit. A fragment of an SQL command defining interval
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partitioning is shown below. In this example, an interval is equal to three
months.

...

PARTITION by RANGE (TimeKey)

INTERVAL (NumToYMInterval(3, ’MONTH’))

(partition Sales_1Q_2009

values less than (TO_DATE(’01-04-2009’, ’DD-MM-YYYY’)),

partition Sales_2Q_2009

values less than (TO_DATE(’01-07-2009’, ’DD-MM-YYYY’)));

List Partitioning

In the list partitioning each partition has assigned the set of values
of a partitioning attribute that the partition accepts. The example be-
low table Sales List PayType is divided into three partitions. Partition
Sales Credit Debit stores sales record paid with a credit card (’Cr’) or a
debit card (’De’). Partition Sales Cash stores sales records paid with cash.
The last partition stores records having the value of PaymentType other than
the three aforementioned. To this end, the DEFAULT keyword is used.

create table Sales_List_PayType

(ProductID varchar2(8) not null references Products(ProductID),

TimeKey date not null references time(TimeKey),

CustomerID varchar2(10) not null references Customers(CustomerID),

SalesPrice number(6,2),

PaymentType varchar(2))

PARTITION by LIST (PaymentType)

(partition Sales_Credit_Debit values (’Cr’,’De’) tablespace Data01,

partition Sales_Cash values (’Ca’) tablespace Data02,

partition Sales_Others values (DEFAULT) tablespace Data05

);

Hash Partitioning

In the hash partitioning, data are placed in partitions by an internal Oracle
hash function. As an example, let us consider table Sales Hash CustID that
is composed of two partitions. Both of them have names assigned by a system
and are stored in a default tablespace.

create table Sales_Hash_CustID

(ProductID varchar2(8) not null references Products(ProductID),

TimeKey date not null references time(TimeKey),

CustomerID varchar2(10) not null references Customers(CustomerID),

SalesPrice number(6,2),

PaymentType char(1))

PARTITION by HASH (CustomerID) partitions 2;
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A user can explicitly assign names and storage locations for hash partitions.
To this end, the PARTITION by clause has to be modified, as shown below.

...

PARTITION by HASH (CustomerID)

(partition Cust1 tablespace Data01,

partition Cust2 tablespace Data02));

Virtual Column Partitioning

Virtual column partitioning (available from Oracle11g) requires a virtual col-
umn in the definition of a table. A virtual column is a column whose value
is computed either by a formula or a stored deterministic function (key-
word deterministic in a function definition). Next, this column is used as
a partitioning attribute, but when a virtual column is used as a partitioning
attribute its values cannot be returned by a stored function. Typically, this
type of partitioning is applicable either to range or list partitioning.

As an example, we show below a fragment of the command creating par-
titions based on virtual column Gross.

create table Products_Virt1

(...

SellPrice number(6,2),

Tax number(4,2),

Gross as (SellPrice*Tax))

PARTITION by range(Gross)

(partition Prod1 values less than (1000),

partition Prod2 values less than (2000));

Queries that use in their predicates either virtual column Gross or formula
SellPrice*Tax can profit from the above partitioned table. For example, the
simple query below

select * from Products_Virt1
where SellPrice*Tax<1000

will be answered by accessing only partition Prod1.

System Partitioning

In a system partitioning (available from Oracle11g), partitions do not have
assigned any constraints and any row can be inserted into any partition. In
this case, the DBMS does not control the placement of rows, i.e., it is a user
(or application logic) that is responsible for inserting rows into the required
partitions. In the system partitioning, every insert command must explicitly
include the name of a partition where a row is to be inserted. A fragment of
a command defining a system partitioned table is shown below.

create table Customers_Sys

(CustomerID varchar2(10) CONSTRAINT pk_Customers PRIMARY KEY,
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...)

