% EVD_deriv--sent close all; clear all; format compact; format short; warning off; % SkaiWiD-wyklad#06'-sent.pdf % -- 31 % -- 29 % -- 28 % (bez szczegolow dotyczacych istnienia/jednoznacznosci) % macierz diagonalna D = [1 0 0; 0 2 0; 0 0 3] k = [3;2;1] Dk = diag(k) D*Dk Dk*D % mnozenie macierzy M = [0 1 2; 1 2 3; 2 3 4] % (prawostronne) mnozenie przez wektor k1 = [1;2;3] k2 = [2;3;1] k3 = [3;1;2] [k1] [k1 k2] [k1 k2 k3] M*k1 M*k2 M*k3 [M*k1] [M*k1 M*k2] [M*k1 M*k2 M*k3] M*[k1 k2 k3] % (prawostronne) mnozenie przez macierz diagonalna M k M(:,1)*k(1) M(:,2)*k(2) M(:,3)*k(3) [M(:,1)*k(1) M(:,2)*k(2) M(:,3)*k(3)] Dk = diag(k) M*Dk % wartosci i wektory wlasne macierzy A = [1 2 3;3 5 7;3 2 0] [K,L] = eig(A) A*K(:,1) K(:,1)*L(1,1) [A*K(:,1), K(:,1)*L(1,1)] [A*K(:,2), K(:,2)*L(2,2)] [A*K(:,3), K(:,3)*L(3,3)] [A*K(:,1) A*K(:,2) A*K(:,3)] A*K [K(:,1)*L(1,1) K(:,2)*L(2,2) K(:,3)*L(3,3)] K*L A*K K*L % WSZEDZIE DALEJ ZAKLADAMY: K posiada odwrotnosc (w postaci inv(K) = K' lub tylko inv(K)) K det(K) inv(K) K*inv(K) % A*K = K*L % A*K*inv(K) = K*L*inv(K) % A = K*L*inv(K) A K*L*inv(K) K det(K) inv(K) K' K*inv(K) K*K' K*L*K' A = [19 23 24; 23 33 41; 24 41 58] [K,L] = eig(A) A*K K*L K det(K) inv(K) K*inv(K) A K*L*inv(K) K det(K) inv(K) K' K*inv(K) K*K' K*L*K'