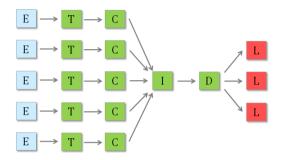


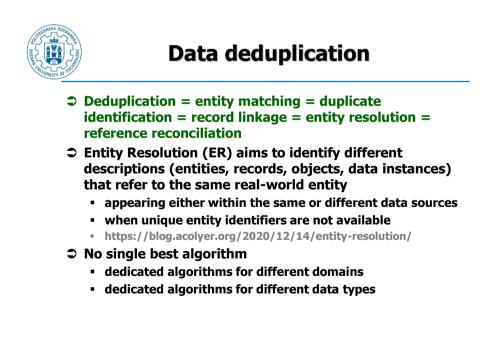
POZNAN UNIVERSITY OF TECHNOLOGY

DW Loading and Refreshing Techniques: ETL Deduplication

Robert Wrembel Poznan University of Technology Institute of Computing Science Poznań, Poland Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel


Outline

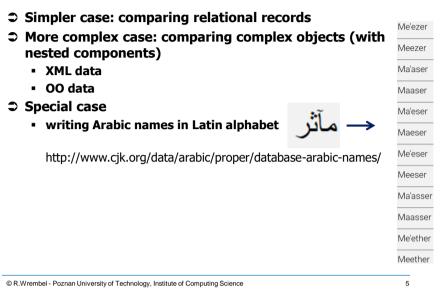
- Standard deduplication workflow
- Deduplication techniques

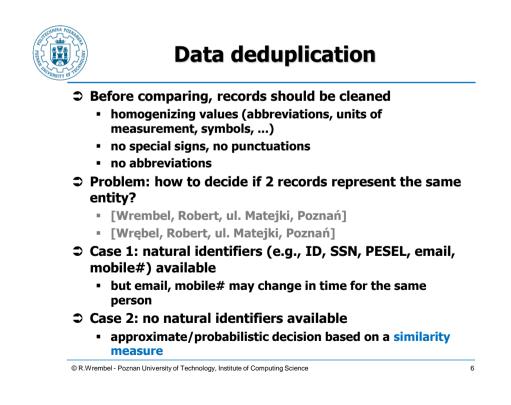


Deduplication

 $\ensuremath{\mathfrak{O}}$ Removing duplicate data from an integrated dataset

© R.Wrembel - Poznan University of Technology, Institute of Computing Science


© R.Wrembel - Poznan University of Technology, Institute of Computing Science


2

3

Data deduplication

Inconsistent naming

B. CHROBREGO B CHROBREGO 10 B CHROBREGO 10 B CHROBREGO 42B B,CHROBREGO B.CHROBREGO B.CHROBREGO 33/72 B.CHROBREGO 04OBOK BOL. CHROBREGO BOL. CHROBREGO BOL.CHROBREGO BOL.CHROBREGO BOL.CHROBREGO BOL.CHROBREGO BOLERSŁAWA CHROBREGO BOLESLAWA CHROBREGO BOLESŁ. CHROBREGO BOLESŁAWA CHROBREGO BOLESŁAWA CHROBREGO BOLESŁAWA CHROBREGO BOLESŁ.CHROBREGO BODESŁAWA CHROBREGO CHROBREGO 10 CHROBREGO 22A/6 CHROBREGO KOWALEW CHROBREGO PAŃSTWOWY DOM D

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

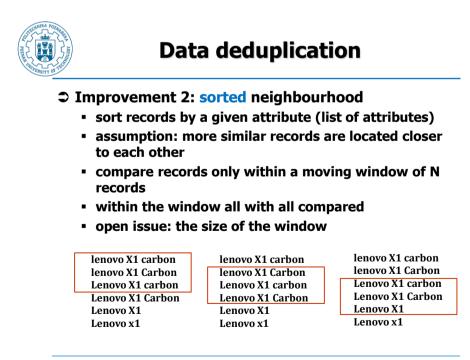
Data deduplication

Solution How to compare records?

