
Big Data Architectures

Robert Wrembel

Poznan University of Technology

Institute of Computing Science

Poznań, Poland

Robert.Wrembel@cs.put.poznan.pl

www.cs.put.poznan.pl/rwrembel

2 © Robert Wrembel (Poznan University of Technology, Poland)

 Introduction to Big Data

 NoSQL data storage

 Big Data ingest architectures

 GFS, HDFS, Hadoop

 Types of data processing

 Big Data architectures

 Data ingest tools

 Big Data integration taxonomy

 Other technologies

Outline

Big Data

 Huge data Volume and Velocity

 every minute:

• over 200 million e-mail messages are sent

• over 100 000 tweets are sent (~ 80GB daily)

• a single jet engine can generate 10TB of data in 30
minutes

 human generated:

• social portals

• foras and blogs

 machine generated:

• web logs

• sensors

3 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data

 Variety (heterogeneity) of data formats

 structured (relational)

 structured (time series)

 semistructured (e.g., XML, JSON)

 unstructured

 semantic Web (e.g., XML, RDF, OWL)

 geo-related data

 graphs

 large texts

 multimedia

4 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data

5 © Robert Wrembel (Poznan University of Technology, Poland)

internal company
data warehouse

Big Data analytics

Big Data storage

hobbies + behaviour of customers
 targeted marketing
sentiment analysis  brand image
job seeking  employment trends
prices of goods  inflation

Big Data characteristics

6 © Robert Wrembel (Poznan University of Technology, Poland)

Traditional Big Data

storage relational DBMS NoSQL + HDFS

scaling vertical horizontal

processing batch, offline real-time, streaming,
batch, offline

data quality very high very low

7 © Robert Wrembel (Poznan University of Technology, Poland)

Data Stores

 NoSQL

 Key-value DB

 data structure  collection

 collection is represented as a pair: key and value

 data have no defined internal structure  the

interpretation of complex values must be made by a
program

 operations  create, read, update (modify), and

delete (remove) individual data - CRUD

 the operations process one data item (selected by
the value of its key) at a time

 Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet,
MemcacheDB, DynamoDB

8 © Robert Wrembel (Poznan University of Technology, Poland)

Data Stores

 Column family (column oriented, extensible record,
wide column)

 definition of a data structure includes

• key definition

• column definitions

• column family definitions

column family CF1 column family CF2

row key K1

row key K2

row key K3

row key K4

row key Kn

Col1 Col2 Col3 Col4 Col5

value value value

value value value

value value value value value

value value

9 © Robert Wrembel (Poznan University of Technology, Poland)

Data Stores

 column family  stored separately, common to all

data items (~ shared schema)

 column  stored with a data item, optional, specific

for the data item

 CRUD interface

 HBase, HyperTable, Cassandra, BigTable, Accumulo,
SimpleDB

10 © Robert Wrembel (Poznan University of Technology, Poland)

Data Stores

 Document DB

 typically JSON-based structure of documents

 SimpleDB, MongoDB, CouchDB, Terrastore, RavenDB,
Cloudant

 Graph DB

 nodes, edges, and properties to represent and store
data

 every node contains a direct pointer to its adjacent
element

 Neo4j, FlockDB, GraphBase, RDF Meronymy SPARQL

11 © Robert Wrembel (Poznan University of Technology, Poland)

Performance evaluation

 HBase  Cassandra

 virtual machines 8 CPUs, 16 GBs RAM, 480 GB HDD

 Ubuntu (14.04.1 LTS)

 Cassandra 2.0.14

 HBase 1.0.0 + Hadoop 2.5.2

 2 Cassandra data nodes

 2 nodes (HBase RegionServer + Hadoop DataNode)
+ 1 node (HBase MasterServer + Hadoop
NameNode)

 Yahoo Cloud Serving Benchmark with modified
workloads

12 © Robert Wrembel (Poznan University of Technology, Poland)

HBase - Cassandra

 Read-only workload

 # of threads for HBase and Cassandra: 256

 cache size:

• HBase memstore: 2048 MB

• Cassandra memtable: 2048 MB

13 © Robert Wrembel (Poznan University of Technology, Poland)

HBase - Cassandra

 Write-only workload

14 © Robert Wrembel (Poznan University of Technology, Poland)

HBase - Cassandra

 Read-write workload

 data volume: 20 GB

GFS

 Google implementation of a distributed file system
(The Google File System - whitepaper)

 Developed to handle

 hundreds of TBs of storage, thousands of disks, over a
thousands of cheep commodity machines

 The architecture is failure sensitive  therefore

 fault tolerance

 error detection

 automatic recovery and

 constant monitoring are required

15 © Robert Wrembel (Poznan University of Technology, Poland)

GFS

 Files are organized hierarchically in directories

 Files are identified by their pathnames

 File size at least 100MB

 Typical file size: multiple GB

 Millions of files

 File usage

 mostly appending new data  multiple large

sequential writes

 no updates of already appended data

 mostly large sequential reads

 small random reads occur rarely

 replicated files (default 3)

