

POZNAN UNIVERSITY OF TECHNOLOGY

Traditional Data Warehouse Architectures

Robert Wrembel Poznan University of Technology Institute of Computing Science Poznań, Poland Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Outline

- Data Warehouse architectures
- Data integration and loading: ETL vs. ELT

3

4

typically OLTP data sources

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

Operational Data Store

- Staging Area = (Data) Stage
- **C** A repository for an ETL engine
- **C** To separate normal processing at DSs from data ingest to separate transactional from batch processing
- Disk storage for processing large data volumes that will not fit in RAM
- To provide means for data provenance

6

Operational Data Store

- Construction To store intermediate results → to be shared (used) by multiple ETL tasks
 - re-using the same result datasets by multiple processes (optimization)
 - for recovery after crash of an ETL process
 re-executing a stopped process from a failed phase
- **C** Recent data can be accessed before a DW is refreshed

Implementation

- database
- (distributed) file system

DW Architecture 3

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

C. Maar, R. Kudliński: Allegro on the way from XLS based controlling to a modern BI environment. National conference on Data Warehousing and Business Intelligence, Warsaw, 2008

Gartner Report: DW servers

Large DW Architectures

- # data sources: 100 200
- ➡ Fact table: nn * 10⁹ rows
- ⇒ Fact table: n TB
- $\ensuremath{\mathfrak{I}}$ Multiple relational DWs in an organization
 - DW size: nn TB
- Multiple data marts
- **c n** * 10³ to nnn * 10³ ETL workflows
- ⊃ DW composed of 100+ tables
 - on average 50+ attributes/table

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

13

DW Architecture 5: ELT (ELTL)

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

ELT Architecture

Performance

- data stored in a DB ⇒ processing by means of: SQL, PL/SQL, SQL PL, Transact SQL
- data processed in a DB buffer cache ⇒ native DB environment
- advanced query optimization offered by DBMS
- single server for ELT and HD ⇒ heavier workload

Functionality

- data provenance
- drill through

Costs

- single DW server
- less software licences (OS, DBMS)

ETL vs. ELT (experiment 1)

Data sources

- topic: Internet auctions
- storage:
 - Oracle11g (Object-Relational model)
 - MySQL
 - PostgreSQL
 - XML
- Data warehouse: Oracle11g

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

DW schema

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

17

ETL vs. ELT (experiment 1)

- Transformations of data for:
 - dimensions
 - fact table

⇒ ETL architecture ⇒ Oracle Data Integrator (ODI)

• ETL in a staging area on a separate server

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

ETL vs. ELT (experiment 1)

ELT architecture

- T+L in a staging area on the same server as a DW
- variant 1: $E+L \rightarrow ODI$, $T+L \rightarrow implemented in ODI$
- variant 2: E+L → ODI, T+L → implemented as materialized views (MVs)
- variant 3: E+L → ODI, T+L → implemented as stored packages (SPs)
- variant 4: $E+L \rightarrow ODI$, $T+L \rightarrow SPs + MVs$

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

19

Data source

- flight and weather data in the US, from 1986 until 2008
- 6 tables in Oracle11g
- Data warehouse: Oracle11g

⇒ ETL/ELT: Informatica

ETL vs. ELT (experiment 2)

DW schema (augmented with: calendar, airplane data, airport data)

© R.Wrembel - Poznan University of Technology, Institute of Computing Science

ETL vs. ELT (experiment 2)

