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A B S T R A C T

This paper proposes new versions of the TOPSIS method for Multiple Criteria Ordinal Classification (sorting). We
apply features found in the literature to prevent ranking reversals in TOPSIS and their impacts on sorting
problems. Thus, TOPSIS-Sort-B is presented as an improved version of TOPSIS-Sort for sorting problems in which
boundary profiles should be determined. In addition, we propose a novel TOPSIS-based sorting method, called
TOPSIS-Sort-C, that should be used to address problems in which it is more appropriate to determine char-
acteristic profiles. Both methods were applied in a numerical application that assessed the degree of economic
freedom of 180 countries and assigned them to five pre-defined ordered classes. The results showed coherence
when compared with the ratings already found in the literature and provided by a specialized institution.

1. Introduction

In Multiple Criteria Decision Making/Aiding (MCDM/A), the sorting/
classification problematic (Doumpos & Zopounidis, 2002; Hwang & Yoon,
1996; Zopounidis & Doumpos, 2002a) describes problems in which alter-
natives should be allocated to a set of pre-defined categories/classes in
accordance with how a set of criteria has evaluated these alternatives. In the
Multiple Criteria Ordinal Classification, commonly referred to as sorting, the
pre-defined classes are ordered by preference. In this case, alternatives al-
located to the most preferred categories are better than alternatives allo-
cated to the less preferred categories. Furthermore, each alternative should
be allocated to only one category (Doumpos & Zopounidis, 2002; Ferreira,
Borenstein, Righi, & de Almeida Filho, 2018). On the other hand, in Mul-
tiple Criteria Nominal Classification, the categories are not ordered by
preference and the alternatives are grouped according to their similarities.
In this case, an alternative may be allocated to more than one group or may
not be allocated at all (Ferreira et al., 2018) and it is not possible to establish
preference relations between alternatives from different groups.

Over the last 20 years, several methods have been developed to solve
sorting problems. ELECTRE-TRI and its variations (Almeida-Dias, Figueira,
& Roy, 2010, 2012; Fernández, Figueira, Navarro, & Roy, 2017; Micale, La
Fata, & La Scalia, 2019; Mousseau & Slowinski, 1998; Ramezanian, 2019)
represent examples of sorting approaches that are applied in outranking
problems. Adaptations of the PROMETHEE outranking method to address
sorting problems have also been proposed (de Silva, 2018; Doumpos &
Zopounidis, 2004), where PROMETHEE parameters are inferred by using

mathematical programming techniques. In UTADIS (Jacquet-Lagreze,
1995), linear programming is used to obtain an additive function and to sort
alternatives into ordered classes. Other examples of MCDM/A sorting ap-
proaches include DRSA variations (Greco, Matarazzo, & Slowinski, 2001;
Kadziński, Greco, & Słowiński, 2014; Słowinski, Greco, & Matarazzo, 2012),
AHP-Sort (Ishizaka, Pearman, & Nemery, 2012), MACBETH-Sort (Ishizaka
& Gordon, 2017), and the Additive-Veto sorting approach (Palha, de
Almeida, Morais, & Hipel, 2019).

TOPSIS (Technique for Order of Preference by Similarity to Ideal
Solution) is among the most popular MCDM/A methods. Traditionally, this
method is applied to ranking problems, where alternatives are evaluated
based on Euclidean distances from an ideal and a nonideal solution.
Behzadian, Khanmohammadi Otaghsara, Yazdani, and Ignatius (2012)
present a systematic review of TOPSIS applications. This showed that more
than 200 papers were published between 2000 and 2012, which illustrates
the potential and applicability of the method. In this review, nine applica-
tion areas were identified, including for instance: Supply Chain Manage-
ment and Logistics; Design, Engineering and Manufacturing Systems;
Business and Marketing Management; and Health, Safety, and Environment
Management. Furthermore, Salih, Zaidan, Zaidan, and Ahmed (2019) pre-
sent a survey of Fuzzy-TOPSIS, which considers 170 articles published be-
tween 2007 and 2017. The use of fuzzy sets is interesting in MCDM/A
problems since fuzzy numbers can express linguistic evaluations (Ferreira
et al., 2018). Proposals on the assessment of linguistic variables and ex-
tensions of group decision making with multiple criteria have been pro-
posed lately (Yu, Zhang, Zhong, & Sun, 2017; Zhang, Guo, & Martinez,
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2017). Recent developments on TOPSIS include a solution for the rank
reversal problem (de Aires, 2019), a risk TOPSIS methodology for appli-
cations in risk-based preventive maintenance (Seiti & Hafezalkotob, 2019),
a TOPSIS method based on a fuzzy covering approximation space (Zhang,
Zhan, & Yao, 2019), a T2NN-TOPSIS approach for group decision making
under a type-2 neutrosophic number (Abdel-Basset, Saleh, Gamal, &
Smarandache, 2019), and an interval-valued TOPSIS (Micale et al., 2019)
which was applied combined with interval-valued ELECTRE-TRI for a sto-
rage location assignment problem. Recently, variations of TOPSIS to address
sorting/classification problems have been proposed. Sabokbar, Hosseini,
Banaitis, and Banaitiene (2016) presented the TOPSIS-Sort approach. In this
method, upper and lower limit profiles are determined for the categories
and their closeness coefficients are calculated according to the TOPSIS
procedure. Then, the classification of alternatives is made by comparing
their closeness coefficients to those of the profiles. Ferreira et al. (2018)
proposed the FTOPSIS-Class, a variant of FTOPSIS (Chen, 2000). The
method was used to classify investment alternatives according to investors‘
risk-taking profiles (conservative, moderate, bold and aggressive).

