
A chapter in C. Koncilia, R. Wrembel: Data Warehouses and OLAP: Concepts, Architectures

and Solutions

IGI Global, 2007

BITMAP INDICES FOR DATA WAREHOUSES

Kurt Stockinger and Kesheng Wu

Computational Research Division

Lawrence Berkeley National Laboratory

University of California

Mail Stop 50B-3238

1 Cyclotron Road

Berkeley, California 94720, USA

{KStockinger, KWu}@lbl.gov

Tel: +1 (510) 486 5519

Fax: +1 (510) 486 4004

mailto:KWu%7d@lbl.gov

BITMAP INDICES FOR DATA WAREHOUSES

ABSTRACT

In this chapter we discuss various bitmap index technologies for efficient query processing in

data warehousing applications. We review the existing literature and organize the technology

into three categories, namely bitmap encoding, compression and binning. We introduce an

efficient bitmap compression algorithm and examine the space and time complexity of the

compressed bitmap index on large data sets from real applications. According to the

conventional wisdom, bitmap indices are only efficient for low-cardinality attributes. However,

we show that the compressed bitmap indices are also efficient for high-cardinality attributes.

Timing results demonstrate that the bitmap indices significantly outperform the projection index,

which is often considered to be the most efficient access method for multi-dimensional queries.

Finally, we review the bitmap index technology currently supported by commonly used

commercial database systems and discuss open issues for future research and development.

KEYWORDS

Bitmap index, compression, query processing, performance evaluation

INTRODUCTION

Querying large data sets to locate some selected records is a common task in data warehousing

applications. However, answering these queries efficiently is often difficult due to the complex

nature of both the data and the queries. The most straightforward way of evaluating a query is to

sequentially scan all data records to determine whether each record satisfies the specified

conditions. A typical query condition is as follows “Count the number of cars sold by producer P

in the time interval T”. This search procedure could usually be accelerated by indices, such as

variations of B-Trees or kd-Trees (Comer, 1979; Gaede & Guenther, 1998). Generally, as the

number of attributes in a data set increases, the number of possible indexing combinations

increases as well. To answer multi-dimensional queries efficiently, one faces a difficult choice.

One possibility is to construct a separate index for each combination of attributes, which requires

an impractical amount of space. Another possibility is to choose one of the multi-dimensional

indices, which is only efficient for some of the queries. In the literature, this dilemma is often

referred to as the curse of dimensionality (Berchtold et al., 1998; Keim et al., 1999).

In this chapter we discuss an indexing technology that holds a great promise in breaking the

curse of dimensionality for data warehousing applications, namely the bitmap index. A very

noticeable character of a bitmap index is that its primary solution to a query is a bitmap. One

way to break the curse of dimensionality is to build a bitmap index for each attribute of the data

set. To resolve a query involving conditions on multiple attributes, we first resolve the

conditions on each attribute using the corresponding bitmap index, and obtain a solution for each

condition as a bitmap. We then obtain the answer to the overall query by combining these

bitmaps. Because the operations on bitmaps are well supported by computer hardware, the

bitmaps can be combined easily and efficiently. Overall, we expect the total query response time

to scale linearly in the number of attributes involved in the query, rather than exponentially in

the number of dimensions (attributes) of the data set, thus breaking the curse of dimensionality.

The above statements omitted many technical details that we will elaborate in this chapter. In

the next section we give a broad overview of the bitmap index and its relative strengths and

weaknesses to other common indexing methods. We then describe the basic bitmap index and

define the terms used in the discussions. We devote a large portion of this chapter to review the

three orthogonal sets of strategies to improve the basic bitmap index. After reviewing these

strategies, we give a more in-depth discussion on how the Word-Aligned-Hybrid (WAH) bitmap

compression technique reduces the bitmap index sizes. We will also present some timing results

to demonstrate the effectiveness of the WAH compressed bitmap indices for two different

application data sets. Our performance evaluation is deliberately based on data sets with high-

cardinality attributes, since for low-cardinality attributes the performance advantage of bitmap

indices is well known. We conclude with a short review of bitmap indices available in

commercial DBMS products and discuss how to make bitmap indices better supported in these

commercial products.

BACKGROUND

By far the most commonly used indexing method is the B-Tree (Comer, 1979). Almost every

database product has a version thereof since it is very effective for on-line transaction processing

(OLTP). This type of tree-based indexing method has nearly the same operational complexities

for searching and updating the indices. This parity is important for OLTP because searching and

updating are performed with nearly the same frequencies. However, for most data warehousing

applications such as on-line analytical processing (OLAP), the searching operations are typically

performed with a much higher frequency than that of updating operations (Chaudhuri, 1997;

Chaudhuri, 2001). This suggests that the indexing methods for OLAP must put more emphasis

on searching than on updating. Among the indexing methods known in the literature, the bitmap

index has the best balance between searching and updating for OLAP operations.

Frequently, in OLAP operations each query involves a number of attributes. Furthermore, each

new query often involves a different set of attributes than the previous one. Using a typical

multi-dimensional indexing method, a separate index is required for nearly every combination of

attributes (Gaede & Guenther, 1998). It is easy to see that the number of indices grows

exponentially with the number of attributes in a data set. In the literature this is sometimes called

the curse of dimensionality (Berchtold et al., 1998; Keim et al., 1999). For data sets with a

moderate number of dimensions, a common way to cure this problem is to use one of the multi-

dimensional indexing methods, such as R-Trees or kd-trees. These approaches have two notable

shortcomings. Firstly, they are effective only for data sets with modest number of dimensions,

say, < 15. Secondly, they are only efficient for queries involving all indexed attributes.

