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Big Data 

 Huge data Volume and Velocity 

 every minute: 

• over 200 million e-mail messages are sent 

• over 100 000 tweets are sent (~ 80GB daily)  

• a single jet engine can generate 10TB of data in 30 
minutes  

 human generated: 

• social portals 

• foras and blogs 

 machine generated: 

• web logs 

• sensors 
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Big Data 

 Variety (heterogeneity) of data formats 

 structured (relational) 

 structured (time series) 

 semistructured (e.g., XML, JSON) 

 unstructured 

 semantic Web (e.g., XML, RDF, OWL) 

 geo-related data 

 graphs 

 large texts 

 multimedia 

4 © Robert Wrembel (Poznan University of Technology, Poland) 



Big Data 
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internal company  
data warehouse 

Big Data analytics 

Big Data storage 

hobbies + behaviour of customers 
 targeted marketing 
sentiment analysis  brand image 
job seeking  employment trends 
prices of goods  inflation 

Big Data characteristics 
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Traditional Big Data 

storage relational DBMS NoSQL + HDFS 

scaling vertical horizontal 

processing batch, offline real-time, streaming,  
batch, offline 

data quality very high very low 
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Data Stores 

 NoSQL 

 Key-value DB 

 data structure  collection 

 collection is represented as a pair: key and value 

 data have no defined internal structure  the 

interpretation of complex values must be made by a 
program 

 operations  create, read, update (modify), and 

delete (remove) individual data - CRUD 

 the operations process one data item (selected by 
the value of its key) at a time 

 Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet, 
MemcacheDB, DynamoDB 
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Data Stores 

 Column family (column oriented, extensible record, 
wide column) 

 definition of a data structure includes 

• key definition  

• column definitions 

• column family definitions 

column family CF1 column family CF2 

row key K1 

row key K2 

row key K3 

row key K4 

row key Kn 

Col1 Col2 Col3 Col4 Col5 

value value value 

value value value 

value value value value value 

value value 
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Data Stores 

 column family  stored separately, common to all 

data items (~ shared schema) 

 column  stored with a data item, optional, specific 

for the data item 

 CRUD interface 

 HBase, HyperTable, Cassandra, BigTable, Accumulo, 
SimpleDB 
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Data Stores 

 Document DB 

 typically JSON-based structure of documents 

 SimpleDB, MongoDB, CouchDB, Terrastore, RavenDB, 
Cloudant 

 Graph DB 

 nodes, edges, and properties to represent and store 
data 

 every node contains a direct pointer to its adjacent 
element 

 Neo4j, FlockDB, GraphBase, RDF Meronymy SPARQL 
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Performance evaluation 

 HBase  Cassandra 

 virtual machines 8 CPUs, 16 GBs RAM, 480 GB HDD  

 Ubuntu (14.04.1 LTS) 

 Cassandra 2.0.14 

 HBase 1.0.0 + Hadoop 2.5.2 

 2 Cassandra data nodes 

 2 nodes (HBase RegionServer + Hadoop DataNode) 
+ 1 node (HBase MasterServer + Hadoop 
NameNode) 

 Yahoo Cloud Serving Benchmark with modified 
workloads 
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HBase - Cassandra 

 Read-only workload  

 # of threads for HBase and Cassandra: 256 

 cache size:  

• HBase memstore: 2048 MB 

• Cassandra memtable: 2048 MB  
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HBase - Cassandra 

 Write-only workload 
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HBase - Cassandra 

 Read-write workload  

 data volume: 20 GB 



GFS 

 Google implementation of a distributed file system 
(The Google File System - whitepaper) 

 Developed to handle 

 hundreds of TBs of storage, thousands of disks, over a 
thousands of cheep commodity machines 

 The architecture is failure sensitive  therefore 

 fault tolerance 

 error detection 

 automatic recovery and 

 constant monitoring are required 
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GFS 

 Files are organized hierarchically in directories 

 Files are identified by their pathnames 

 File size at least 100MB 

 Typical file size: multiple GB 

 Millions of files 

 File usage 

 mostly appending new data  multiple large 

sequential writes 

 no updates of already appended data 

 mostly large sequential reads 

 small random reads occur rarely 

 replicated files (default 3) 
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GFS 

 Operations on files 

 create 

 delete 

 open 

 close 

 read 

 write 

 snapshot (creates a copy of a file or a directory tree) 

 record append (appends data to the same file 
concurrently by multiple clients) 

 Simple GFS cluster includes 

 single master 

 multiple chunk servers 
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GFS 
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S. Ghemawat, H. Gobioff, S-T. Leung. The Google File System. 
http://research.google.com/archive/gfs.html 

master client 

chunk server chunk server 

..... ..... ..... 

chunk server 

..... 