Despite the TOPSIS methods mentioned above, the authors consider
that there are gaps in the literature, which are discussed in this paper.
In the TOPSIS-Sort original routine, alternatives are sorted according to
how their closeness coefficients are ranked compared to those of the
profiles, which play the role of boundary references for the classes.
Therefore, TOPSIS ranking reversal may occur and the allocation of a
specific alternative may change if an external alternative is added to the
problem. Moreover, for several situations, it is more appropriate to
determine characteristic profiles than to work with boundary profiles.
Finally, there are still few examples in the literature of numerical ap-
plications regarding TOPSIS for sorting problems.

The contributions of this paper are threefold. First, it proposes a varia-
tion on the TOPSIS-Sort routine, called TOPSIS-Sort-B, by using solutions
from the literature on TOPSIS for the ranking reversal problem. In short,
TOPSIS-Sort-B defines the use of only class| | 1 boundary profiles instead
of using upper and lower limiting profiles for each class; this includes a step
for defining a domain for the criteria; and it adds an interval normalization
option, which is more appropriate for situations where criteria have dif-
ferent domains. Secondly, this paper proposes a novel TOPSIS-Sort method,
called TOPSIS-Sort-C, where the sorting process is based on using char-
acteristic profiles, determined in a constructive perspective. Thirdly, the
methods are applied to sort the degree of economic freedom of 180 coun-
tries into five ordered classes. This application demonstrates the use of the
new method and the results are discussed.

The rest of the paper is organized as follows. Section 2 presents the
traditional TOPSIS and TOPSIS-Sort routines and discusses the classi-
fication change problem with an example. In Section 3, TOPSIS-Sort
variations for boundary and characteristic profiles are presented, where
we propose TOPSIS-Sort-C. In Section 4, a numerical application of
TOPSIS-Sort-C is detailed. Finally, conclusions are drawn and sugges-
tions for future studies are made in Section 5.

2. Preliminaries

Before starting the presentation of the procedures, we consider it
will be helpful to introduce the reader at this point to some notation
that will be used for the MCDM/A methods throughout the paper. Let

=A a a a a{ , , , , }m1 2 3 be a set of m alternatives; =G g g g g{ , , , , }n1 2 3
be a set of n criteria; =W w w w w[ , , , , ]n1 2 3 be a vector of weights with
n elements, where wj is the weight of criterion gj; and =C C C C{ , , , }q1 2
be a set of q pre-defined ordered classes of a sorting problem . Let +G
and G be respectively the subsets of beneficial and cost criteria. Let ai j,
be the performance of alternative ai regarding criterion gj and let Pk j, be
the performance of profile Pk regarding criterion gj.

2.1. TOPSIS and TOSPSIS-sort procedures

Algorithm 1 gives a detailed description of the traditional TOPSIS

procedure, proposed in (Hwang & Yoon, 1981) for ranking problems. The
alternatives are evaluated according to their distances to ideal and anti-ideal
solutions. Therefore, the nearer an alternative is to the ideal solution, the
better the evaluation of that alternative. The calculations are made using
Euclidean distances (Step 4) and a closeness coefficient is also calculated
(Step 5).