16 © Robert Wrembel (Poznan University of Technology, Poland)

GFS

 Operations on files

 create

 delete

 open

 close

 read

 write

 snapshot (creates a copy of a file or a directory tree)

 record append (appends data to the same file
concurrently by multiple clients)

 Simple GFS cluster includes

 single master

 multiple chunk servers

17 © Robert Wrembel (Poznan University of Technology, Poland)

GFS

18 © Robert Wrembel (Poznan University of Technology, Poland)

S. Ghemawat, H. Gobioff, S-T. Leung. The Google File System.
http://research.google.com/archive/gfs.html

master client

chunk server chunk server

.....

chunk server

.....

1: file name, chunk index

2: chunk handle, chunk replica
locations

3: chunk handle,
byte range
sent to one replica

4: data

management + heartbit messages

file replicas

HDFS

 Apache implementation of DFS

 http://hadoop.apache.org/docs/stable/hdfs_design.html

19 © Robert Wrembel (Poznan University of Technology, Poland)

paramterized replication factor, value stored
in namenode

Storage

 Distributed file systems

 Amazon Simple Storage Service (S3)

 Gluster (open source)

 Storage formats

 Apache Avro for storing serialized data in JSON for
Hadoop

 Apache Parquet - column oriented data store for
Hadoop

20 © Robert Wrembel (Poznan University of Technology, Poland)

Map reduce

21 © Robert Wrembel (Poznan University of Technology, Poland)

stationID cityID timestamp PM10

--------- -------- ------------------- ----

A01 Lyon 16:00:16-20-11-2018 5

A02 Blois 14:11:01-20-11-2018 2

A03 Poitiers 13:05:22-20-11-2018 3

A01 Lyon 11:02:10-21-11-2018 4

A02 Blois 13:11:09-21-11-2018 8

A03 Poitiers 01:02:08-21-11-2018 5

...

2018

2017

2016

2015

2014

map

<key, max-value>

<Lyon, 7>

<Blois, 8

<Poitiers, 10>

<........, .>

<Lyon, 5>

<Blois, 2

<Poitiers, 5>

<........, .>

reduce

Map reduce

22 © Robert Wrembel (Poznan University of Technology, Poland)

2018

2017

2016

2015

2014

map

<key, max-value>

<Lyon, 7>

shuffle

<Poitiers, 10>

<Blois, 2

<Poitiers, 5>

<Blois, 8>

<Lyon, 7>

<Blois, 8>

<Poitiers, 10>

reduce

Data landscape: past - today

23 © Robert Wrembel (Poznan University of Technology, Poland)

 Data models
 relational

 object-oriented

 semi-structured

 ...

 Data formats
 numbers, dates, strings

 ...

 Veolocity
 OLTP systems

 Data models
 relational

 graphs

 NoSQL

 semi-structured

 unstructured

 ...

 Data formats
 numbers, dates, strings

 HTML, XML, JSON

 time series and sequences

 texts

 multimedia

 ...

 Veolocity
 frequently changing (e.g., Facebook)

 constantly changing (streams)

Data integration: past

 Virtual integration

 federated

 mediated

 Physical integration

 ETL + data warehouse

 Common integration data model

 relational

 sometimes semistructured or object-oriented

24 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data integration taxonomy

25 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data
Integration

Virtual data integration Physical data integration

Mediated

Mediated Data warehouse

Data lake Streaming

Polystore

Types of processing

 Offline

 batch DW refreshing

 analytics on stable data

 Real-time / near real-time

 streaming of new data

 analytics on the most up-to-date data up to the
moment the query was sent

 queries executed in (near) real-time

26 © Robert Wrembel (Poznan University of Technology, Poland)

Real-time / Near R-T architecture

27 © Robert Wrembel (Poznan University of Technology, Poland)

data stream active component
main-memory engine

OLTP + OLAP

28 © Robert Wrembel (Poznan University of Technology, Poland)

Real-time / Near real-time
refreshing

users

refreshing

traditional DW

users

refreshing

real-time DW

Streaming analytics

29 © Robert Wrembel (Poznan University of Technology, Poland)

off-line

off-line

real-time

real-time
Complex Event

Processing

Time Series

Sequences

time-points

intervals OLAP

patterns

Data Stream Processing Systems

Time series

30 © Robert Wrembel (Poznan University of Technology, Poland)

 A time series consists of values (elements, events)
ordered by time

 taken at successive equally spaced points in time

• at a given frequency

 variables of continuous domains

 Examples

 signals from sensors

 financial data

 voice recording

Time series

31 © Robert Wrembel (Poznan University of Technology, Poland)

 Time series analysis
 Clustering and classification
 Sequential pattern mining on discrete sequences
 Searching for patterns
 Aggregating in a sliding window
 Trend analysis
 Trend prediction
 Finding similarities