1: file name, chunk index 

2: chunk handle, chunk replica 
locations 

3: chunk handle,  
byte range 
sent to one replica 

4: data 

management + heartbit messages 

file replicas 



HDFS 

 Apache implementation of DFS 

      http://hadoop.apache.org/docs/stable/hdfs_design.html 
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paramterized replication factor, value stored 
in namenode 

Storage 

 Distributed file systems 

 Amazon Simple Storage Service (S3) 

 Gluster (open source) 

 Storage formats 

 Apache Avro for storing serialized data in JSON for 
Hadoop 

 Apache Parquet - column oriented data store for 
Hadoop 
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Map reduce 
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stationID cityID   timestamp           PM10 

--------- -------- ------------------- ---- 

A01       Lyon     16:00:16-20-11-2018    5 

A02       Blois    14:11:01-20-11-2018    2 

A03       Poitiers 13:05:22-20-11-2018    3 

A01       Lyon     11:02:10-21-11-2018    4 

A02       Blois    13:11:09-21-11-2018    8 

A03       Poitiers 01:02:08-21-11-2018    5 

...       ........ ...................    . 

2018 

2017 

2016 

2015 

2014 

map 

<key, max-value> 

<Lyon, 7> 

<Blois, 8 

<Poitiers, 10> 

<........, .> 

<Lyon, 5> 

<Blois, 2 

<Poitiers, 5> 

<........, .> 

reduce 

Map reduce 
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2018 

2017 

2016 

2015 

2014 

map 

<key, max-value> 

<Lyon, 7> 

shuffle 

<Poitiers, 10> 

<Blois, 2 

<Poitiers, 5> 

<Blois, 8> 

<Lyon, 7> 

<Blois, 8> 

<Poitiers, 10> 

reduce 



Data landscape: past - today 
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 Data models 
 relational 

 object-oriented 

 semi-structured 

 ... 

 Data formats 
 numbers, dates, strings 

 ... 

 Veolocity 
 OLTP systems 

 

 Data models 
 relational 

 graphs 

 NoSQL 

 semi-structured 

 unstructured 

 ... 

 Data formats 
 numbers, dates, strings 

 HTML, XML, JSON 

 time series and sequences 

 texts 

 multimedia 

 ... 

 Veolocity 
 frequently changing (e.g., Facebook) 

 constantly changing (streams) 

Data integration: past 

 Virtual integration 

 federated 

 mediated 

 Physical integration 

 ETL + data warehouse 

 Common integration data model 

 relational 

 sometimes semistructured or object-oriented 
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Big Data integration taxonomy 
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Big Data 
Integration 

Virtual data integration Physical data integration 

Mediated 

Mediated Data warehouse 

Data lake Streaming 

Polystore 

Types of processing 

 Offline 

 batch DW refreshing 

 analytics on stable data 

 Real-time / near real-time 

 streaming of new data 

 analytics on the most up-to-date data up to the 
moment the query was sent 

 queries executed in (near) real-time 
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Real-time / Near R-T architecture 
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data stream active component 
main-memory engine 

OLTP + OLAP 
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Real-time / Near real-time 
refreshing 

users 

refreshing 

traditional DW 

users 

refreshing 

real-time DW 



Streaming analytics 
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off-line 

off-line 

real-time 

real-time 
Complex Event 

Processing 

Time Series 

Sequences 

time-points 

intervals OLAP 

patterns 

Data Stream Processing Systems 

Time series 

30 © Robert Wrembel (Poznan University of Technology, Poland) 

 A time series consists of values (elements, events) 
ordered by time 

 taken at successive equally spaced points in time 

• at a given frequency 

 variables of continuous domains 

 Examples 

 signals from sensors 

 financial data 

 voice recording 



Time series 
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 Time series analysis 
 Clustering and classification 
 Sequential pattern mining on discrete sequences 
 Searching for patterns 
 Aggregating in a sliding window 
 Trend analysis 
 Trend prediction 
 Finding similarities 