Algorithm 1: TOPSIS Routine

Step 1: Normalize the decision matrix = ×X a[ ]i j m n, , finding = ×R r[ ]i j m n,

=
=

ri j
ai j

i
m ai j

,
,

1 , 2

Step 2: Calculate the decision matrix = ×V v[ ]i j m n, normalized by the weights.
= = =v w r i m j n, 1, 2, ..., ; 1, 2, ...,i j j i j, ,

Where: == w 1j
n

j1
Step 3: Determine the ideal and anti-ideal solutions.

= =
+

v v v v v
v g G

v g G
[ , , , ],

max ,

min ,n j
i

i j j

i
i j j

1 2
,

,

= =
+

v v v v v
v g G

v g G[ , , , ],
min ,

max ,n j
i

i j j

i
i j j

1 2
,

,

Step 4: Calculate the Euclidian distances of each alternative for the ideal and anti-
ideal solutions.

= ==d v v i m( ) , 1, 2, , .ai j
n

i j j1 , 2

= ==d v v i m( ) , 1, 2, , .ai j
n

i j j1 , 2

Step 5: Calculate the closeness coefficient of each alternative for the ideal solution
based on the distances obtained in the previous Step.

= =+Cl a i m( ) , 1, 2, ,i
di

di di
Step 6: Rank the alternatives in descending order of the closeness coefficient.

Sabokbar et al. (2016) proposed a variation of TOPSIS for sorting
problems, called TOPSIS-Sort, detailed in Algorithm 2. Let

=P P P{ , , }q1 be a set of q profiles, and defining a profile =P P P( ¯ , )k k k
_

,

where P̄k is the upper limit of class Ck and Pk
_

is the lower limit of class

Ck. Alternatives, weights and criteria are defined in the same way as in
Algorithm 1. Like the alternatives, the upper and lower limits of each
profile receive performance values over te set of criteria. Algorithm 2
details the TOPSIS-Sort procedure.

Algorithm 2: TOPSIS-Sort Routine – Adapted from Sabokbar et al. (2016)

Step 1: Determine the Decision Matrix = ×X a[ ]i j m n,

Step 2: Establish a set of Profiles =P P P P P P P{( ¯ , ), ( ¯ , ), , ( ¯ , )}q q1 1
_

2 2
_ _

, where P̄k and

Pk
_

are respectively the upper and lower limits of class Ck .

Step 3: Establish a new Decision Matrix = + ×M M[ ]i j m q n, ( 1) formed by the set of
alternatives and profiles.

Step 4: Calculate the Normalized Decision Matrix = + ×R r[ ]i j m q n, ( 1) starting with
the equations:

= = + =
+

r i m q j n, 1, , ( 1); 1, , .i j
Mi j

i m q
Mi j,

,
max

1 ( 1)
,

Step 5: Conduct Steps 2 to 5 of traditional TOPSIS (Algorithm 1). Ideal and anti-ideal
solutions are determined based on values from the weighted normalized matrix.
Next, the Euclidean distances of each alternative, the upper limit profile, and the
lower limit profile for the ideal and anti-ideal solutions are obtained. Finally, the
closeness coefficients of each alternative Cl a( )i , upper limit profile Cl P( ¯ )k and
lower limit profile Cl P( )k

_
are determined.

Step 6: Classify the alternatives by making comparisons between their closeness c-
oefficients Cl a( )i and those of the upper Cl P( ¯ )k and lower Cl P( )k

_
limits of the

profiles.
< < = =a C iff Cl P Cl a Cl P i m k q( ¯ ) ( ) ( ), 1, 2, , ; 1, 2 ,i k k i k

_

When analyzing the TOPSIS-Sort procedure and the numerical
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example used to illustrate the method in (Sabokbar et al., 2016), some
details stand out. In order to be able to sort all the alternatives among q
ordered classes using Step 4, the lower limit of a profile should be equal
to the upper level of the subsequent profile. Therefore, in Step 4,

= +Cl P Cl P( ) ( ¯ )k k
_

1 . Furthermore, there is no need to create an upper

limit for the most preferred class and a lower limit for the least pre-
ferred class. On taking these observations into account, we can rewrite
the procedure as follows: =p q( 1) profiles, where the profile Pk is
both the lower limit of class Ck and the upper limit of class +Ck 1. This
explains why, in the numerical example (discussed in Section 2.1), 4
profiles are defined to represent 5 ordered classes. Also, that is the
reason why only (q 1) instead of q2 rows are added to the initial set of
alternatives in Step 3 of Algorithm 2. This change is one of the changes
incorporated in TOPSIS-Sort-B. See Algorithm 3 in Section 3.