- the worst case: each entity compared to all the other entities
 - O(n²) → deduplication
 - O(n*m) → record linkeage
- problem: efficiency

```
© R.Wrembel - Poznan University of Technology, Institute of Computing Science
```

8

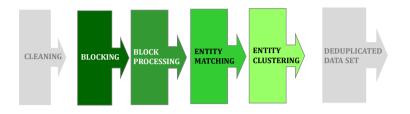


Data deduplication

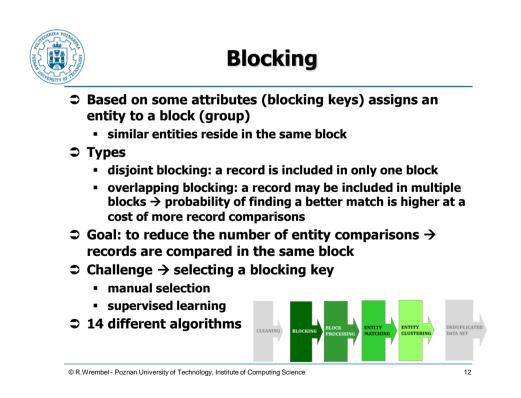
Improvement 1: hashing

- on some attributes (hash keys) → O(n)
- drawback: records must have identical values of hash keys to hash into the same bucket → applicable for exact match

© R.Wrembel - Poznan University of Technology, Institute of Computing Science



© R.Wrembel - Poznan University of Technology, Institute of Computing Science



Data deduplication

Standard data deduplication workflow

11

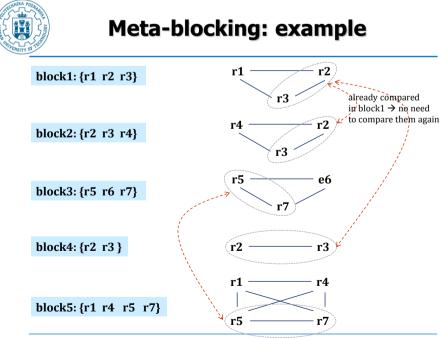
Block processing

- Goal: to further reduce the number of entity comparisons
- Method: eliminating redundant and unnecessary comparisons within blocks
- 18 different algorithms

Block processing

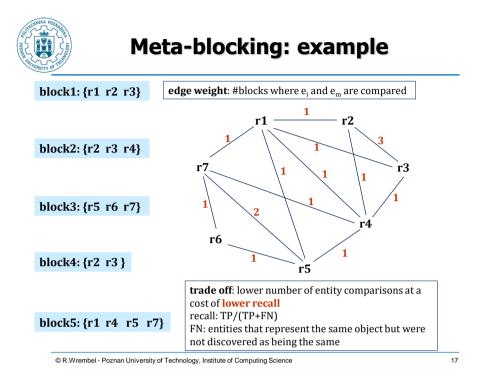
- For overlapping blocking
- Block pruning
 - ordering blocks from the smallest to the largest
 - larger blocks contain more unrelated records
 - discarding blocks whose cost of identifying new matches exceeds a threshold
- Size-based Block Clustering
 - merging small blocks that correspond to similar blocking keys
 - and splitting large blocks into smaller ones
 - to balance block sizes → balancing parallel processing of record matching in blocks

Block processing


Iterative blocking

- whenever a new pair of duplicates is detected ($r_{i\prime}r_m$) their descriptions are merged $\rightarrow r_{im}$
- r_{im} replaces (r_i,r_m) in all blocks

Meta-blocking


- uses a graph to represent comparisons
- eliminates the same comparisons in multiple blocks
- uses labels of graph edges to eliminate comparisons below certain threshold
 - methods for computing values of labels

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

16

Entity matching

- Goal: to determine whether compared entities refer to the same real-world object
- S Method: applying a similarity function
- 20 different algorithms