Complex Event Processing 

 Analyzing TS to detect  

 outliers in a time window 

• e.g., a temperature 50% higher than avg in 10 min 
window 

 patterns 

• e.g., the 'W' pattern in stock quotes 
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1 1 9 9 5 7 5 7 5 7 0 0 3 4 3 4 3 4 3 8 6 7 4 

pattern: XYXYXY 



Sequences 
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 A sequence consists of ordered values (elements, 
events) recorded with or without a notion of time 

 numerical properties (quantify an event) 

 text properties (describe an event) 

 Point-based sequences 

 duration → instant 

 Interval-based sequences 

 duration → interval  

 sequences of intervals 

Sequences 
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 Sales reps performance interaction with a potential 
customer 

 pharma business 

 automotive business 

meet present phone meet successful purchase 



Sequences 
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 Commuters’ flow in a public transport infrastructure 

S1 in S2 S3 S4 S5 out 

S8 in S9 out 

S3 in S4 S5 S6 S7 S8 out 

pass1 

pass2 

pass3 

 the number of passenger round-trips, e.g., S1 → S2 → 
S2 → S1, and their distributions over all origin-

destination station pairs within 1st quarter of 2017 

Sequences 
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 Other application examples 

 WEB logs analysis 

• sequence navigation between web pages: product A page 
→ competing product B page → competing product C page → 

product A page 

 identification of purchase patterns over time 

 alarm logs 

 money laundry scenarios 

 infrastructure monitoring 

 workflow management systems 

 ... 

 



Big Data architecture 
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clicks 
tweets 
facebook likes 
location information 
... 

massive data processing server 
- MDPS (aggregation, filtering) 

analytics server - 
AS 

reporting server - 
RS complex event processor  

- CEP 

real-time decision 
engine - RTDE 

38 

Big Data architecture 

 Scalability 

 RTDE - nb of events handled 

 MDPS - volume of data  

 data processing workload 

 AS - complexity of computation, workload of queries 

 RS - types of queries, nb of users 

 CEP - # events handled 

 Type of data 

 RTDE - unstructured and semistructured (texts, tweets) 

 MDPS – semistructured, structured  

 AS - structured 

 RS - structured 

 CEP - unstructured and structured 
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Big Data architecture 
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 Workload 

 RTDE - high write throughput 

 MDPS - long-running data processing (I/O and CPU 
intensive): data transformations, ... 

 AS - I/O and CPU intensive 

 RS - compute intensive (various types of queries) 

 Technologies 

 RTDE - key-value, in-memory 

 MDPS - Hadoop 

 AS, RS - columnar DBs, sometimes in -memory 

 Conclusion 

 very complex architecture with multiple components 

 the need of integration 
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Lambda Architecutre 

 Batch layer  traditional DW processing 

 Speed layer  stream processing 

 Serving layer  integration of static and dynamic data 

by means of views 

Stream processing real-time data real-time layer 

serving layer 

Data store (DFS) 
precomputed 

data 

precomputed 
views 

real-time views 

integrated view 

batch layer 



Kappa architecture 

 Processing streams of data 

 Incoming data are streamed through a real-time 
layer and moved into a serving layer for queries 
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Stream processing 

real-time view 

real-time view 

real-time view 

real-time layer 
serving layer 

q
u

e
ri

e
s 
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DW in a big bank 

DATA MART DATA SOURCES ANALYTICS 

CRM 

ERP 

OLTP 

DATA STAGE 

DATA 
WAREHOUSE 

. 

. 

. 

reports 
- internal 
- to external institutions 

may include already 
normalized and cleaned 
data 

DATA STREAM (card usage) 

CEP 

FARUD DETECTION ALARMS 

user profiles (card usage) 

account balance 



IBM architecture 

 Data warehouse augmentation: the queryable data store. IBM 
software solution brief. 
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Big Data architecture 

data ingest 

high level language for 
processing MapReduce 

coordinating and scheduling 
workflows 

columnar storage 
and query 

coordinating and managing all the components 

http://www.cloudera.com/content/cloudera/en/resources/library/training/ap
ache-hadoop-ecosystem.html 

data storage 



Big Data architecture 
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columnar storage 
and query 
based on BigTable 

high level language for 
processing MapReduce 

SQL-like language for data analysis 
(select, join, group by, ...) 

user interface to Hive 

web log loader (log scrapper),  
periodical loading into Hadoop 
aggregating log entries (for offline 
analysis) 

coordinating and managing all the components, 
load balancing 

Big Data architecture 
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coordinating and scheduling 
workflows (Pig, Hive, Java,  
HDFS tasks) 