Another important aspect should be considered. As the profiles are
defined as alternatives and the sorting process is conducted by com-
paring the closeness coefficients of alternatives and profiles, the pro-
cedure follows steps similar to those of the traditional ranking method,
which results in the TOPSIS ranking reversal problem, and which has
been analyzed in the literature and recently solved (de Aires, 2019;
García-Cascales & Lamata, 2012). As to the sorting problematic, a
ranking reversal involving an alternative and a profile may occur when
the initial Decision Matrix is changed by adding or removing an alter-
native (and this change impacts the criteria domain). As a result, the
class of the alternative involved in a ranking reversal with a profile
would change. In the following section, a numerical example is used to
analyze this problem.

2.2. Rank-reversal and sorting inconsistencies in TOPSIS

Table 1 presents the Decision Matrix used in the numerical example
of Sabokbar et al. (2016), where TOPSIS-Sort was applied for the first
time. In this application, there are 22 alternatives, 5 classes, and 4
profiles. Profile Pk works as a limit between classes Ck and +Ck 1.

As the profiles are determined by the DM and each alternative is
allocated by comparing its performance to the performance of the
profiles, the inclusion of a new alternative should not change the class
of any of the other m initial alternatives. On the other hand, the clo-
seness coefficients of the profiles are calculated in a similar way to
those of any other alternative, and a ranking reversal problem may
occur when a new alternative expands the domain of a criterion (de
Aires, 2019; García-Cascales & Lamata, 2012). Also, the domain of
criteria can be compressed if an alternative is removed from the original
set. Two domain variations are used to illustrate the problem:

• Variation #1: An external alternative is included:
=a {70, 130, 49.2, 110, 190}23 , thereby expanding the domain of

three criteria g1, g2 and g4.
• Variation #2: Only half of the alternatives are considered, a1 to a11,
thus compressing the domain of all the criteria.

Table 2 presents the original allocation and the changes with the
two variations:

Essentially, as commented on above, these changes are caused when
the domain of criteria varies. As a result, the values which are used to
determine the change in ideal and anti-ideal solutions and new
Euclidean distances and closeness coefficients are calculated, which
may cause ranking reversals. Therefore, using the same decision matrix
for a ranking problem of traditional TOPSIS could result in ranking
reversals with domain changes, even between alternatives from dif-
ferent classes.

3. Novel sorting algorithms based on TOPSIS

In this Section, Algorithm 2 as set out by Sabokbar et al. (2016) is

altered by using =p q 1 boundary profiles for a problem of q ordered
classes, including a solution for the ranking reversal problem (de Aires,
2019; García-Cascales & Lamata, 2012), and aspects of RTOPSIS (de
Aires, 2019) for sorting problems are introduced, such as the interval
normalization option. The procedure, called TOPSIS-Sort-B, is proposed
in Algorithm 3. Also, we propose a new TOPSIS-Sort process, called
TOPSIS-Sort-C, in which characteristic profiles are used for the sorting
process instead of boundary profiles. In the case of TOPSIS-Sort-C,

=p q profiles are defined.
What prompted us to investigate TOPSIS-based sorting methods

further was that they are applied widely and decision-makers find them

Table 1
Decision Matrix.

Alternatives g1(benefit) g2(benefit) g3(benefit) g4(benefit) g5(cost)

a1 15.5 82.4 40.1 70.66 313.69
a2 9.9 90.8 22 82.21 130.61
a3 15.2 82.3 25.2 65.57 269.37
a4 23.4 88.3 60.2 69.28 119.03
a5 16.6 76.8 22.7 69.28 116.82
a6 12.4 78.6 22.6 50.28 199.55
a7 4 85 27.8 51.4 188.94
a8 4.4 78.2 25.6 56.59 126.37
a9 5.2 80.2 27.6 86.29 108.82
a10 2.3 80.7 24.2 79.88 97.95
a11 4.9 77.7 26.3 61.28 122.58
a12 5.7 80.9 26.8 70.75 82.75
a13 33.4 85.3 28.1 67.68 126.14
a14 5.9 82.5 29.8 82.61 149.32
a15 14 88.5 24.6 90.71 335.24
a16 11.4 81.8 26.5 61.04 139.62
a17 3.5 78.9 22.4 60.82 99.42
a18 12.96 78.4 25.2 67.25 180.18
a19 28 82.4 25.3 56.89 102.78
a20 15.7 82.1 27.7 24.64 193.52
a21 25 91.3 67.1 79.81 916.67
a22 48 85.1 49.2 86.71 173.79
P1 25 80 40 80 150
P2 20 75 30 60 300
P3 10 70 20 30 400
P4 0 65 10 20 700
wj 0.2 0.2 0.2 0.2 0.2

Source: Sabokbar et al. (2016).