However, in many applications only some of the attributes are used in the queries. In these

cases, the conventional indexing methods are often not efficient. For ad hoc range queries, most

of the known indexing methods do not perform better than the projection index (O‟Neil & Quass,

1997), which can be viewed as one way to organize the base. The bitmap index, on the other

hand, has excellent performance characteristics on these queries. As shown with both theoretical

analyses and timing measurements, a compressed bitmap index can be very efficient in

answering one-dimensional range queries (Stockinger et al., 2002; Wu et al., 2004; Wu et al.,

2006). Since answers to one-dimensional range queries can be efficiently combined to answer

arbitrary multi-dimensional range queries, compressed bitmap indices are efficient for any range

query. In terms of computational complexity, one type of compressed bitmap index was shown

to be theoretically optimal for one-dimensional range queries. The reason for the theoretically

proven optimality is that the query response time is a linear function of the number of hits, i.e.

the size of the result set. There are a number of indexing methods, including B*-tree and B
+
-tree

(Comer, 1979), that are theoretically optimal for one-dimensional range queries, but most of

them cannot be used to efficiently answer arbitrary multi-dimensional range queries.

The bitmap index in its various forms was used a long time before relational database systems or

data warehousing systems were developed. Earlier on, the bitmap index was regarded as a

special form of inverted files (Knuth, 1998). The bit-transposed file (Wong et al., 1985) is very

close to the bitmap index currently in use. The name bitmap index was popularized by O'Neil

and colleagues (O‟Neil, 1987; O‟Neil & Quass, 1997). Following the example set in the

description of Model 204, the first commercial implementation of bitmap indices (O‟Neil, 1987),

many researchers describe bitmap indices as a variation of the B-tree index. To respect its earlier

incarnation as inverted files, we regard a bitmap index as a data structure consisting of keys and

bitmaps. Moreover, we regard the B-tree as a way to layout the keys and bitmaps in files. Since

most commercial implementations of bitmap indices come after the product already contains an

implementation of a B-tree, it is only natural for those products to take advantage of the existing

B-tree software. For new developments and experimental or research codes, there is no need to

couple a bitmap index with a B-tree. For example, in a research program that implements many

of the bitmap indexing methods discussed later in this chapter (FastBit, 2005), the keys and the

bitmaps are organized as simple arrays in a binary file. This arrangement was found to be more

efficient than implementing bitmap indices in B-trees or as layers on top of a DBMS (Stockinger

et al. 2002; Wu et al. 2002).

The basic bitmap index uses each distinct value of the indexed attribute as a key, and generates

one bitmap containing as many bits as the number of records in the data set for each key (O‟Neil,

1987). Let the attribute cardinality be the number of distinct values present in a data set. The

size of a basic bitmap index is relatively small for low-cardinality attributes, such as “gender,”

“types of cars sold per month,” or “airplane models produced by Airbus and Boeing.” However,

for high-cardinality attributes such as “temperature values in a supernova explosion,” the index

sizes may be too large to be of any practical use. In the literature, there are three basic strategies

to reduce the sizes of bitmap indices: (1) using more complex bitmap encoding methods to

reduce the number of bitmaps or improve query efficiency, (2) compressing each individual

bitmap, and (3) using binning or other mapping strategies to reduce the number of keys. In the

remaining discussions, we refer to these three strategies as encoding, compression and binning,

for short.

BITMAP INDEX DESIGN

Basic Bitmap Index

Bitmap indices are one of the most efficient

indexing methods available for speeding up

multi-dimensional range queries for read-only or

read-mostly data (O‟Neil, 1987; Rotem et al.,

2005b; Wu et al., 2006). The queries are

evaluated with bitwise logical operations that are

well supported by computer hardware. For an

attribute with c distinct values, the basic bitmap

index generates c bitmaps with N bits each, where

N is the number of records (rows) in the data set.

Each bit in a bitmap is set to “1” if the attribute in

Figure 1: Simple bitmap index with 6 bitmaps to

represent 6 distinct attribute values.

the record is of a specific value; otherwise the bit is set to “0”. Figure 1 shows a simple bitmap

index with 6 bitmaps. Each bitmap represents a distinct attribute value. For instance, the

attribute value 3 is highlighted to demonstrate the encoding. In this case, bitmap 3 is set to “1”,

all other bits on the same horizontal position are set to “0”.

Encoding

The basic bitmap index introduced above is also called equality-encoded bitmap index since each

bitmap indicates whether or not an attribute value equals to the key. This strategy is the most

efficient for equality queries such as “temperature = 100.” Chan and Ioannidis (1998; 1999)

developed two other encoding strategies that are called range encoding and interval encoding.

These bitmap indices are optimized for one-sided and two-sided range queries, respectively. An

example of a one-sided range query is “pressure < 56.7”. A two-sided range query, for instance,

is “35.8 < pressure < 56.7”.

A comparison of an equality-encoded and range-encoded bitmap index is given in Figure 2

(based on Chan & Ioannidis, 1999). Let us look at the encoding of value 2, which is highlighted

in the figure. For equality encoding, the third bitmap is set to “1” (E
2
), whereas all other bits on

the same horizontal line are set to “0”. For the range-encoded bitmap index, all bits between

bitmap R
2
 and R

8
 are set to “1”, the remaining bits are set to “0”. This encoding is very efficient

for evaluating range queries. Consider, for instance, the query “A <= 4”. In this case, at most

one bitmap, namely bitmap R
4
, has to be accessed (scanned) for processing the query. All bits

that are set to “1” in this bitmap fulfill the query constraint. On the other hand, for the equality-

encoded bitmap index, the bitmaps E
0
 to E

4
 have to be ORed together (via the Boolean operator

OR). This means that 5 bitmaps have to be accessed, as opposed to only 1 bitmap for the case of

range encoding. In short, range encoding requires at most one bitmap scan for evaluating

range queries, whereas equality encoding requires in the worst case c/2 bitmap scans, where c

corresponds to the number of bitmaps. Since one bitmap in range encoding contains only “1”s,

this bitmap is usually not stored. Therefore, there are only c-1 bitmaps in a range-encoded index.