RDB-like interface to data stored 
in Hadoop, metadata management 

high level languages for 
processing MapReduce 

distributed  web log loader (log scrapper),  
periodical loading into Hadoop (for offline 
analysis) 



Big Data architecture 
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data ingest tool 

queuing system, 
distributed web log loader  and  
aggregator 
 

workflow (batch job) scheduler 
(e.g., data extraction, loading into Hadoop) 
 

table-like data storage + in memory 
caching 
 

Big Data architecture 
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workflow coordination  
and scheduling 

high level languages for 
processing MapReduce 

moving data between systems, 
distributed web log loader (log scrapper),  
periodical loading into Hadoop (for offline 
analysis) 

UI for Hadoop (e.g., HDFS file 
browser, MapReduce job 
designer and browser, query 
interfaces for Hive, Pig, Impala, 
Oozie, application for creating 
workflows, Hadoop API) 



Big Data architecture 
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 https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/index 

 Azure Data Lake Store  
 blob containers in Azure Storage 

 RDBMS 
 ODBC 
 files 
 web logs 
 streaming 
 ... 

 Hive, Pig, Java, Scala, Python 

 Azure Event Hubs, Azure IoT Hub, Kafka  Azure Stream Analytics, Storm, Spark Streaming 

 RDBMS 
 Hive 
 HBase 
 Spark SQL 

 PowerBI 
 Excel 
 Python 
 R 

 Azure Data 
Factory 

 Oozie 

 Azure Machine 
Learning 

 Spark MLlib 
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Hadoop Distributions 

 Cloudera, MapR, Hortonworks, IBM, Pivotal 
Software 



Data Ingest (ETL) 

 Apache Sqoop: data movement RDBMS ↔ HDFS 

 Apache NiFi: ELT tool 

 DataTorrent RTS: ETL tool 

 Apache Flume: moving data 

 Apache Kafka: queuing system 

 ... 
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Sqoop 

 Tool for transferring data between  

 structured (relational DBs) 

 semi-structured (NoSQL) 

 unstructured (HDFS) data sources 

 Connectors to DSs 

 FTP, JDBC, HDFS, Kafka, ... 
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RDBMS 

HDFS 

Hive external table 

Sqoop 

import 

export 



Sqoop 

 Parallel processing: n mappers 
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sqoop import \ 

--connect jdbc:mysql://hostname/database_name \ 

--username user1 \ 

--password pass \ 

--table accounts \ 

--num-mappers 3 

mapper1 

mapper2 

mapper3 

PK attr1 attr2 

1 

... 

100000 

100001 

... 

200000 

200001 

... 

300000 
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NiFi 

 Purpose: to automate a flow of data between multiple systems 
→ an ETL tool 

 Asynchronous: for very high throughput and slow processing 
buffering may be used 
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NiFi building blocks 

 FlowFile  

 data moved within NiFi, represented as key-value 

 Processor  

 processes FlowFiles 

 Connection  

 connects processors by means of a queue → buffering 

 different processors may read from a queue at differing 
rates 

 Flow Controller  

 acts as a broker facilitating the exchange of FlowFiles 
between processors 

 Process Group  

 a set of processors and connections, which can receive 
data via input ports and send data out via output ports 

 

DataTorrent RTS 

 Ingest from  

 HDFS, Kafka, Flume, flat files, JDBC  

 Output into 

 HDFS, Hive, Cassandra, MongoDB, ... 

 Data transformation operators  

 dedup, filter, split, sample, ... 

 parsing common formats such as XML, JSON, log 
files, syslog 

 ETL-like development environment 

 + data visualization 
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Flume 

 Movng data between systems 

 Ingesting, transforming, and storing 
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Flume 

Sink: 
HDFS 
HBase 
SolR 
Kafka 
... 

Source: 
sequence  
avro 
http 
Kafka 
... 