PARTITION by SYSTEM

(partition Cust_Europe, partition Cust_America, partition Cust_Asia);

Reference Partitioning

A reference partitioning (available from Oracle11g) is applicable to partition-
ing tables related to each other by primary key - foreign key relationships. A
table with a primary key has defined explicitly a partition schema whereas
a table with a foreign key inherits partitioning attribute and schema from
the parent table. As an example illustrating this type of partitioning let us
consider range partitioned table Products List Cat, as shown below.

create table Products_List_Cat

(ProductID varchar2(8) PRIMARY KEY,

ProdName varchar2(30),

Category varchar2(15),

SellPrice number (6,2),

Manufacturer varchar2(20))

PARTITION by LIST(Category)

(partition Prod_Elect values (’electronic’),

partition Prod_Clo values (’clothes’));

Table Sales List Cat will inherit partitioning attribute and partition defi-
nitions from Products List Cat.

create table Sales_List_PayType

(ProductID varchar2(8) not null

constraint ProdID_FK references Products_List_Cat(ProductID),

...)

PARTITION by REFERENCE (ProdID_FK);

When tables are partitioned by reference, a query optimizer joins the tables
by the partition wise join. In this join, only those partitions are joined that
produce non empty set.

Composite Partitioning

Composite partitioning allows to divide main partitions into subpartitions. In
Oracle11g main partitions can be either range or list, whereas subpartitions
can be range, list, or hash.

create table Sales_Comp_RH

(ProductID varchar2(8) not null references Products(ProductID),

TimeKey date not null references time(TimeKey),

CustomerID varchar2(10) not null references Customers(CustomerID),

SalesPrice number(6,2))

PARTITION by RANGE (TimeKey)

SUBPARTITION by HASH (ProductID) subpartitions 2

(partition Sales_1Q_2009
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values less than (TO_DATE(’01-04-2009’, ’DD-MM-YYYY’))

tablespace Users,

partition Sales_2Q_2009

values less than (TO_DATE(’01-07-2009’, ’DD-MM-YYYY’))

tablespace Users,

partition Sales_3Q_2009

values less than (TO_DATE(’01-10-2009’, ’DD-MM-YYYY’))

tablespace Users,

partition Sales_4Q_2009

values less than (TO_DATE(’01-01-2010’, ’DD-MM-YYYY’))

tablespace Users);

DDL and Select on Partitioned Tables

When the value of a partitioning attribute of a given row is updated and
this row no longer qualifies for its partition then the row can be automati-
cally migrated into another partition. Automatic migration is available when
for a partitioned table the alter table TableName enable row movement
command is executed. Otherwise, such an update will not be possible.

Partitions can be explicitly addressed by queries, delete commands, and in-
sert commands (the latter is possible only for system partitions). To this end,
the table name must be followed by keyword partition(PartitionName).
If however, a query does not address a partition explicitly, a query optimizer,
based on partition definitions and query predicates, will optimize the query
and will address only these partitions that contribute to the query result.

2.5.2 Partitioning in DB2

DB2 supports range partitioning of tables and indexes. The mechanism is
similar to the one described for Oracle. An example fragment of a command
creating a range-partitioned table is shown below. For every partition, the
range of values of a partitioning attribute (i.e., TimeKey) is defined, similarly
as in Oracle. The below table is composed of four partitions, each of which
stores sales from one quarter of year 2009.

create table Sales_Range_TKey

(iProductID varchar2(8) , ...)

PARTITION BY RANGE(TimeKey)

(partition Sales_1Q_2009 starting ’01-01-2009’,

partition Sales_2Q_2009 starting ’01-04-2009’,

partition Sales_3Q_2009 starting ’01-07-2009’,

partition Sales_4Q_2009 starting ’01-10-2009’ ending ’31-12-2009’)

2.5.3 Partitioning in SQL Server

SQL Server (from version 2005) provides horizontal range partitioning, sim-
ilar to Oracle and DB2. Partitioning applies to tables in indexes.
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Partitioning is defined with the support of two database object, namely a
partition function and a partition scheme. The partition function defines the
number of partitions for a table and ranges of values for every partition. The
partition scheme defines storage locations for table partitions. The definition
of a partition scheme is based on the partition function.