Figure 2: Equality-encoded bitmap index (b) compared with range-encoded bitmap index (c). The

leftmost column shows the row ids (RID) for the data values represented by the projection index

shown in (a).

Assuming each attribute value fits in a 32-bit machine word, the basic bitmap index for an

attribute with cardinality 32 takes as much space as the base data (known as user data or original

data). Since a B-tree index for a 32-bit attribute is often observed to use 3 or 4 times the space as

the base data, many users consider only attributes with cardinalities less than 100 to be suitable

for using bitmap indices. Clearly, controlling the size of the bitmap indices is crucial to make

bitmap indices practically useful for higher cardinality attributes. The interval-encoding scheme

(Chan & Ioannidis, 1999) reduces the number of bitmaps only by a factor 2. Thus, other

techniques are needed to make bitmap indices practical for high cardinality attributes.

The encoding method that produces the least number of bitmaps is binary encoding introduced

by Wong et al. (1985). Binary encoding was later used by various authors (O'Neil & Quass,

1997; Wu & Buchmann, 1998) in the context of bitmap indices. This encoding method uses only

 c2log rather than c/2 bitmaps, where c is the attribute cardinality. For an integer attribute in

the range of 0 and c-1, each bitmap in the bitmap index is a concatenation of one of the  c2log

binary digits for every record. For an attribute with c=1000, it only needs 10 bitmaps. The

advantage of this encoding is that it requires much fewer bitmaps than interval encoding.

However, to answer a range query, using interval encoding one has to access only two bitmaps

whereas using binary encoding one usually has to access all bitmaps.

A number of authors have proposed strategies to find the balance between the space and time

requirements (Wong et al., 1985; Chan & Ioannidis, 1999). A method proposed by Chan &

Ioannidis (1999) called multi-component encoding can be thought of as a generalization of

binary encoding. In the binary encoding, each bitmap represents a binary digit of the attribute

values; the multi-component encoding breaks the values in a more general way, where each

component could have a different size. Consider an integer attribute with values ranging from 0

to c-1. Let b1 and b2 be the sizes of two components c1 and c2, where b1*b2>=c. Any value v

can be expressed as v = c1*b2+c2, where c1 = v / b2 and c2 = v % b2, where „/‟ denotes the integer

division and „%‟ denotes the modulus operation. One can use a simple bitmap encoding method

to encode the values of c1 and c2 separately. Next, we give a more specific example to illustrate

the multi-component encoding.

Figure 3 illustrates a 2-component encoded bitmap index

for an attribute with cardinality c=1000. In our example,

the two components have base sizes of b1=25 and b2=40.

Assume the attribute values are in the domain of [0; 999].

An attribute value v is decomposed into two components

with c1 = v / 40 and c2 = v % 40. The component c1 can

be treated as an integer attribute in the range of 0 and 24;

the component c2 can be viewed as an integer attribute in

the range of 0 and 39. Two bitmap indices can be built,

one for each component, for example, c1 with the equality encoding and c2 with range encoding.

If range encoding is used for both components, it uses 24 bitmaps for Component 1 and 39

bitmaps for Component 2. In this case, the 2-component encoding uses 63 bitmaps, which is

more than the 10 bitmaps used by binary encoding. To answer the same query “v < 105” using

the 2-component index, the query is effectively translated to “c1<2 OR (c1=2 AND c2<25).”

Evaluating this expression requires three bitmaps representing “c1<=1,” “c1<=2,” and “c2<=24.”

In contrast, using the binary encoded bitmap index to evaluate the same query, all 10 bitmaps are

needed.

Using more components can reduce the number of bitmaps and therefore reduces the total index

size. However, using more components will also increase the number of bitmaps accessed in

order to answer a query, hence increasing the query response time. Clearly, there is a trade-off

Component 1

b1 = 25

c
1 <

=
0

c
1 <

=
1

c
1 <

=
2

… c
1 <

=
2
3

Component 2

b2 = 40

c
2 <

=
0

c
2 <

=
1

c
2 <

=
2

… c
2 <

=
3
8

Figure 3: An illustration of a 2-

component bitmap index.

between the index size and the query response time. Without considering compression, Chan &

Ioannidis (1999) have analyzed this space-time trade-off. They suggested that the inflection

point of the trade-off curve is at 2 components. They further suggested that the two components

should have nearly the same base sizes to reduce the index size.

Binning

The simplest form of bitmap indices works well for low-cardinality attributes, such as “gender,”

“types of cars sold per month,” or “airplane models produced by Airbus and Boeing.” However,

for high-cardinality attributes such as “distinct temperature values in a supernova explosion,”

simple bitmap indices are impractical due to large storage and computational complexities. We

have just discussed how different encoding methods could reduce the index size and improve

query response time. Next, we describe a strategy called binning to reduce the number bitmaps.

Since the encoding methods described before only take certain integer values as input, we may

also view binning as a way to produce these integer values (bin numbers) for the encoding

strategies.

The basic idea of binning is to build a bitmap for a bin rather than each distinct attribute value.