ETL for Big Data - Kafka 

 Distributed queuing/messaging 

 Processes streams of records: <key, value, 
timestamp> 

 Terms 

 topic: stream of messages of a particular type, 
divided into partitions 

 producer: publishes a given topic 

 consumer: subscribes to one or more topics 

 broker: stores topics for their distribution to 
consumers 
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Kafka 
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 Multiple brokers (broker cluster) for load balancing 

broker1 
topic1: partition1, partition2 
topic2: partition1, partition2 

broker2 
topic1: partition1, partition2 
topic2: partition1, partition2 

broker3 
topic3: partition1, partition2 

consumer 
subscribe: topic1 

consumer 
subscribe: topic3 

consumer 
subscribe: topic2 

producers 
connectors 

Kafka 

 Producer API: to publish a stream of records to one 
or more topics 

 Consumer API: to subscribe to one or more topics  

 Streams API: to process streams (e.g., aggregate) 

 Connector API: to connect to input and outpud DSs 

 reads from: JDBC, NoSQL stores, Oracle Golden Gate, 
IBM Data Replication, Vertica, SolR, Twitter, ... 

 writes to: JDBC, HDFS, Amazon S3, SAP Hana, 
Vertica, NoSQL, Elasticsearch, SolR, Twitter, ... 
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Kafka 

 Consumer maintains the info about read topic's 
partitions 

 Broker deletes partitions after a given time period 
(configurable) regardless they have been read by a 
consumer or not → possible data loss 

 At-least-once delivery model in the case of consumer 
failure  

 after restart a consumer may re-read the last topic's 
partition → duplicates 

 The order of messages in a partition is preserved within 
a delivery 

 The order of inter-partition delivery from different 
brokers is not preserved (e.g., read partition2 from 
broker3 then read partition1 from broker2) 
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Kafka performance 

 Architecture 

 pico-cluster: 4 nodes 

 node: 4-core CPU, 3GHz 

 16GB RAM, 256GD HDD 

 Linux RedHat 

 

62 © Robert Wrembel (Poznan University of Technology, Poland) 

Hadoop 

Kafka 

IBM InfoSphere  
Server 

IBM DataStage 
Designer 



 Kafka performance 
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 Variable value of Record Count 

 parameter of a connector to Kafka from DataStage 

 # of rows read from a topic after which data 
processing in ETL begins  

Kafka performance 
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Record Count = ALL 



Stream processing frameworks 

 Apache Storm 

 Apache Flink 

 Apache Kafka Streams 

 Apache Spark Streaming 

 Apache Samza: based on Hadoop Yarn and Kafka 

 ... 
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Storm 

 Real-time stream processing framework 

 implemented in: Clojure 

 apps in: Java, C#, Python, Scala, Perl, PHP 

 Data structure: tuple - a list of coma separated 
values 

 Stream: sequence of tuples 

 Software components 

 connectors to: Twitter, queuing systems (e.g., Kafka) 

 spout: a source of a stream 

 bolt: a processing unit, accepts a stream, processes 
it, and outputs another stream (also to store it in a 
DB) 

 Task: the execution of either a spout or bolt 
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Storm 

 Topology 

 DAG composed of spouts and bolts connected by 
streams 

 includes a single spout and an array of bolts 
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spout Kafka 

bolt 

bolt 

bolt 

bolt 

Storm 
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 Worker: topology runs in a cluster composed of 
multiple worker nodes 

 Storm divides tasks evenly for all worker nodes 

 a topology in a cluster is managed by Zookeeper 

 Nimbus (master node)  

 runs a topology 

 distributes tasks to workers 

Zookeeper 



Flink 

 Real-time stream processing framework 

 implemened in: Java, Scala 

 apps in: Java, Scala 

 Deployment  

 cluster run by Yarn or Mesos 

 cloud 
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storage (file systems) Flink 

streaming  

devices 

storage (file systems) 

database 

Flink 

http://flink.apache.org/introduction.html 
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Kafka streams 

 Java library 

 Event-at-a-time processing 

 Aggregation in a sliding window 

 No built-in stream mining algorithms 

 Deployment environment the same as for Kafka 
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Kafka streams 

Kafka topic B 

Kafka topic A 

Spark 

 In-memory data processing framework: 

 implemented in: Scala 

 apps in: Scala, Python, R, Java 

 Deployable on  

 Hadoop, Apache Mesos, and EC2 

 independent cluster mode or cloud 

 Can access  

 Amazon S3, HDFS, Cassandra, HBase, Hive, 
JDBC/ODBC, Twitter, ... 
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Spark 

 Apps in: Java, Scala, Python 

 Processing of n records at a time (micro-batches) 

 Built-in  

 GraphX - a library of graph processing algorithms 

 MLib - a library of machine learning algorithms 

 Spark Streaming - stream processing engine (e.g., 
window functions) 

 Spark SQL - SQL-like querying structured data within 
Spark 

 

 

73 © Robert Wrembel (Poznan University of Technology, Poland) 

74 © Robert Wrembel (Poznan University of Technology, Poland) 

Project@PUT 

 Analyzing monitoring signals from a data center 

 Poznan Supercomputing and Networking Center (PSNC) 

 http://www.man.poznan.pl/online/en/ 

BMS 

. 