Entity matching

- \Im Matching uses similarity function sim(r_{i} , r_{i}) that mapps each pair of records (r_i, r_i) to a similarity value
 - φ measures how similar r_i and r_i are
- Matching (variant 1)
 - matching: sim(r_i,r_i) >= v
 - not matching sim(r_i,r_i) < v</p>
- Matching (variant 2)
 - not matching: sim(r_i,r_i) < v₁
 - unknown: $v_1 \le sim(r_{i\prime}r_i) \le v_2$
 - matching: sim(r_i,r_i) >= v₂

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Entity matching

Similarity measure

- simple → based on a single attribute (key) values • e.g., Jaccard, Levenshtein
- complex → (weighted) combination of similarity measures on multiple attributes of r_i and r_i
- context-based (semantic relationships)
 - healthcare: data source S1: entity Patient
 - healthcare: data source S2: entity Person
 - banking: data source S3: entity Customer
 - · Patient similar to Person since both exist in the same context
 - · similarity represented as a graph with weighted arcs
- hybrid: based on multiple similarity measures
 - e.g., complex + context-based (can also be weighted)

[©] R.Wrembel - Poznan University of Technology, Institute of Computing Science

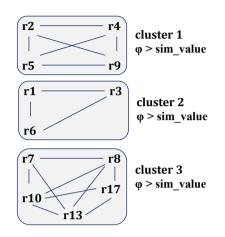
Entity matching

Soundex similarity

- returns a code of pronunciation of an input
- soundex('Smith')=soundex('Smit')=S530
- Levenhstein (edit distance) similarity
 - minimum number of inserts and deletes (updates) of characters in order to convert L1 to L2
 - L1 and L2 identical: distance=0
 - ABC → ABCDEF: distance=3
 - DEFCAB → ABC: distance=5

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Entity clustering


- Creating clusters of entities → all entities in a given cluster correspond to the same real-world entity, with a given high probability (similarity measure)
- Multiple clustering algorithms
 - use the similarity measure between records

21

Entity clustering

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

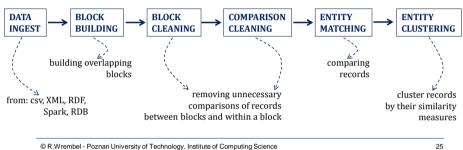
ALL NIKA POZNALA

Entity clustering

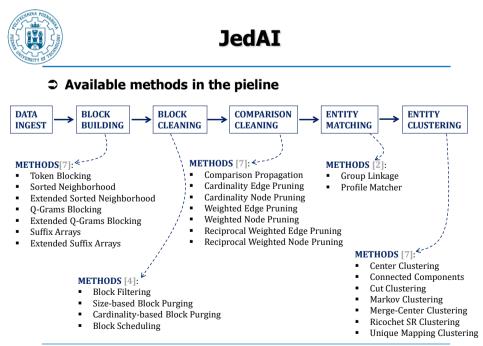
Merge semantically identical records in a cluster into one final augmented record

TaxpayerID	Fnam	Fname Ln		Lname Country		e	Domain			
132018	Rober	bert Wrembel		Polan	d Pro	f. data v	vrehouses			
				+						
TaxpayerID	1sName	2ndNar	me L	ast_Name	Education		City E	Born		
132018	Robert	Andre	ew	Wrembel	univ.	Po	znań 1	1968		
TaxpayerID	1sName	2ndName La	ast_Name	Education	City	Born	TaxpayerID) Country	Title	
132018	Robert	Andrew	Wrembel	univ.	Poznań	1968	132018	Poland	Prof.	data wr

© R.Wrembel - Poznan University of Technology, Institute of Computing Science


JedAI

Opensource library (+GUI) including some algorithms used in the entity resolution pipeline


http://jedai.scify.org

G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas, M. Koubarakis: JedAI: The Force behind Entity Resolution. ESWC 2017

JedAI pipeline

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

