

POZNAN UNIVERSITY OF TECHNOLOGY

Modeling Data Warehouse Part 2

Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Outline

- Roll-up and aggregability
- **C** Taxonomy of dimension hierarchies
- Multidimenisional OLAP
- \Im Updates to dimension instances \rightarrow SCD

Definitions

Aggregation path

© Robert Wrembel (Poznan University of Technology, Poland)

Aggregability

Aggregability (summarizability)

• to be able to aggregate measures on a higher level (City) in a dim. hierarchy based on aggregates from a lower level (Shop)

Criteria of correct aggregability

disjointnes of level instances

- 1:M relationship between an upper and a lover level in a dim. hierarchy
- a lower level instance is related to only one upper level instance
- completeness
 - · all level instances belong to a dimension instance
 - every lower level instance is related to an upper level instance
- right aggregate function to compute
 - using an adequate aggregate function to a given type of a measure

[©] Robert Wrembel (Poznan University of Technology, Poland)

Types of measures

- Addtitive (flow, rate) ⇒ correct aggregation for all dimensions
 - e.g., nb of items sold ⇒ possible aggregation in dim. Time, Customer, Product, Shop, Supplier, ...
- Semiadditive (stock, level) ⇒ correct aggregation for some dimensions
 - e.g., nb of items in a store ⇒ possible aggregation in dim. (Store → City → Region)
 - aggregating in Time results in uninterpretable results
- Solution Nonadditive (value-per-unit) ⇒ aggregated values are non-interpretable in any dimension
 - e.g., net price, exchange rate, opening tick for SUM

© Robert Wrembel (Poznan University of Technology, Poland)

Types of agg. functions

Distributive

- partial results of aggreg. function F on n subsets of set S can be aggregated into a result that is identical to applying F on the whole S
- upper level aggregate can be computed from lower level aggregates (sales by cities aggregate to sales in a country)
- count, min, max, sum

Algebraic

- computed using distributive functions
- avg, stdev
- given partial Avg1, Avg2, ...
 - Avg = (Avg1*n1 + Avg2*n2 + ...)/(n1+n2+ ...)

Holistic

- can be computed only on all elementary data
- median

[©] Robert Wrembel (Poznan University of Technology, Poland)

Unbalanced hierarchy

- Includes only one aggregation path
- 1:M relationship between an upper level and a lower level, obligatory only from a lower level

© Robert Wrembel (Poznan University of Technology, Poland)

Special case

© Robert Wrembel (Poznan University of Technology, Poland)

Strict hierarchy

- Dimension schema includes only 1:M relationships between an upper and a lower level
 - special cases: balanced and unbalanced

iPhone 8

PowerShot SX430 IS

C Problem: aggregating twice the same product

© Robert Wrembel (Poznan University of Technology, Poland)

Galaxy S9

Products

Dell Inspiron 15 5577

Non-strict hierarchy

Solutions

- distributing a measure value between categories • e.g., telephone: 50%, digital camera: 50%
- adding a new category or replacing existing one, e.g., smartphone
- transforming a non-strict into a strict hierarchy → assigning a product to one (main) category

© Robert Wrembel (Poznan University of Technology, Poland)

Non-strict hierarchy

A problem still exists

© Robert Wrembel (Poznan University of Technology, Poland)

Alternative hierarchy

- **Composed of hierarchies that share at least one level**
- Aggregating through any path from facts to a shared level yields the same results at the shared level

Parallel hierarchies

⇒ Parallel independent hierarchies ⇒ a standard case

- hierarchies don't share levels
- each hierarchy is an independent context of an analysis, e.g., Prodcts, Customers, Time

© Robert Wrembel (Poznan University of Technology, Poland)

MOLAP

MOLAP language

- MDX MultiDimensional Expressions
- Systems supporting MDX
 - MS Analysis Services
 - SAS OLAP Server
 - Oracle Hyperion
- Other languages
 - OLAP DML
 - still in Oracle 12c
 - DAX Data Analysis Expressions
 - Power BI, Analysis Services, and Power Pivot in Excel
 - library of functions and operators to build formulas and expressions

© Robert Wrembel (Poznan University of Technology, Poland)

TURNINA POSARA

MOLAP

- **Cube implementation**
 - multidim-table
 - hash table (SQL Server)
 - BLOB (Oracle)
 - Quad tree
 - K-D tree

HOLAP

- ⇒ Detailed data, aggregated data \rightarrow ROLAP
- ⇒ Topic-wise data, aggregated data → MOLAP
- Central HD + data marts → HOLAP

Real case from sales

Supermarket chain (real data)

- products & sales
 - a total number of products in stock, including one-time-sales and seasonal ones: 15000
 - a total number of regular products (always in stock): at least 1400
 - a number of individual items sold per year: at least 15 300 000 000
- data changes
 - maximum rate of a value change, e.g., price: once per day
 - minimum rate of a value change, e.g., product dimension instance: once per 6 months
 - average rate of a value change: once every 2 weeks
- data size
 - maximum length of a record describing a product (dim): 82B
 - maximum length of a record describing a sold item (fact): 64B

© Robert Wrembel (Poznan University of Technology, Poland)

THE REAL PROPERTY OF THE

Real case from sales

C An example dimension Products

Real case from sales

An example instance of dimension Products

© Robert Wrembel (Poznan University of Technology, Poland)

THE INITA POL

Real case: data change

Dimension instances change in time

Case 1: value change

- correcting a value error
- price change
- price can change every day as the result of:
 - promotion campaign
 - entering a particular holiday period (e.g., prices of chocolates for Christmas and Easter)
 - reacting to price changes of competitors
 - approaching 'best before date'
 - ...