. 

. 

A 
P 
I 

stream 
reader 

Kafka NiFi 

real-time 
topics 

offline topics 

Cassandra 

+ descriptions 

Spark 
Streaming 

R, Zeppelin, ... 

cluster 
 16 nodes  
 4GB, 4 cores per node 
 managed by OpenStack 
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Project@PUT 

 Processing 

 time series analysis 

 alarm signals → sequences → patterns 

 Over 4400 different variables (signals) generated 
by BMS 
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Project@PUT 

data warehouse 

analytical applications 

thermal energy meters 

electrical energy meters 

real-time stream 
analysis 

real-time 
analytical  
engine 

real-time stream 
analysis 

 Energy management in a power grid 
@Kogeneracja Zachód 

 http://kogeneracjazachod.pl/ 

 



Mediated architectures 

 Integration with Hadoop 

 Polystore 
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Virtual data integration 

Mediated 

Mediated 

Streaming 

Polystore 

Integration with Hadoop 

 M.Gualtieri, B. Hopkins: SQL-For-Hadoop: 14 Capable Solutions 
Reviewed. Forrester, 2015 

 

 Pure SQL for Hadoop 
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Integration with Hadoop 

 Boosted SQL for Hadoop 

 typically include: query parser and optimizer 

 require more strucutred data to exploit the power of SQL 
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Integration with Hadoop 

 Database + Hadoop 

 Hadoop files accessed via external tables from a DB 
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Integration with Hadoop 

 SAP Vora: HANA + Spark + Hadoop 
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 The Contextual Data Lake. By SAP, available at: 
https://tdwi.org/whitepapers/2015/10/the-contextual-data-lake.aspx 

Integration with Hadoop 

 IBM BigInsights  Cloudera distribution + IBM 

custom version of Hadoop called GPFS 

 Oracle BigData  appliance based on Cloudera for 

storing unstructured content  

 Informatica HParser  to launch Informatica 

process in a MapReduce mode, distributed on the 
Hadoop servers 

 Microsoft  dedicated Hadoop version for Azure 

 EMC Greenplum, HP Vertica, Teradata Aster, SAP 
Sybase IQ  provide connectors directly to HDFS 
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SQL interface to Hadoop 

 Hadapt (currently Teradata) 

 platform for analytics on structured and unstructured 
data 

 hybrid storage: Hadoop + relational DB 

 Teradata SQL-H 

 integrating Aster (sequence proc. engine) and 
Hadoop 

 EMC HAWQ 

 integration of the Greenplum DBMS with Hadoop 

 IBM BigSQL 

 part of InfoSphere BigInsights 
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SQL-like DBs on non-relational DSs 

 Splice Machine 

 based on Apache Derby: Java-based ANSI SQL 
database 

 Derby (redesigned query optimizer to support parallel 
processing) on HBase (parallel processing) + Hadoop 
(parallel storage and processing) 

 Apache Phoenix 

 relational-like DB on HBase 

 SQL interface 

 MarkLogic 

 NoSQL database 

 IBM Big SQL 

 a single point to query heterogeneous data stores:  
RDB, HDFS, NoSQL 
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SQL-like DBs on non-relational DSs 

 Virtuoso: data management system 

 Storage engine for 

 relational, XML, RDF, text data 

 Database functionality 

 querying (SQL, SPARQL) 

 indexing (also full text) 

 storage (row, column-store) 

 transaction management 

 Connectors 

 ODBC/JDBC, SOAP, REST, HTTP, ...  
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Big Data warehousing 

 Apache Kylin 
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 http://kylin.apache.org/ 



Hadoop-based DWs 

 Cloudera Impala  

 SQL like query engine that runs on HDFS 

 Apache Drill  

 SQL like query engine that runs on a data lake 

 schema discovery on the fly 
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Complementary technologies 

 Stinger  

 in-memory graph analytics engine 

 Spark GrapX 

 in-memory graph analytics engine 

 Shark 

 based on Spark 

 query accelerator 

 uses HiveQL (SQL-like, translated into MapReduce 
jobs) 