This strategy disassociates the number of bitmaps from the attribute cardinality and allows one to

build a bitmap index of a prescribed size, no matter how large the attribute cardinality is. A clear

advantage of this approach is that it allows one to control the index size. However, it also

introduces some uncertainty in the answers if one only uses the index. To generate precise

answers, one may need to examine the original data records (candidates) to verify that the user-

specified conditions are satisfied. The process of reading the base data to verify the query

conditions is called candidate check (Stockinger et al., 2004; Rotem et al., 2005b).

A small example of an equality-encoded

bitmap index with binning is given in Figure

4. In this example we assume that an

attribute A has values between 0 and 100.

The values of the attribute A are given in the

second leftmost column. The range of

possible values of A is partitioned into five

bins [0, 20), [20, 40).... A “1-bit” indicates

that the attribute value falls into a specific

bin. On the contrary, a “0-bit” indicates that

the attribute value does not fall into the

specific bin. Take the example of evaluating

the query “Count the number of rows where

37 <= A < 63”. The correct result should be

2 (rows 5 and 7). We see that the range in the query overlaps with bins 1, 2 and 3. We know for

sure that all rows that fall into bin 2 definitely qualify (i.e., they are hits). On the other hand,

rows that fall into bins 1 and 3 possibly qualify and need further verification. In this case, we

call bins 1 and 3 edge bins. The rows (records) that fall into edge bins are candidates and need to

be checked against the query constraint.

In our example, there are four candidates, namely rows 1 and 3 from bin 1, and rows 5 and 6

from bin 3. The candidate check process needs to read these four rows from disk and examine

their values to see whether or not they satisfy the user-specified conditions. On a large data set, a

Figure 4: Range query “37 <= A < 63” on a bitmap

index with binning.

candidate check may need to read many pages and may dominate the overall query response time

(Rotem et al., 2005b).

There are a number of strategies to minimize the time required for the candidate check (Koudas,

2000; Stockinger et al., 2004; Rotem et al. 2005a, 2005b). Koudas (2000) considered the

problem of finding the optimal binning for a given set of equality queries. Rotem et al. (2005a,

2005b) considered the problem of finding the optimal binning for range queries. Their

approaches are based on dynamic programming. Since the time required by the dynamic

programming grows quadratic with the problem size, these approaches are only efficient for

attributes with relatively small attribute cardinalities (Koudas, 2000) or with relatively small sets

of known queries (Stockinger et al. 2004). Stockinger et al. (2004) considered the problem of

optimizing the order of evaluating multi-dimensional range queries. The key idea is to use more

operations on bitmaps to reduce the number of candidates checked. This approach usually

reduces the total query response time. Further improvements to this approach are to consider the

attribute distribution and other factors that influence the actual time required for the candidate

check.

To minimize number of disk page accesses during the candidate check, it is necessary to cluster

the attribute values. A commonly used clustering (data layout) technique is called the vertical

partition or otherwise known as projection index. In general, the vertical data layout is more

efficient for searching, while the horizontal organization (commonly used in DBMS) is more

efficient for updating. To make the candidate check more efficient, we recommend the vertical

data organization.

Compression

Compression is the third strategy to reduce the size of bitmap indices. Since each bitmap of the

bitmap index may be used separately from others, compression is typically applied on each

individual bitmap. Compression is a well-researched topic and efficient compression software

packages are widely available. Even though these general-purpose compression methods are

effective in reducing the size of bitmaps, query-processing operations on compressed bitmaps are

often slower than on uncompressed bitmaps (Johnson, 1999). This motivated a number of

researchers to improve the efficiency of compressed bitmap indices. Two of the most notable

compression methods are Byte-aligned Bitmap Code (BBC) (Antoshenkov, 1994; Antoshenkov,

1996) and Word-Aligned Hybrid (WAH) code (Wu et al., 2004; Wu et al., 2006). Bitmaps

compressed with BBC are slightly larger in size than those compressed with the best available

general-purpose compression methods. However, operations on BBC compressed bitmaps are

usually faster (Johnson, 1999). Clearly, there is a worthwhile space-time trade-off. The WAH

compression takes this space-time trade-off one step further. More specifically, WAH

compressed bitmaps are larger than BBC compressed ones, but operations on WAH compressed

bitmaps are much faster than on BBC compressed ones. Therefore, WAH compressed bitmap

indices can answer queries much faster as demonstrated in a number of different experiments

(Stockinger et al. 2002; Wu et al., 2006). In the next section we provide a detailed description of

the WAH compression. For more information on BBC, we refer the reader to (Antoshenkov,

1994; Antoshenkov, 1996).

WAH BITMAP COMPRESSION

The WAH bitmap compression is based on run-length encoding, where consecutive identical bits

are represented with their bit value (0 or 1) and a count (length of the run). In WAH each such

run consists of a fill and a tail. A fill is a set of consecutive identical bits that is represented as a

count plus their bit value. A tail is a set of mixed 0s and 1s that is represented literally without

compression. One key idea of WAH is to define the fills and tails so that they can be stored in

words - the smallest operational unit of modern computer hardware.

The WAH compression is illustrated in Figure 5. Assuming that a machine word is 32 bits long,

the example shows how a sequence of 5456 bits (see Figure 5a)) is broken into two runs and

encoded as three words. Conceptually, the bit sequence is first broken into groups of 31 bits

each (see Figure 5b)). Next, the neighboring groups with identical bits are merged (Figure 5c)).