Complex Event Processing

 Analyzing TS to detect

 outliers in a time window

• e.g., a temperature 50% higher than avg in 10 min
window

 patterns

• e.g., the 'W' pattern in stock quotes

32 © Robert Wrembel (Poznan University of Technology, Poland)

1 1 9 9 5 7 5 7 5 7 0 0 3 4 3 4 3 4 3 8 6 7 4

pattern: XYXYXY

Sequences

33 © Robert Wrembel (Poznan University of Technology, Poland)

 A sequence consists of ordered values (elements,
events) recorded with or without a notion of time

 numerical properties (quantify an event)

 text properties (describe an event)

 Point-based sequences

 duration → instant

 Interval-based sequences

 duration → interval

 sequences of intervals

Sequences

34 © Robert Wrembel (Poznan University of Technology, Poland)

 Sales reps performance interaction with a potential
customer

 pharma business

 automotive business

meet present phone meet successful purchase

Sequences

35 © Robert Wrembel (Poznan University of Technology, Poland)

 Commuters’ flow in a public transport infrastructure

S1 in S2 S3 S4 S5 out

S8 in S9 out

S3 in S4 S5 S6 S7 S8 out

pass1

pass2

pass3

 the number of passenger round-trips, e.g., S1 → S2 →
S2 → S1, and their distributions over all origin-

destination station pairs within 1st quarter of 2017

Sequences

36 © Robert Wrembel (Poznan University of Technology, Poland)

 Other application examples

 WEB logs analysis

• sequence navigation between web pages: product A page
→ competing product B page → competing product C page →

product A page

 identification of purchase patterns over time

 alarm logs

 money laundry scenarios

 infrastructure monitoring

 workflow management systems

 ...

Big Data architecture

37 © Robert Wrembel (Poznan University of Technology, Poland)

clicks
tweets
facebook likes
location information
...

massive data processing server
- MDPS (aggregation, filtering)

analytics server -
AS

reporting server -
RS complex event processor

- CEP

real-time decision
engine - RTDE

38

Big Data architecture

 Scalability

 RTDE - nb of events handled

 MDPS - volume of data

 data processing workload

 AS - complexity of computation, workload of queries

 RS - types of queries, nb of users

 CEP - # events handled

 Type of data

 RTDE - unstructured and semistructured (texts, tweets)

 MDPS – semistructured, structured

 AS - structured

 RS - structured

 CEP - unstructured and structured

© Robert Wrembel (Poznan University of Technology, Poland)

Big Data architecture

39 © Robert Wrembel (Poznan University of Technology, Poland)

 Workload

 RTDE - high write throughput

 MDPS - long-running data processing (I/O and CPU
intensive): data transformations, ...

 AS - I/O and CPU intensive

 RS - compute intensive (various types of queries)

 Technologies

 RTDE - key-value, in-memory

 MDPS - Hadoop

 AS, RS - columnar DBs, sometimes in -memory

 Conclusion

 very complex architecture with multiple components

 the need of integration

40 © Robert Wrembel (Poznan University of Technology, Poland)

Lambda Architecutre

 Batch layer  traditional DW processing

 Speed layer  stream processing

 Serving layer  integration of static and dynamic data

by means of views

Stream processing real-time data real-time layer

serving layer

Data store (DFS)
precomputed

data

precomputed
views

real-time views

integrated view

batch layer

Kappa architecture

 Processing streams of data

 Incoming data are streamed through a real-time
layer and moved into a serving layer for queries

41 © Robert Wrembel (Poznan University of Technology, Poland)

Stream processing

real-time view

real-time view

real-time view

real-time layer
serving layer

q
u

e
ri

e
s

42 © Robert Wrembel (Poznan University of Technology, Poland)

DW in a big bank

DATA MART DATA SOURCES ANALYTICS

CRM

ERP

OLTP

DATA STAGE

DATA
WAREHOUSE

.

.

.

reports
- internal
- to external institutions

may include already
normalized and cleaned
data

DATA STREAM (card usage)

CEP

FARUD DETECTION ALARMS

user profiles (card usage)

account balance

IBM architecture

 Data warehouse augmentation: the queryable data store. IBM
software solution brief.