 Teradata SQL-H, EMC HAWQ, IBM BigSQL 

 ... 
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Polystore 

 J. Duggan, A.J. Elmore, M. Stonebreaker, et. al.: The BigDAWG 
Polystore System. SIGMOD Record, Vol. 44, No. 2, 2015 

 Federation of islands of information 

 Island of information 

 collection of storage engines accessed with a single query 
language 
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Relational island NoSQL island 

Island of information 
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Relational island NoSQL island 

 Specifies a data model (seen by a user) → like mediator 

 Provides a common query language (for a user) 

 Includes a set of DMSs to manage data and execute 
queries 

 Mapping the island's common language into a local one 
→ shim → like wrapper 

shim shim shim shim shim shim 



Overall view 
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Relational island Graph island NoSQL island 

layer of 
shims 

layer of 
data sources 

access 
layer 

Single-island query 
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 Island query IQ (expressed in island's native 
language) 

 IQ parsed into abstract syntax tree (AST) 

 Decompose AST into partial queries for each DS 
in the island 

 Shim translates the subquery into a query 
expressed in a language of a DS 

 Subquery is executed by DS 

user 

DS 

Relational island 

shim shim shim 



93 © Robert Wrembel (Poznan University of Technology, Poland) 

Multi-island query 

 Scope: specifies in which island to exectue a query 

 Cast: data transformation 

RELATIONAL 

(select *  

 from accounts, CAST(clients, RELATION) 

 where accounts.clientID=clients.ID) 

query executed in the 
relational scope rel. table NoSQL collection 

Query optimization issues 

 Global query optimizer should have available 

 a cost model for each elementary operation in each 
data store 

 access to metadata (e.g., physical structures, data 
distribution) in each DS 

 DSs are autonomous: the above information is 
unavailable 

 GQO must use a "black box" approach and some 
rules 

 one island queries → move operations to data 

 multi-island queries → gather execution statistics 

• performance of each DS for a given partial query 

• possible to move data to another island for a more 
efficient execution → data allocation problem  
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Data Lake 

 Physical integration 

 a repository that stores a vast amount of raw data in its 
native format until it is needed 

 typically based on a distributed file system (HDFS, GFS) 
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distributed file system (HDFS/GFS) 

DW/DM 

Data Lake 

 Content 

 relational tables 

 WEB tables 

 XML 

 texts 

 images, sounds, videos 

 graphs 

 time series 

 ... any existing format 

 Each data element in a DL should have assigned a 
unique identifier and tagged with a set of 
metadata  
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Data Lake 

 No schema on write  

 schemas of data are not defined (considered) while 
writing into a data lake 

 A schema is obtained when data are queried → 
schema on read 

 the need to understand the content → metadata 
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Data Lake 

 Querying a data lake 

 a query language and query engine capable of 
expressing and processing a query, possibly 
expressed in a natural language 

 finding relevant data sources for a query 

• relevant "schema"/structure 

• relevant content 

• correlating multiple data sources of the same semantics 

• selecting the most reliable DS 

• managing data quality of DSs 

 finding the relevant data sources quickly 

 metadata on  

• which DS was used to answer a given query 

• quality of DSs 
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Data Lake 

 Querying a data lake 

 efficiently retrieving subsets of data for a query 

• data of high quality 

 transforming data on the fly (during a query 
execution) into a common format 

 integrating data on the fly 

 choosing appropriate ways of visualizing the results 

 scalability → performance 

 Need for refreshing 

 how to detect changes? 

 new algorithms for incremental refreshing? 

 even incremental refreshing uploads large volumes 
of data 
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Data Lake Architecture 

 Image taken from: Putting the Data Lake to Work - a Guide to Best Practices. 
CITO Research, April 2014 
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ETL for Big Data 
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input 
 streams (sequences, time series) 
 images 
 sounds 
 videos 
 texts (unstruct., semi-struct.) 

periodically uploaded 

E(T)L 

data lake 

ETL 

 The Five Most Common Big Data Integration Mistakes To Avoid. 
ORACLE white paper, 2015  
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Metadata 

 Extensive usage of metadata 

 schema/structure 

• semantics of properties 

 content 

• semantics of values 

 transformation rules 

 visualization 

 performance 

 Data annotation during E(T)L 

 Data profiling in a data lake 

 Incremental maintenance of metadata 

 Metadata standard? 

 CWM for relational systems 

 ? for data lakes 
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Big Data integration challenges (1) 
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 Panel discussion  

 Int. Conference on Conceptual Modelling (ER), Gifu, Japan, 
2016 

 Big Data and Conceptual models: Are they mutually 
compatible? 