An example partition function Sales Range TKey, defined for attribute of
type datetime, is shown below. Applying this function to partitioning a table
will result in five partitions having the following ranges of dates: date<’2009-
04-01’, ’2009-04-01’≤ date <’2009-07-01’, ’2009-07-01’≤ date <’2009-10-01’,
’2009-10-01’≤ date <’2010-01-01’, and date≥’2010-01-01’. The range right
or range left keywords define the policy of inclusion of border values. If
the range left keyword is specified then the ranges for partitions would be
defined as follows: date≤’2009-04-01’, ’2009-04-01’< date ≤ ’2009-07-01’, ...,
and date>’2010-01-01’.

create PARTITION FUNCTION [Sales_Range_TKey] (datetime)

as RANGE right for values

(’20090401’, ’20090701’, ’20091001’, ’20100101’);

A partition function may be used also for numeric and character columns
in the same way as illustrated above.

An example partition scheme PS Sales Range TKey based on the
Sales Range TKey partition function is shown below. Each of the five par-
titions created by the partition function is placed in a separate filegroup,
whose name is given in the to clause. Partition storing range date<’2009-04-
01’ is stored in file group Data01, partition storing range ’2009-04-01’≤ date
<’2009-07-01’ is stored in Data02, etc. A SQL Server filegroup is a database
object offering the mechanism similar to a tablespace in Oracle, i.e., it allows
to combine multiple files under a given name.

create PARTITION SCHEME PS_Sales_Range_TKey

as partition Sales_Range_TKey

to (Data01, Data02, Data03, Data04, Data05);

Finally, based on the defined partitioning scheme, a partitioned table can
be created, as shown below.

create table Sales_Range_TKey

(ProductID varchar(8),

TimeKey datetime ...)

on PS_Sales_Range_TKey (TimeKey)

2.6 Summary

Multiple research and technological works in the area of data warehouses have
been focusing on providing means for increasing the performance of a data
warehouse for analytical queries and other types of data processing. As men-
tioned already, DW performance depends on multiple components of a DW
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architecture that include among others: hardware and computational archi-
tectures, physical storage schemes of data, query optimization and execution,
dedicated data structures supporting faster data access.

In this chapter we focused on just one component from the aforementioned
list, i.e., on data structures. The most popular data structures used in practice
in major commercial DWMSs include: various index structures, materialized
views, as well as partitioning of tables and indexes. In this chapter, first we
discussed basic index structures, including a bitmap index, a join index, and a
bitmap join index. We outlined the functionality of explicitly created bitmap
indexes and bitmap join indexes in Oracle and we showed how they are
applied in a query execution process. We also showed how system-managed
bitmap indexes are applied to star query executions in DB2 and SQL Server.
Second, we discussed the concept of materialized views and their application
to query rewriting. We analyzed the functionality of materialized views in
Oracle, DB2, and SQL Server. We showed how star queries are rewritten
based on Oracle materialized views. Third, we discussed table partitioning
techniques in Oracle, DB2, and SQL Server.

From the research and technological point of view, open issues in the area
of DW performance include among others: building DWs in a parallel compu-
tation environments (cloud, grid, clusters, GPUs), main memory DWs, effi-
cient data storage schemes (the column store and storage in MOLAP servers),
query optimization and processing (especially in parallel computation envi-
ronments and in main memory architectures), novel data structures support-
ing faster access to data, data and index compression techniques, testing and
assessing a DW performance.

New business domains of DW application require more advanced DW func-
tionalities, often combining the transactional and analytical features [82]. For
example, monitoring unauthorized credit card usage, monitoring telecommu-
nication networks and predicting their failures, monitoring car traffic, ana-
lyzing and predicting share rates, require accurate and up to date analytical
reports. In order to fulfill this demand, one has to assure that the content
of a DW is synchronized with the content of data sources with a minimum
delay, e.g., seconds or minutes, rather than hours. Moreover, queries have to
be answered instantly analyzing new data that were just loaded into a DW.
To this end, the technology of a real-time (near real-time, right-time) data
warehouse (RTDW) has been developed, e.g., [83, 84]. Strong demand for up
to date data at any moment opens a new areas of research on assuring high
performance of RTDWs.
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