43 © Robert Wrembel (Poznan University of Technology, Poland)

44 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data architecture

data ingest

high level language for
processing MapReduce

coordinating and scheduling
workflows

columnar storage
and query

coordinating and managing all the components

http://www.cloudera.com/content/cloudera/en/resources/library/training/ap
ache-hadoop-ecosystem.html

data storage

Big Data architecture

45 © Robert Wrembel (Poznan University of Technology, Poland)

columnar storage
and query
based on BigTable

high level language for
processing MapReduce

SQL-like language for data analysis
(select, join, group by, ...)

user interface to Hive

web log loader (log scrapper),
periodical loading into Hadoop
aggregating log entries (for offline
analysis)

coordinating and managing all the components,
load balancing

Big Data architecture

46 © Robert Wrembel (Poznan University of Technology, Poland)

coordinating and scheduling
workflows (Pig, Hive, Java,
HDFS tasks)

RDB-like interface to data stored
in Hadoop, metadata management

high level languages for
processing MapReduce

distributed web log loader (log scrapper),
periodical loading into Hadoop (for offline
analysis)

Big Data architecture

47 © Robert Wrembel (Poznan University of Technology, Poland)

data ingest tool

queuing system,
distributed web log loader and
aggregator

workflow (batch job) scheduler
(e.g., data extraction, loading into Hadoop)

table-like data storage + in memory
caching

Big Data architecture

48 © Robert Wrembel (Poznan University of Technology, Poland)

workflow coordination
and scheduling

high level languages for
processing MapReduce

moving data between systems,
distributed web log loader (log scrapper),
periodical loading into Hadoop (for offline
analysis)

UI for Hadoop (e.g., HDFS file
browser, MapReduce job
designer and browser, query
interfaces for Hive, Pig, Impala,
Oozie, application for creating
workflows, Hadoop API)

Big Data architecture

49 © Robert Wrembel (Poznan University of Technology, Poland)

 https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/index

 Azure Data Lake Store
 blob containers in Azure Storage

 RDBMS
 ODBC
 files
 web logs
 streaming
 ...

 Hive, Pig, Java, Scala, Python

 Azure Event Hubs, Azure IoT Hub, Kafka  Azure Stream Analytics, Storm, Spark Streaming

 RDBMS
 Hive
 HBase
 Spark SQL

 PowerBI
 Excel
 Python
 R

 Azure Data
Factory

 Oozie

 Azure Machine
Learning

 Spark MLlib

50 © Robert Wrembel (Poznan University of Technology, Poland)

Hadoop Distributions

 Cloudera, MapR, Hortonworks, IBM, Pivotal
Software

Data Ingest (ETL)

 Apache Sqoop: data movement RDBMS ↔ HDFS

 Apache NiFi: ELT tool

 DataTorrent RTS: ETL tool

 Apache Flume: moving data

 Apache Kafka: queuing system

 ...

51 © Robert Wrembel (Poznan University of Technology, Poland)

Sqoop

 Tool for transferring data between

 structured (relational DBs)

 semi-structured (NoSQL)

 unstructured (HDFS) data sources

 Connectors to DSs

 FTP, JDBC, HDFS, Kafka, ...

52 © Robert Wrembel (Poznan University of Technology, Poland)

RDBMS

HDFS

Hive external table

Sqoop

import

export

Sqoop

 Parallel processing: n mappers

53 © Robert Wrembel (Poznan University of Technology, Poland)

sqoop import \

--connect jdbc:mysql://hostname/database_name \

--username user1 \

--password pass \

--table accounts \

--num-mappers 3

mapper1

mapper2

mapper3

PK attr1 attr2

1

...

100000

100001

...

200000

200001

...

300000

54 © Robert Wrembel (Poznan University of Technology, Poland)

NiFi

 Purpose: to automate a flow of data between multiple systems
→ an ETL tool

 Asynchronous: for very high throughput and slow processing
buffering may be used

54 © Robert Wrembel

55 © Robert Wrembel (Poznan University of Technology, Poland)

NiFi building blocks

 FlowFile

 data moved within NiFi, represented as key-value

 Processor

 processes FlowFiles

 Connection

 connects processors by means of a queue → buffering

 different processors may read from a queue at differing
rates

 Flow Controller

 acts as a broker facilitating the exchange of FlowFiles
between processors

 Process Group

 a set of processors and connections, which can receive
data via input ports and send data out via output ports

DataTorrent RTS

 Ingest from

 HDFS, Kafka, Flume, flat files, JDBC

 Output into

 HDFS, Hive, Cassandra, MongoDB, ...

 Data transformation operators

 dedup, filter, split, sample, ...

 parsing common formats such as XML, JSON, log
files, syslog

 ETL-like development environment

 + data visualization

56 © Robert Wrembel (Poznan University of Technology, Poland)

Flume

 Movng data between systems

 Ingesting, transforming, and storing

57 © Robert Wrembel (Poznan University of Technology, Poland)

Flume

Sink:
HDFS
HBase
SolR
Kafka
...

Source:
sequence
avro
http
Kafka
...