 How to (semi)-automatically discover data 
sources? 

 DS structure discovery 

 DS content understanding 

 How to dynamically plug-in a DS into a federation? 

 How to construct an integrated conceptual model? 

 What integration data model to use? 



Big Data integration challenges (2) 

 Global query processing? 

 parsing, decomposing, translating into native 
dialects, and routing 

 global query optimization → cf. polystore 

 How to integrate on the fly (transform, clean, 
deduplicate, integrate) data returned by local 
queries? 
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Big Data integration challenges (3) 

 Performance optimization  

 caching some results 

 what to cache?  

 where to store (RAM only vs. disk)? 

 how to manage the cache (removing/adding data)? 

 from which DSs to cache (slowly changing vs. rapidly 
changind DSs) 

 when and how to refresh cached data 

 using cached data in queries 

 prefetching  

 fast reads (fast search - indexing, compression) 

 fast writes (storage format, compression) 
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Big Data integration challenges (4) 

 New ways of querying 

 fusion tables 

 User interface and visualization 

 user prefs: graphs, tables, ... 

 multiple (different) schemas needed for multiple 
users → single query language?  natural language? 

 Conceptual modeling for data warehouses 

 facts and dimensions in XML, Graph, NoSQL → 

already ongoing research 
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Querying the Web 

 Web Tables: https://research.google.com/tables?hl=en 

 Fusion Tables: to create and populate your own table based on 
web tables 
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Twitter applications 

 Analyzing Twitter posts 

 Google flu trend maps 

• http://www.slate.com/blogs/moneybox/2014/04/04/twitter_eco
nomics_university_of_michigan_stanford_researchers_are_usin
g.html 

• "Google tracks flu activity around the world by monitoring how 
many people are searching flu-related terms in different areas, 
and with what frequency. “We have found a close relationship 
between how many people search for flu-related topics and 
how many people actually have flu symptoms”" 

 tweets on unemployment well correlate with real 
governmental data 

• http://www.washingtonpost.com/blogs/wonkblog/wp/2014/05/
30/the-weird-google-searches-of-the-unemployed-and-what-
they-say-about-the-economy/ 
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RDBMS vs. BData technologies:  
the Future? 

 TechTarget: Relational database management 
system guide: RDBMS still on top 

 http://searchdatamanagement.techtarget.com/essentialguide/Relati
onal-database-management-system-guide-RDBMS-still-on-top 

 "While NoSQL databases are getting a lot of attention, 
relational database management systems remain the 
technology of choice for most applications„ 

 S. Ghandeharizadeh: SQL, NoSQL, and Next 
Generation Data Stores 

 keynote talk at DEXA 2015 

 RDBMS will be important components of IT infrastructures 
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RDBMS vs. BData technologies:  
the Future? 

 R. Zicari: Big Data Management at American 
Express 

 Interview with Sastry Durvasula and Kevin Murray. ODBMS 
Industry Watch. Trends and Information on Big Data, New Data 
Management Technologies, and Innovation. Oct, 2014, available 
at: http://www.odbms.org/blog/2014/10/big-data-management-
american-express-interview-sastry-durvasula-kevin-murray/ 

 "The Hadoop platform indeed provides the ability to 
efficiently process large-scale data at a price point we 
haven’t been able to justify with traditional technology. That 
said, not every technology process requires Hadoop; 
therefore, we have to be smart about which processes we 
deploy on Hadoop and which are a better fit for traditional 
technology (for example, RDBMS)."–Kevin Murray. 
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RDBMS vs. BData technologies:  
the Future? 

 The Contextual Data Lake 

 by SAP, https://tdwi.org/whitepapers/2015/10/the-
contextual-data-lake.aspx 

 "... companies will retain an EDW as part of their overall 
data architecture ..." 
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RDBMS 

 Conceptual and logical modeling methodologies 
and tools 

 Rich SQL functionality 

 Query optimization 

 Concurrency control 

 Data integrity management 

 Backup and recovery 

 Performance optimization 

 buffers' tuning 

 storage tuning 

 advanced indexing 

 in-memory processing 

 Application development tools 
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NoSQL 

 Flexible "schema"  suitable for unstructured data 

 Massively parallel processing 

 Cheap hardware + open source software 

 

 Choosing the right NoSQL database for the job: a 
quality attribute evaluation. Journal of Big Data; 
http://www.journalofbigdata.com/content/2/1/18 