Finally, these three groups are encoded as 32-bit machine words (Figure 5d)). The first run

contains a fill of length 0 and a tail. There is no fill word but only a literal word representing the

31 tail bits for this run. Since a literal word has 32 bits, we use the first bit to indicate it is a

literal word, and the rest to store the 31 tail bits. The second run contains a fill of length 174

(and thus represents 174 groups of 31 bits each) plus a tail. This run requires a fill word and a

tail word. As illustrated, the first bit of a fill word indicates that it is a fill word, the second bit

stores the bit value of the fill, which is 0 in this example. The remaining 30 bits store the binary

version of the fill length, which is 10101110 (174) in this example.

Figure 5: An example WAH encoding of a sequence of 5456 bits on a 32-bit machine.

In theoretical analysis, the query response time on one-dimensional range queries using WAH

compressed indices was shown to grow linearly in the number of hits. This time complexity is

optimal for any searching algorithm since one has to return at least the hits, which takes Ω(h)

time (where h is the number of hits). A variety of well-known indexing methods such as B
+
-

trees and B*-trees have the same optimal scaling property. However, compressed bitmap indices

have the unique advantage that they can be easily combined to answer multi-dimensional ad-hoc

range queries, while B
+
-trees or B*-trees cannot be combined nearly as efficiently.

10000000000000000000011100000000000000000000000……………….0000000000000001111111111111111111111111

a) Input bitmap with 5456 bits

01000
…

Bit 0 indicates “tail” word

100…010101110
001…11

1

b) Group bits into 176 31-bit groups

d) Encode each group using one word

31 bits 174*31 bits 31 bits

31 bits 31 bits … 31 bits

c) Merge neighboring groups with identical bits

31 literal bits

run length is 174

Run 1 Run 2

Bit 1 indicates “fill” word Bit 0 indicates “tail” word

31 literal bits Fill bit 0

In general, the query response time can be broken into I/O time and CPU time. Since WAH

compressed bitmaps are larger in size than BBC compressed bitmaps, we would expect that

WAH require more I/O time to read compressed bitmaps. For many database operations, the

CPU time is negligible compared with the I/O time. It turns out that this is not the case when

answering queries with compressed bitmap indices. In a performance experiment Stockinger et

al. (2002) compared WAH compressed indices with two independent implementations of BBC

compressed indices, one based on Johnson‟s (1999) code and the other by Wu et al. (2002). The

results showed that the total query response time was smaller with WAH compressed bitmap

indices than with BBC compressed bitmaps, even on a relatively slow disk system that can only

sustain 5 MB/s for reading files from disk. On faster disk systems, the performance advantage of

WAH compressed bitmap indices is even more pronounced. Using WAH could be 10 times

faster than using BBC.

BITMAP INDEX TUNING

Unless one uses binary encoding, it is important to compress the bitmap indices. To build an

efficient compressed bitmap index, the three main parameters to consider are: (1) encoding, (2)

number of bins, and (3) binning strategy. In the following we present a rule-of-thumb for

choosing these three parameters.

The optimal bitmap encoding technique depends on the kind of queries that are evaluated. Chan

& Ioannidis (1999) showed that range encoding is the best bitmap encoding technique for range-

queries. However, range encoding might not always be practical for high-cardinality attributes

or for a large number of bins. As we will show in the next section, range-encoded bitmap indices

do not compress as well as equality-encoded bitmap indices.

The general rule for choosing the number of bins is as follows: The more bins, the less work

during the candidate check. The reason is fairly straightforward. In general, as the number of

bins increases, the number of candidates per bin decreases. Let us consider the following

example. Assume the base data follows a uniform random distribution. With a typical page size

of 8KB, using the projection index, a page could hold 2048 4-byte words. If one in 1000 words

is accessed during the candidate check, it is likely that every page containing the attribute values

would be touched (Stockinger et al., 2004). We, thus, suggest using 1000 bins or more.

For equality encoding there is an additional trade-off, namely using more bins may also increase

the cost of the index scan. For range encoding the cost of the index scan is not significantly

affected by the number of bins because one needs to access no more than two bitmaps to

evaluate a range query (Chan & Ioannidis, 1999). Without compression, one would clearly favor

range encoding. However, with compression, the relative strength is not as obvious. With a

WAH compressed equality-encoded index, it was shown that the cost of the index scan is

proportional to the number of hits, independent of the number of bitmaps involved (Wu et al.,

2006). Because the equality-encoded indices are much easier to compress, this could make the

WAH compressed equality-encoded index a preferred choice.

Finally, the binning strategy has an impact on the candidate check. The simplest kind of

binning, called equi-width binning, partitions the domain of the indexed attribute into bins of

equal size. As a result, each bin might have a different number of entries. Equi-depth binning,

on the other hand, distributes the number of entries equally among the bins. This technique has a

better worst-case behavior than equi-width binning but is more costly to build because one

typically has to scan the data first to generate the exact histogram before starting with the

binning.

One approach to reduce the cost of building a set of equi-depth bins is to use a sampled

histogram instead of the exact histogram. Another approach is to first build an equi-width

binned index with more bins than desired, and then combine the neighboring bins to form

approximate equi-depth bins. However, the second approach might not produce well-balanced

bins. For example, the attribute mass fraction from a supernova simulation is expected to be in

the range of 0 and 1. If, for some reason, the mass fraction is not known, scientists typically enter

the value -999 to represent a bad or missing value. In this example, equi-width binning would

produce bins starting from -999. This results in too many empty bins and thus cannot be

combined to produce well-balanced equi-depth bins. In contrast, the approach of sampled

histograms is generally more reliable in detecting this type of unusual outliers and typically

produces well-balanced bins.