ETL for Big Data - Kafka

 Distributed queuing/messaging

 Processes streams of records: <key, value,
timestamp>

 Terms

 topic: stream of messages of a particular type,
divided into partitions

 producer: publishes a given topic

 consumer: subscribes to one or more topics

 broker: stores topics for their distribution to
consumers

58 © Robert Wrembel (Poznan University of Technology, Poland)

Kafka

59 © Robert Wrembel (Poznan University of Technology, Poland)

 Multiple brokers (broker cluster) for load balancing

broker1
topic1: partition1, partition2
topic2: partition1, partition2

broker2
topic1: partition1, partition2
topic2: partition1, partition2

broker3
topic3: partition1, partition2

consumer
subscribe: topic1

consumer
subscribe: topic3

consumer
subscribe: topic2

producers
connectors

Kafka

 Producer API: to publish a stream of records to one
or more topics

 Consumer API: to subscribe to one or more topics

 Streams API: to process streams (e.g., aggregate)

 Connector API: to connect to input and outpud DSs

 reads from: JDBC, NoSQL stores, Oracle Golden Gate,
IBM Data Replication, Vertica, SolR, Twitter, ...

 writes to: JDBC, HDFS, Amazon S3, SAP Hana,
Vertica, NoSQL, Elasticsearch, SolR, Twitter, ...

60 © Robert Wrembel (Poznan University of Technology, Poland)

Kafka

 Consumer maintains the info about read topic's
partitions

 Broker deletes partitions after a given time period
(configurable) regardless they have been read by a
consumer or not → possible data loss

 At-least-once delivery model in the case of consumer
failure

 after restart a consumer may re-read the last topic's
partition → duplicates

 The order of messages in a partition is preserved within
a delivery

 The order of inter-partition delivery from different
brokers is not preserved (e.g., read partition2 from
broker3 then read partition1 from broker2)

61 © Robert Wrembel (Poznan University of Technology, Poland)

Kafka performance

 Architecture

 pico-cluster: 4 nodes

 node: 4-core CPU, 3GHz

 16GB RAM, 256GD HDD

 Linux RedHat

62 © Robert Wrembel (Poznan University of Technology, Poland)

Hadoop

Kafka

IBM InfoSphere
Server

IBM DataStage
Designer

 Kafka performance

63 © Robert Wrembel (Poznan University of Technology, Poland)

 Variable value of Record Count

 parameter of a connector to Kafka from DataStage

 # of rows read from a topic after which data
processing in ETL begins

Kafka performance

64 © Robert Wrembel (Poznan University of Technology, Poland)

Record Count = ALL

Stream processing frameworks

 Apache Storm

 Apache Flink

 Apache Kafka Streams

 Apache Spark Streaming

 Apache Samza: based on Hadoop Yarn and Kafka

 ...

65 © Robert Wrembel (Poznan University of Technology, Poland)

Storm

 Real-time stream processing framework

 implemented in: Clojure

 apps in: Java, C#, Python, Scala, Perl, PHP

 Data structure: tuple - a list of coma separated
values

 Stream: sequence of tuples

 Software components

 connectors to: Twitter, queuing systems (e.g., Kafka)

 spout: a source of a stream

 bolt: a processing unit, accepts a stream, processes
it, and outputs another stream (also to store it in a
DB)

 Task: the execution of either a spout or bolt

66 © Robert Wrembel (Poznan University of Technology, Poland)

Storm

 Topology

 DAG composed of spouts and bolts connected by
streams

 includes a single spout and an array of bolts

67 © Robert Wrembel (Poznan University of Technology, Poland)

spout Kafka

bolt

bolt

bolt

bolt

Storm

68 © Robert Wrembel (Poznan University of Technology, Poland)

 Worker: topology runs in a cluster composed of
multiple worker nodes

 Storm divides tasks evenly for all worker nodes

 a topology in a cluster is managed by Zookeeper

 Nimbus (master node)

 runs a topology

 distributes tasks to workers

Zookeeper

Flink

 Real-time stream processing framework

 implemened in: Java, Scala

 apps in: Java, Scala

 Deployment

 cluster run by Yarn or Mesos

 cloud

69 © Robert Wrembel (Poznan University of Technology, Poland)

storage (file systems) Flink

streaming

devices

storage (file systems)

database

Flink

http://flink.apache.org/introduction.html

70 © Robert Wrembel (Poznan University of Technology, Poland)

Kafka streams

 Java library

 Event-at-a-time processing

 Aggregation in a sliding window

 No built-in stream mining algorithms

 Deployment environment the same as for Kafka

71 © Robert Wrembel (Poznan University of Technology, Poland)

Kafka streams

Kafka topic B

Kafka topic A

Spark

 In-memory data processing framework:

 implemented in: Scala

 apps in: Scala, Python, R, Java

 Deployable on

 Hadoop, Apache Mesos, and EC2

 independent cluster mode or cloud

 Can access

 Amazon S3, HDFS, Cassandra, HBase, Hive,
JDBC/ODBC, Twitter, ...

72 © Robert Wrembel (Poznan University of Technology, Poland)

Spark

 Apps in: Java, Scala, Python

 Processing of n records at a time (micro-batches)

 Built-in

 GraphX - a library of graph processing algorithms

 MLib - a library of machine learning algorithms

 Spark Streaming - stream processing engine (e.g.,
window functions)

 Spark SQL - SQL-like querying structured data within
Spark

73 © Robert Wrembel (Poznan University of Technology, Poland)

74 © Robert Wrembel (Poznan University of Technology, Poland)

Project@PUT

 Analyzing monitoring signals from a data center

 Poznan Supercomputing and Networking Center (PSNC)

 http://www.man.poznan.pl/online/en/

BMS

.

