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Traditional Data Warehouse 
Architectures

Outline

 Data Warehouse architectures

 Data integration and loading: ETL vs. ELT
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DW Architecture 1 (basic)

elementary and 

aggregated data
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DATA WAREHOUSE

typically OLTP data sources

DW Model

• Inmon

• Kimball

• Data Vault

ETL workflow
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DW Architecture 2

DATA SOURCES INTEGRATION LAYER
ETL
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Data 

Warehouse
Operational

Data Store

DATA WAREHOUSE
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Operational Data Store

 = Staging Area = (Data) Stage

 A repository for an ETL engine

 To separate normal processing at DSs from data ingest

▪ to separate transactional from batch processing

▪ Disk storage for processing large data volumes that will 
not fit in RAM

▪ To provide means for data provenance



Operational Data Store

 To store intermediate results → to be shared (used) by 

multiple ETL tasks

▪ re-using the same result datasets by multiple processes
(optimization)

▪ for recovery after crash of an ETL process

• re-executing a stopped process from a failed phase

 Recent data can be accessed before a DW is refreshed

 Implementation

▪ database

▪ (distributed) file system
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recent data

older data
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DW Architecture 3
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DW Architecture (cd.)
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DATA SOURCES ETL ANALYTICS

ODS

DW

ODS

single server or cluster
main memory appliance 

(superserver)

single dedicated server

(typically for MOLAP)

or

the same server as for DW

DATA WAREHOUSE

DM
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Allegro DW

C. Maar, R. Kudliński: Allegro on the way from XLS based controlling to a modern BI 
environment. National conference on Data Warehousing and Business Intelligence, 
Warsaw, 2008



DW Architecture 4
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Data Marts
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DATA WAREHOUSE

data older than n years

large pool of HDDs

small RAM
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Gartner Report: DW servers
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Large DW Architectures

 # data sources: 100 - 200

 Fact table: nn * 109 rows

 Fact table: n TB

 Multiple relational DWs in an organization

▪ DW size: nn TB

 Multiple data marts

 n * 103 to nnn * 103 ETL workflows

 DW composed of 100+ tables

▪ on average 50+ attributes/table
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DW in Bank
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DW Architecture 5: ELT (ELTL)
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ELT Architecture

 Performance

▪ data stored in a DB  processing by means of: SQL, 

PL/SQL, SQL PL, Transact SQL

▪ data processed in a DB buffer cache  native DB 

environment

▪ advanced query optimization offered by DBMS

▪ single server for ELT and HD  heavier workload

 Functionality

▪ data provenance

▪ drill through

 Costs

▪ single DW server

▪ less software licences (OS, DBMS)
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ETL vs. ELT (experiment 1)

 Data sources

▪ topic: Internet auctions

▪ storage:

• Oracle11g (Object-Relational model)

• MySQL

• PostgreSQL

• XML

 Data warehouse: Oracle11g
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ETL vs. ELT (experiment 1)

 DW schema
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ETL vs. ELT (experiment 1)

 Transformations of data for:

▪ dimensions

▪ fact table

 ETL architecture  Oracle Data Integrator (ODI)

• ETL in a staging area on a separate server
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STAGING AREA

DATA

WAREHOUSE

ETL: ODI

ETL vs. ELT (experiment 1)
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DWODS

T+L

 ELT architecture

▪ T+L in a staging area on the same server as a DW

▪ variant 1: E+L → ODI, T+L → implemented in ODI

▪ variant 2: E+L → ODI, T+L → implemented as 

materialized views (MVs)

▪ variant 3: E+L → ODI, T+L → implemented as stored 

packages (SPs)

▪ variant 4: E+L → ODI, T+L → SPs + MVs

E+L: ODI



ETL vs. ELT (experiment 1)
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ELT: E+L → ODI, T+L → MVs 

ELT: E+L → ODI, T+L → implemented in ODI

ELT: E+L → ODI, T+L → SPs

ELT: E+L → ODI, T+L → SPs + MVs

ETL vs. ELT (experiment 2)

 Data source

▪ flight and weather data in the US, from 1986 until 2008

▪ 6 tables in Oracle11g

 Data warehouse: Oracle11g

 ETL/ELT: Informatica

22© R.Wrembel - Poznan University of Technology, Institute of Computing Science



ETL vs. ELT (experiment 2)

 DW schema (augmented with: calendar, airplane 
data, airport data)
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ETL vs. ELT (experiment 2)
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 ETL  Informatica

 ELT  Informatica (E+L), DB views (T+L)



ETL vs. ELT (experiment 2)

 ETL  Informatica

 ELT  Informatica (E+L), DB views (T+L)
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Architecture for Data Science

 Data stored in files

▪ performance problem

▪ no backup & recovery

▪ no access control

 Data & code sharing is difficult

▪ re-usability problem

▪ low programming productivity

csv

data profiling & transformations

Python, R, Scala, ...

data analysis & visualization

Python, R, 

spreadsheet, 

Tableau