SPACE COMPLEXITY – SIZES OF COMPRESSED BITMAP INDICES

The space complexity of uncompressed bitmap indices was studied in (Chan & Ioannidis, 1998

and 1999). In this section, we analyze the size of compressed bitmap indices. Our discussion

mainly focuses on the WAH compression method since BBC compression was extensively

studied in (Johnson, 1999). We give an upper bound of the worst-case size and provide an

experimental study of compressed bitmap indices for various application data sets.

Index Size: Worst-Case Behavior

In the previous section we defined a WAH run to be a fill followed by a tail. To make the

discussion more concrete, let us assume that a machine word is 32 bits. In this case, a WAH tail

contains exactly 31 bits from the input bitmap and a WAH fill contains a multiple of 31 bits that

are all the same (either 0 or 1). Because the bitmap index is known to be efficient for low

cardinality attributes, we further restrict our discussion to high cardinality attributes only, say, c

> 100. In an equality-encoded bitmap index, there are c keys (distinct values of the attribute) and

thus c bitmaps. We do not know exactly how many bits are set to 1 in each individual bitmap.

However, we know that the total number of bits that are 1 is exactly N (the number of rows in the

data set). In the worst case, there are (N+c) WAH runs in the bitmaps, where N refers to

maximum number of tail words (each containing a single bit set to 1) and c refers to the

maximum number of runs at the end of each bitmap that are not terminated with a tail word.

Each WAH run is encoded by two machine words. Therefore, we need a total of 2(N+c) words

to represent the bitmaps. Assuming each key is encoded by one word along with one additional

word to associate the key with the bitmap, the total index size is 2N+4c words. In most cases,

the attribute cardinality c is much smaller than N. In these cases, the WAH compressed equality-

encoded bitmap index size is at worst 2N words. With binning, one may use many thousands of

bins and the maximum index size would still be no more than 2N. Since a number of

commercial implementations of B-trees are observed to use 3N to 4N words, the maximum size

of compressed bitmap indices is relatively modest. As we will show for real application data, the

WAH compressed index is often much smaller than the predicted worst-case sizes.

For WAH compression, in the worst case, about 90% of the bitmaps in a range-encoded bitmap

index will not be compressible (Wu et al., 2006). Unless one can tolerate very large indices or

one knows beforehand that compression would be effective, we generally recommend using no

more than 100 bins for range-encode bitmap indices. This guarantees that the size of the bitmap

index is at worst the size of a B-tree.

Index Size for Real Application Data Sets

We will now analyze experimentally the size of compressed bitmap indices for various

application data sets.

Combustion Data Set

The combustion data set is from

a simulation of the auto-ignition

of turbulent Hydrogen-air

mixture from the TeraScale

High-Fidelity Simulation of

Turbulent Combustion with

Detailed Chemistry (Tera Scale

Combustion, 2005). The data

set consists of 24 million

records with 16 attributes each.

For this data set we built

equality-encoded and range-

encoded bitmap indices with

various numbers of equi-depth

bins. Figure 6 shows the average size of the compressed bitmap indices per attribute. We can see

that equality-encoded bitmap indices with 1000 bins and the range-encoded bitmap indices with

100 bins have about the same size as the base data. Note that the size of an uncompressed

bitmap index with 100 bins is about 3 times as large as the base data. With 1000 bins, the size of

the uncompressed bitmap index is about 30 times larger. This shows that the WAH compression

algorithm works well on this data set.

High-Energy Physics Data Set

Our second data set is from a

high-energy physics experiment

at the Stanford Linear

Accelerator Center. It consists

of 7.6 million records with 10

attributes. Figure 7 shows the

size of the compressed bitmap

indices. We notice that the size

of the range-encoded bitmap

index with 100 bins is about

twice as large as the base data.

The equality-encoded bitmap

index with 1000 bins is about

30% smaller than the base data.

1.E+07

1.E+08

1.E+09

1.E+10

base data EE-1000-lit EE-1000-

comp

RE-100-lit RE-100-

comp

Base data and indices for combustion data set

S
iz

e
 [

b
y
te

s
]

Figure 6: Size of base data compared with bitmap indices.

EE = equality encoding; RE = range encoding; lit = literal (no

compression); comp = with compression.

1.E+07

1.E+08

1.E+09

Base data EE-1000-lit EE-1000-

comp

RE-100-lit RE-100-

comp

Base data and indices for high-energy physics data set

S
iz

e
 [

b
y

te
s

]

Figure 7: Size of base data compared with bitmap indices. For an

explanation of the legend see Figure 6.

Typically, the records from these high-energy physics experiments are not correlated with each

other. Thus, it is generally hard for the run-length encoding to be effective. This is why the

index sizes for range encoding are relatively large compared with the previous data sets.

However, equality encoding compresses very well for this physics data set.

Overall, we see that the actual bitmap index sizes are considerably smaller than the base data

sizes and less than the sizes of typical commercial implementations of B-trees (that are often

three to four times the size of the base data).

TIME COMPLEXITY - QUERY RESPONSE TIME

In this section we are focusing on the two basic encoding methods, namely equality encoding

and range encoding. We have chosen these two encoding methods for the following reason.

Equality encoding showed to be the most space efficient method. Range encoding, on the other

hand, is the most time efficient method for one-sided range queries (Chan & Ioannidis, 1998)

that we use in our experiments.