.

.

A
P
I

stream
reader

Kafka NiFi

real-time
topics

offline topics

Cassandra

+ descriptions

Spark
Streaming

R, Zeppelin, ...

cluster
 16 nodes
 4GB, 4 cores per node
 managed by OpenStack

75 © Robert Wrembel (Poznan University of Technology, Poland)

Project@PUT

 Processing

 time series analysis

 alarm signals → sequences → patterns

 Over 4400 different variables (signals) generated
by BMS

76 © Robert Wrembel (Poznan University of Technology, Poland)

Project@PUT

data warehouse

analytical applications

thermal energy meters

electrical energy meters

real-time stream
analysis

real-time
analytical
engine

real-time stream
analysis

 Energy management in a power grid
@Kogeneracja Zachód

 http://kogeneracjazachod.pl/

Mediated architectures

 Integration with Hadoop

 Polystore

77 © Robert Wrembel (Poznan University of Technology, Poland)

Virtual data integration

Mediated

Mediated

Streaming

Polystore

Integration with Hadoop

 M.Gualtieri, B. Hopkins: SQL-For-Hadoop: 14 Capable Solutions
Reviewed. Forrester, 2015

 Pure SQL for Hadoop

78 © Robert Wrembel (Poznan University of Technology, Poland)

Integration with Hadoop

 Boosted SQL for Hadoop

 typically include: query parser and optimizer

 require more strucutred data to exploit the power of SQL

79 © Robert Wrembel (Poznan University of Technology, Poland)

Integration with Hadoop

 Database + Hadoop

 Hadoop files accessed via external tables from a DB

80 © Robert Wrembel (Poznan University of Technology, Poland)

Integration with Hadoop

 SAP Vora: HANA + Spark + Hadoop

81 © Robert Wrembel (Poznan University of Technology, Poland)

 The Contextual Data Lake. By SAP, available at:
https://tdwi.org/whitepapers/2015/10/the-contextual-data-lake.aspx

Integration with Hadoop

 IBM BigInsights  Cloudera distribution + IBM

custom version of Hadoop called GPFS

 Oracle BigData  appliance based on Cloudera for

storing unstructured content

 Informatica HParser  to launch Informatica

process in a MapReduce mode, distributed on the
Hadoop servers

 Microsoft  dedicated Hadoop version for Azure

 EMC Greenplum, HP Vertica, Teradata Aster, SAP
Sybase IQ  provide connectors directly to HDFS

82 © Robert Wrembel (Poznan University of Technology, Poland)

SQL interface to Hadoop

 Hadapt (currently Teradata)

 platform for analytics on structured and unstructured
data

 hybrid storage: Hadoop + relational DB

 Teradata SQL-H

 integrating Aster (sequence proc. engine) and
Hadoop

 EMC HAWQ

 integration of the Greenplum DBMS with Hadoop

 IBM BigSQL

 part of InfoSphere BigInsights

83 © Robert Wrembel (Poznan University of Technology, Poland)

SQL-like DBs on non-relational DSs

 Splice Machine

 based on Apache Derby: Java-based ANSI SQL
database

 Derby (redesigned query optimizer to support parallel
processing) on HBase (parallel processing) + Hadoop
(parallel storage and processing)

 Apache Phoenix

 relational-like DB on HBase

 SQL interface

 MarkLogic

 NoSQL database

 IBM Big SQL

 a single point to query heterogeneous data stores:
RDB, HDFS, NoSQL

84 © Robert Wrembel (Poznan University of Technology, Poland)

SQL-like DBs on non-relational DSs

 Virtuoso: data management system

 Storage engine for

 relational, XML, RDF, text data

 Database functionality

 querying (SQL, SPARQL)

 indexing (also full text)

 storage (row, column-store)

 transaction management

 Connectors

 ODBC/JDBC, SOAP, REST, HTTP, ...

85 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data warehousing

 Apache Kylin

86 © Robert Wrembel (Poznan University of Technology, Poland)

 http://kylin.apache.org/

Hadoop-based DWs

 Cloudera Impala

 SQL like query engine that runs on HDFS

 Apache Drill

 SQL like query engine that runs on a data lake

 schema discovery on the fly

87 © Robert Wrembel (Poznan University of Technology, Poland)

Complementary technologies

 Stinger

 in-memory graph analytics engine

 Spark GrapX

 in-memory graph analytics engine

 Shark

 based on Spark

 query accelerator

 uses HiveQL (SQL-like, translated into MapReduce
jobs)

 Teradata SQL-H, EMC HAWQ, IBM BigSQL

 ...