Real case: data change

Case 2: reference to sales units

- a given product, say yoghurt A, is sold in different package units
 - in January yoghurt A was sold in 2-packs
 - in February \rightarrow in 4-packs
 - in March \rightarrow in 6-packs
 - in April \rightarrow in 8-packs
- in each of these sales periods, a database registers the number of units sold (i.e., n-packs), and not individual yoghurt jars

© Robert Wrembel (Poznan University of Technology, Poland)

ALL AND ALL AN

Real case: data change

Case 3: dimension instance change

Example 1: the instance of dimension Product changes its hierarchical structure as the result of:

- reclassifying products to other categories
 - milk \rightarrow diary \rightarrow food changed to milk \rightarrow non vege \rightarrow food
 - electronics → 7% VAT changed to electronics → 22% VAT
- removing some level instances
- new products offered

- changing territorial organization of a country (Poland 1999; 49 → 16 voivodeships)
- East Germany + West Germany
- Yugoslavia split
- Czech-Slovakia split

[©] Robert Wrembel (Poznan University of Technology, Poland)

SCD: introduction

- The value of a descriptor attribute of a level instance changes in time
- The hierarchy of a dimension instance changes
- Both types of changes represent an update to an attribute value
- Need to record the history of such changes
 - 2020: croissant 2.0 EUR
 - 2019: croissant 1.5 EUR
 - 2018: croissant 1.0 EUR
 - SUM(nb_items*price) where year between 2018 and 2020
- **Contemporal Section** Such changes are called Slowly Changing Dimensions
 - less frequent than changes in the fact table (mainly record inserts)

© Robert Wrembel (Poznan University of Technology, Poland)

HUNNA POINTA NOT

SCD: introduction

- R. Kimball proposed 7 SCD techniques to record the history of dimension attributes value changes
 - denoted as SCD1-SCD7
 - 3 basic and 4 extended

R. Kimball, M. Ross: The Data Warehouse Toolkit, 3rd Edition, Wiley, 2013

 Slowly Changing Dimensions: http://www.kimballgroup.com/2013/02/design-tip-152-slowly-changing-dimension-types-0-4-5-6-7/

© Robert Wrembel (Poznan University of Technology, Poland)

SCD1: Overwriting

- No history is kept
- Control Co
- Typically, this technique is used for correcting the erroneous data e.g., correcting spelling errors

before update	CustomerID	Name	City	Country
	1313	Robert	Poznań	Poland
after update	CustomerID	Name	City	Country
	1313	Robert	Bacelona	Spain

© Robert Wrembel (Poznan University of Technology, Poland)

SHEWNING POLICIES

SCD2: Record versions

- For every change in the attribute value of a record, a new version of the record is created
- **C** Each record version gets assigned VersionID
- A pair of timestamps is used to identify the validity period of versions

VersionID	CustomerID	Name	City	Country	Valid_from	Valid_until	Current
1	1313	Robert	Poznań	Poland	01-07-1995	31-08-2019	0
2	1313	Robert	Barcelona	Spain	01-09-2019		1

- Full history of changes
- If changes are frequent a table size may grow fast
- **C** Performance may become a concern
- More complex ETL process

SCD3: Attribute versions

Typically two versions per attribute are maintained

- the current
- the previous

simple	variant
--------	---------

CustomerID	Name	City_new	Country_new	City_old	Country_old
1313	Robert	Barcelona	Spain	Poznań	Poland

extended variant

CustomerID	Name	City_new	Country_new	Valid_from City_old	Country_old	Valid_from
1313	Robert	Barcelona	Spain	01-09-2019 Poznań	Poland	01-07-1995

© Robert Wrembel (Poznan University of Technology, Poland)

SCD3: Attribute versions

- Only two versions may be stored
- **⊃** Extended model \rightarrow storing **n** versions of an attribute
- $\hfill \label{eq:problem}$ Problem \rightarrow a db designer has to know in advance for which attributes versions need to be stored
- More complex ETL process

SCD4: Variant 1

- Coriginal dimension table stores current record → like SCD1
- ⇒ Additional table stores record versions → like SCD2
- PK: VersionID+CustomerID

currer	nt record							
VersionID	Custome	rID Name	City	Country				Eact table
2	1313	Robert	Bacelona	Spain				Fact table
versio	ons							
VersionID	CustomerID	Name	City	Country	Valid_from	Valid_until	Current	
1	1313	Robert	Poznań	Poland	01-07-1995	31-08-2019	0	
2	1313	Robert	Barcelona	Spain	01-09-2019		1	
© Robe	ert Wrembel (P	oznan Univers	ity of Technolog	gy, Poland)				41