Analyses have shown that the worst case

query response time to answer a one-

dimensional range query using a WAH

compressed basic bitmap index (equality-

encoded without binning) is a linear function

of the number hits (Wu et al., 2006). The

analyses also indicate that the worst-case

behavior is for attributes following a uniform

random distribution. Figure 8 plots the query

response time against the number of hits for

a set of queries on two attributes with

different attribute cardinalities. The data

values for the two attributes are randomly

distributed in the range of [0;100] and [0;

10,000] respectively. We see that in both

cases the timing measurements follow

straight lines, which is theoretically optimal.

In the remainder of this section we present more timing measurements to compare the query

response time of equality-encoded and range-encoded bitmap indices. All indices are

compressed with WAH compression. Since the results for the two data sets are similar, we only

report on the measurements based on the larger and thus more challenging combustion data set.

We use the projection index as the base line for all the comparisons. We note that this is a good

base line since the projection index is known for outperforming many multi-dimensional indices.

In the next set of experiments we measure the query size with the query box size. A query box is

a hypercube formed by the boundaries of the range conditions in the attribute domains. We

measure the query box size as the fraction of the query box volume to the total volume of the

attribute domains. If all attributes have uniform distribution, then a query box size of 0.01

indicates that the query would select 1% of the data set. We say a query is more selective if the

query box size is smaller.

Figure 8: Time (in seconds) to answer a one-

dimensional range query using a WAH compressed

bitmap index is a linear function of the number of hits.

Figure 9 shows the response time (in seconds) for 2- and 10-dimensional queries with various

query box sizes. For all experiments the query box size was chosen randomly and covers the

whole domain range. In general, we see that the query processing time for the bitmap indices

decreases as the queries become more selective. On the other hand, the query processing time

for the projection index stays constant as the selectivity changes. For all query dimensions the

range-encoded bitmap index with 100 bins shows the best performance characteristics, however,

sometimes at the cost of a larger index. In case the storage space is a limiting factor, it is better to

choose equality-encoded bitmap indices with 1000 bins (see Figure 7). As we can see in Figure

9, the performance of equality-encoded bitmap indices is not significantly different from the

performance of range-encoded bitmap indices.

0.1

1

10

0.5 0.1 0.01 0.001 0.0001 0.00001

a) Query box size of 2D queries

T
im

e
 [

s
e

c
]

Projection Index EE-1000 RE-100

0.1

1

10

100

0.5 0.1 0.01 0.001 0.0001 0.00001

b) Query box size of 10D queries

T
im

e
 [

s
e

c
]

Projection Index EE-1000 RE-100

Figure 9: Multi-dimensional queries with various bitmap indices. EE-1000: equality encoding with 1000

bins, RE-100: range encoding with 100 bins.

KEY FEATURES IN COMMERCIAL PRODUCTS

Due to the considerable amount of work involved in producing and maintaining a robust

commercial software system, only the most efficient and proven indexing technologies make

their way into a commercial DBMS. In this section, we give a short review of the key bitmap

indexing technologies currently used by various well-known commercial products. This is not

meant to be an exhaustive survey. Our main interest is to see what kind of bitmap indexing

technology is missing and which technology may likely make an impact on commercial

products.

The first commercial product to use the name bitmap index is Model 204. O'Neil has published a

description of the indexing method in (O‟Neil, 1987). Model 204 implements the basic bitmap

index. It has no binning or compression. Currently, Model 204 is marketed by Computer

Corporation of America. ORACLE has a version of compressed bitmap indices in its flagship

product since version 7.3. They implemented a proprietary compression method. Based on the

observed performance characteristics, it appears to use equality encoding without binning.

Sybase IQ implements the bit-sliced index (O‟Neil & Quass, 1997). Using the terminology

defined in Sections 2 and 3, Sybase IQ supports unbinned, binary encoded, uncompressed bitmap

indices. In addition, it also has the basic bitmap index for low-cardinality attributes. IBM DB2

implements a variation of the binary encoded bitmap index called Encode Vector Index. IBM

Informix products also contain some versions of bitmap indices for queries involving one or

more tables. These indices are specifically designed to speed up join-operations and are

commonly referred to as join indices (O‟Neil and Quass, 1997). InterSystems Corp's Cache also

has bitmap index support since version 5.0.

Even though we do not have technical details on most of these commercial products, it is

generally clear that they tend to use either the basic bitmap index or the bit-sliced index.

Strategies like binning and multi-component encoding are not used partly because there is no

robust strategy to select parameters like the number of bins or the number of components that

suits different applications.

SUMMARY AND OPEN PROBLEMS

In this chapter, we reviewed a number of recent developments in the area of bitmap indexing

technology. We organized much of the research work under the three orthogonal categories of

encoding, compression and binning. We also provided a brief overview of commercial bitmap

index implementations by major vendors.

Most of the indexing methods reviewed were designed to efficiently answer multi-dimensional

range queries. However, they are also efficient for other types of queries, such as joins on

foreign keys and computations of aggregates (O‟Neil & Quass, 1997).

Despite the success of bitmap indices, there are a number of important questions that remain to

be addressed. For example, is there an efficient bitmap index for similarity queries? How to

automatically select the best combination of encoding, compression and binning techniques?

How to use bitmap indices to answer more general join queries?

Research work on bitmap indices so far has concentrated on answering queries efficiently, but

has often neglected the issue of updating the indices. Clearly, there is a need to update the

indices as new records are added. Efficient solutions to this issue could be the key to gain a

wider adaptation of bitmap indices in commercial applications.

REFERENCES

 Antoshenkov, G. (1994). Byte-aligned Bitmap Compression. Technical Report, Oracle Corp.,

1994. U.S. Patent number 5,363,098.

 Antoshenkov, G. & Ziauddin, M. (1996). Query Processing and Optimization in ORACLE

RDB, VLDB Journal, 5, 229-237.