88 © Robert Wrembel (Poznan University of Technology, Poland)

Polystore

 J. Duggan, A.J. Elmore, M. Stonebreaker, et. al.: The BigDAWG
Polystore System. SIGMOD Record, Vol. 44, No. 2, 2015

 Federation of islands of information

 Island of information

 collection of storage engines accessed with a single query
language

89 © Robert Wrembel (Poznan University of Technology, Poland)

Relational island NoSQL island

Island of information

90 © Robert Wrembel (Poznan University of Technology, Poland)

Relational island NoSQL island

 Specifies a data model (seen by a user) → like mediator

 Provides a common query language (for a user)

 Includes a set of DMSs to manage data and execute
queries

 Mapping the island's common language into a local one
→ shim → like wrapper

shim shim shim shim shim shim

Overall view

91 © Robert Wrembel (Poznan University of Technology, Poland)

Relational island Graph island NoSQL island

layer of
shims

layer of
data sources

access
layer

Single-island query

92 © Robert Wrembel (Poznan University of Technology, Poland)

 Island query IQ (expressed in island's native
language)

 IQ parsed into abstract syntax tree (AST)

 Decompose AST into partial queries for each DS
in the island

 Shim translates the subquery into a query
expressed in a language of a DS

 Subquery is executed by DS

user

DS

Relational island

shim shim shim

93 © Robert Wrembel (Poznan University of Technology, Poland)

Multi-island query

 Scope: specifies in which island to exectue a query

 Cast: data transformation

RELATIONAL

(select *

 from accounts, CAST(clients, RELATION)

 where accounts.clientID=clients.ID)

query executed in the
relational scope rel. table NoSQL collection

Query optimization issues

 Global query optimizer should have available

 a cost model for each elementary operation in each
data store

 access to metadata (e.g., physical structures, data
distribution) in each DS

 DSs are autonomous: the above information is
unavailable

 GQO must use a "black box" approach and some
rules

 one island queries → move operations to data

 multi-island queries → gather execution statistics

• performance of each DS for a given partial query

• possible to move data to another island for a more
efficient execution → data allocation problem

94 © Robert Wrembel (Poznan University of Technology, Poland)

Data Lake

 Physical integration

 a repository that stores a vast amount of raw data in its
native format until it is needed

 typically based on a distributed file system (HDFS, GFS)

95 © Robert Wrembel (Poznan University of Technology, Poland)

distributed file system (HDFS/GFS)

DW/DM

Data Lake

 Content

 relational tables

 WEB tables

 XML

 texts

 images, sounds, videos

 graphs

 time series

 ... any existing format

 Each data element in a DL should have assigned a
unique identifier and tagged with a set of
metadata

96 © Robert Wrembel (Poznan University of Technology, Poland)

Data Lake

 No schema on write

 schemas of data are not defined (considered) while
writing into a data lake

 A schema is obtained when data are queried →
schema on read

 the need to understand the content → metadata

97 © Robert Wrembel (Poznan University of Technology, Poland)

Data Lake

 Querying a data lake

 a query language and query engine capable of
expressing and processing a query, possibly
expressed in a natural language

 finding relevant data sources for a query

• relevant "schema"/structure

• relevant content

• correlating multiple data sources of the same semantics

• selecting the most reliable DS

• managing data quality of DSs

 finding the relevant data sources quickly

 metadata on

• which DS was used to answer a given query

• quality of DSs

98 © Robert Wrembel (Poznan University of Technology, Poland)

Data Lake

 Querying a data lake

 efficiently retrieving subsets of data for a query

• data of high quality

 transforming data on the fly (during a query
execution) into a common format

 integrating data on the fly

 choosing appropriate ways of visualizing the results

 scalability → performance

 Need for refreshing

 how to detect changes?

 new algorithms for incremental refreshing?

 even incremental refreshing uploads large volumes
of data

99 © Robert Wrembel (Poznan University of Technology, Poland)

Data Lake Architecture

 Image taken from: Putting the Data Lake to Work - a Guide to Best Practices.
CITO Research, April 2014

100 © Robert Wrembel (Poznan University of Technology, Poland)

ETL for Big Data

101 © Robert Wrembel (Poznan University of Technology, Poland)

input
 streams (sequences, time series)
 images
 sounds
 videos
 texts (unstruct., semi-struct.)

periodically uploaded

E(T)L

data lake

ETL

 The Five Most Common Big Data Integration Mistakes To Avoid.
ORACLE white paper, 2015

102 © Robert Wrembel (Poznan University of Technology, Poland)

Metadata

 Extensive usage of metadata

 schema/structure

• semantics of properties

 content

• semantics of values

 transformation rules

 visualization

 performance

 Data annotation during E(T)L

 Data profiling in a data lake

 Incremental maintenance of metadata

 Metadata standard?

 CWM for relational systems

 ? for data lakes

 103 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data integration challenges (1)

104 © Robert Wrembel (Poznan University of Technology, Poland)

 Panel discussion

 Int. Conference on Conceptual Modelling (ER), Gifu, Japan,
2016

 Big Data and Conceptual models: Are they mutually
compatible?

 How to (semi)-automatically discover data
sources?

 DS structure discovery

 DS content understanding

 How to dynamically plug-in a DS into a federation?

 How to construct an integrated conceptual model?

 What integration data model to use?

Big Data integration challenges (2)

 Global query processing?

 parsing, decomposing, translating into native
dialects, and routing

 global query optimization → cf. polystore

 How to integrate on the fly (transform, clean,
deduplicate, integrate) data returned by local
queries?

105 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data integration challenges (3)

 Performance optimization

 caching some results

 what to cache?

 where to store (RAM only vs. disk)?

 how to manage the cache (removing/adding data)?

 from which DSs to cache (slowly changing vs. rapidly
changind DSs)

 when and how to refresh cached data

 using cached data in queries

 prefetching

 fast reads (fast search - indexing, compression)

 fast writes (storage format, compression)

106 © Robert Wrembel (Poznan University of Technology, Poland)

Big Data integration challenges (4)

 New ways of querying

 fusion tables

 User interface and visualization

 user prefs: graphs, tables, ...

 multiple (different) schemas needed for multiple
users → single query language?  natural language?

 Conceptual modeling for data warehouses

 facts and dimensions in XML, Graph, NoSQL →

already ongoing research

107 © Robert Wrembel (Poznan University of Technology, Poland)

Querying the Web

 Web Tables: https://research.google.com/tables?hl=en

 Fusion Tables: to create and populate your own table based on
web tables

108 © Robert Wrembel (Poznan University of Technology, Poland)

Twitter applications

 Analyzing Twitter posts

 Google flu trend maps

• http://www.slate.com/blogs/moneybox/2014/04/04/twitter_eco
nomics_university_of_michigan_stanford_researchers_are_usin
g.html

• "Google tracks flu activity around the world by monitoring how
many people are searching flu-related terms in different areas,
and with what frequency. “We have found a close relationship
between how many people search for flu-related topics and
how many people actually have flu symptoms”"

 tweets on unemployment well correlate with real
governmental data

• http://www.washingtonpost.com/blogs/wonkblog/wp/2014/05/
30/the-weird-google-searches-of-the-unemployed-and-what-
they-say-about-the-economy/

109 © Robert Wrembel (Poznan University of Technology, Poland)

RDBMS vs. BData technologies:
the Future?

 TechTarget: Relational database management
system guide: RDBMS still on top

 http://searchdatamanagement.techtarget.com/essentialguide/Relati
onal-database-management-system-guide-RDBMS-still-on-top

 "While NoSQL databases are getting a lot of attention,
relational database management systems remain the
technology of choice for most applications„

 S. Ghandeharizadeh: SQL, NoSQL, and Next
Generation Data Stores

 keynote talk at DEXA 2015

 RDBMS will be important components of IT infrastructures

110 © Robert Wrembel (Poznan University of Technology, Poland)

RDBMS vs. BData technologies:
the Future?

 R. Zicari: Big Data Management at American
Express

 Interview with Sastry Durvasula and Kevin Murray. ODBMS
Industry Watch. Trends and Information on Big Data, New Data
Management Technologies, and Innovation. Oct, 2014, available
at: http://www.odbms.org/blog/2014/10/big-data-management-
american-express-interview-sastry-durvasula-kevin-murray/

 "The Hadoop platform indeed provides the ability to
efficiently process large-scale data at a price point we
haven’t been able to justify with traditional technology. That
said, not every technology process requires Hadoop;
therefore, we have to be smart about which processes we
deploy on Hadoop and which are a better fit for traditional
technology (for example, RDBMS)."–Kevin Murray.

111 © Robert Wrembel (Poznan University of Technology, Poland)

RDBMS vs. BData technologies:
the Future?

 The Contextual Data Lake

 by SAP, https://tdwi.org/whitepapers/2015/10/the-
contextual-data-lake.aspx

 "... companies will retain an EDW as part of their overall
data architecture ..."

112 © Robert Wrembel (Poznan University of Technology, Poland)

113 © Robert Wrembel (Poznan University of Technology, Poland)

RDBMS

 Conceptual and logical modeling methodologies
and tools

 Rich SQL functionality

 Query optimization

 Concurrency control

 Data integrity management

 Backup and recovery

 Performance optimization

 buffers' tuning

 storage tuning

 advanced indexing

 in-memory processing

 Application development tools

114 © Robert Wrembel (Poznan University of Technology, Poland)

NoSQL

 Flexible "schema"  suitable for unstructured data

 Massively parallel processing

 Cheap hardware + open source software

 Choosing the right NoSQL database for the job: a
quality attribute evaluation. Journal of Big Data;
http://www.journalofbigdata.com/content/2/1/18