 Berchtold, S., & Boehm, C., & Kriegl, H.-P. (1998) The Pyramid-Technique: Towards

Breaking the Curse of Dimensionality. SIGMOD Record, 27(2), 142-153.

 Chan, C.-Y., & Ioannidis, Y.E. (1998). Bitmap Index Design and Evaluation. SIGMOD,

Seattle, Washington, USA, ACM Press.

 Chan, C.-Y., & Ioannidis, Y.E. (1999). An Efficient Bitmap Encoding Scheme for Selection

Queries, SIGMOD Conference, Philadelphia, Pennsylvania, USA, ACM Press.

 Chaudhuri, S., & Dayal, U. (1997). An Overview of Data Warehousing and OLAP

Technology. ACM SIGMOD Record, 26(1), 65-74.

 Chaudhuri, S. & Dayal, U., & Ganti, V. (2001). Database Technology for Decision Support

Systems. Computer, 34(12), 48-55.

 Comer, D. (1979). The ubiquitous B-Tree. Computing Surveys, 11(2), 121-137.

 FastBit (2005), http://sdm.lbl.gov/fastbit.

 Gaede, V & Guenther, O. (1998) Multidimensional Access Methods. ACM Computing

Surveys, 30(2), 170—231.

 Johnson, T. (1999). Performance Measurements of Compressed Bitmap Indices.

International Conference on Very Large Data Bases (VLDB), Edinburgh, Scotland. Morgan

Kaufmann.

 Keim, D., & Hinneburg, A. (1999). Optimal Grid-Clustering: Towards Breaking the Curse of

Dimensionality in High-Dimensional Clustering. International Conference on Very Large

Data Bases (VLDB), San Francisco. Morgan Kaufmann.

 Kiyoki, Y., & Tanaka, K., & Aiso, H., & Kamibayashi, N. (1981). Design and Evaluation of

a Relational Data Base Machine Employing Advanced Data Structures and Algorithms.

Symposium on Computer Architecture, Los Alamitos, CA, USA. IEEE Computer Society

Press.

 Knuth, D. E. (1998). The Art of Computer Programming, Volume 3, Addison Wesley.

 Koudas, N. (2000). Space Efficient Bitmap Indexing. Conference on Information and

Knowledge Management (CIKM), McLean, V, USA. ACM Press.

 O'Neil, P. (1987). Model 204 Architecture and Performance. Workshop in High Performance

Transaction Systems, Asilomar, California, USA. Springer-Verlag.

 O'Neil, P., & Quass, D. (1997). Improved Query Performance with Variant Indexes.

International Conference on Management of Data (SIGMOD 1997), Tucson, Arizona, USA.

ACM Press.

 O'Neil, P. (1997). Informix Indexing Support for Data Warehouses. Database Programming

and Design, 10(2), 38-43.

 Rotem, D. & Stockinger, K. & Wu, K. (2005a) Optimizing I/O Costs of Multi-Dimensional

Queries using Bitmap Indices, International Conference on Database and Expert Systems

Applications (DEXA), Copenhagen, Denmark, Springer Verlag.

 Rotem, D. & Stockinger, K. & Wu, K. (2005b) Optimizing Candidate Check Costs for

Bitmap Indices, Conference on Information and Knowledge Management (CIKM), Bremen,

Germany, November 2005, ACM Press.

 Stockinger, K., & Wu, K., & Shoshani, A. (2002). Strategies for Processing ad hoc Queries

on Large Data Sets. International Workshop on Data Warehousing and OLAP (DOLAP),

McLean, Virginia, USA.

 Stockinger, K., & Wu, K., & Shoshani, A. (2004). Evaluation Strategies for Bitmap Indices

with Binning. International Conference on Database and Expert Systems Applications

(DEXA), Zaragoza, Spain. Springer-Verlag.

 Stockinger, K., & Shalf, J., & Bethel, W., & Wu, K. (2005) DEX: Increasing the Capability

of Scientific Data Analysis Pipelines by Using Efficient Bitmap Indices to Accelerate

Scientific Visualization, International Conference on Scientific and Statistical Database

Management (SSDBM), Santa Barbara, California, USA, June 2005, IEEE Computer Society

Press.

 TeraScaleCombustion (2005). TeraScale High-Fidelity Simulation of Turbulent Combustion

with Detailed Chemistry. http://www.scidac.psc.edu.

 Wong, H.K.T., & Liu, H. -F., & Olken, F., & Rotem, D., & Wong, L. (1985). Bit Transposed

Files. International Conference on Very Large Databases (VLDB), Stockholm, Sweden.

Morgan Kaufmann.

 Wu, K., & Otoo, E.J., & Shoshani, A. (2002). Compressing Bitmap Indexes for Faster Search

Operations. International Conference on Scientific and Statistical Database Management

(SSDBM), Edinburgh, Scotland, UK, IEEE Computer Society Press.

 Wu, K., & Otoo, E.J., & Shoshani, A. (2004). On the Performance of Bitmap Indices for

High Cardinality Attributes. International Conference on Very Large Data Bases (VLDB),

Toronto, Canada. Morgan Kaufmann.

 Wu, K., & Otoo, E., & Shoshani, A. (2006). An Efficient Compression Scheme for Bitmap

Indices. Technical Report LBNL-49626. To appear in ACM Transactions on Database

Systems (TODS).

 Wu, M.-C., & Buchmann, A.P. (1998). Encoded Bitmap Indexing for Data Warehouses.

International Conference on Data Engineering (ICDE), Orlando, Florida, USA. IEEE

Computer Society Press.