Table 2
Classification of alternatives with changes in the domain of criteria.

Alternatives Sorting Process

Original Set of Alternatives Variation #1 Variation #2

a1 C2 C2 C2
a2 C2 C2 C3
a3 C3 C3 C3
a4 C1 C1 C1
a5 C2 C2 C2
a6 C3 C3 C3
a7 C3 C3 C3
a8 C3 C3 C3
a9 C2 C2 C3
a10 C3 C2 C3
a11 C3 C3 C3
a12 C3 C2 –
a13 C2 C2 –
a14 C2 C2 –
a15 C2 C2 –
a16 C3 C2 –
a17 C3 C3 –
a18 C3 C2 –
a19 C2 C2 –
a20 C3 C3 –
a21 C2 C2 –
a22 C1 C1 –
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easy to understand. TOPSIS-based methods include interesting aspects
that can help solve MCDM/A problems, such as the fact that they
consider the notion of measuring performance on alternatives based on
their distance to ideal and non-ideal alternatives. This differentiates the
method from other additive methods. Furthermore, TOPSIS-based
sorting methods deal with a paradigm that is different from the one
investigated in the classic PROMETHEE-based and ELECTRE-based
sorting methods. While these latter two methods deal with outranking
relations, TOPSIS-based methods consider the relative distance among
the performances of the criteria. Asgharizadeh, Yazdi, and Balani
(2019) classified 17 MCDM/A procedures using 7 criteria: “simplicity”,
“speed”, “memory”, “inputs”, “logic”, “quality”, and “rate of growth”.
TOPSIS received the highest evaluation for “inputs” and “rate of
growth” and was the third best evaluated method for the criterion of
“simplicity”. Moreover, in this paper, the methods we propose cover
gaps found in the literature as described above.

Before describing the procedures, we highlight some assumptions
and formalizations that are considered prior to applying the novel
methods in sorting problems.

Assumption 1:. The set of classes is pre-defined and the classes are ordered

in terms of preference as follows: C C Cq1 2 .

Assumption 2:. The domain of each criterion is known and can be
represented by reference alternatives a and a , where aj and aj are
respectively the largest and smallest possible values of criterion gj.

Assumption 3.1 ((valid only for TOPSIS-Sort-B):). The limit between two
consecutive classesCk and +Ck 1 is defined by one boundary profile Pk , where
the profile Pk is both the lower limit of class Ck and the upper limit of class

+Ck 1.Fig. 1 illustrates an example of how boundary profiles are constructed.
The value of Pk j, should represent what is expected to be the limit value
between two consecutive categories (Ck and +Ck 1) for criterion gj.

Assumption 3.2 ((valid only for TOPSIS-Sort-C):). Each classCk is defined
by one characteristic profile Pk , which is the most representative reference
alternative of the class.Fig. 2 shows a graphical representation of the concept
of characteristic profiles. As illustrated, now the value of Pk j, should
represent what is expected to be a typical evaluation of an alternative
from class Ck for criterion j.

Assumption 4:. For any pair of consecutive profiles, the profile Pk
dominates the profile +Pk 1. In other words, +P Pk j k j, 1, , where the strict
preference ( ) holds for at least one criterion.

Fig. 1. Boundary Profiles.

Fig. 2. Characteristic Profiles.
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3.1. TOPSIS-Sort-B

Let =P P P{ , , }p1 be a set of =p q 1 profiles, in which profile Pk is
the boundary profile that defines the limit between classes Ck and +Ck 1.
Algorithm 3 details the TOPSIS-Sort-B method.

Algorithm 3: TOPSIS-Sort-B Routine

Step 1: Determine the Decision Matrix = ×X a[ ]i j m n,

Step 2: Establish the Boundary Profiles Matrix = ×P P[ ]k j p n, , where =p q 1
Step 3: Determine the domain of each criterion, thereby creating maximum and m-

inimum values that could be reached by an alternative in each criterion. Later,
these values will play the role of Ideal and Nonideal solutions. The domain is

represented by the matrix =D a a
a a

n
n

1
1

, where aj and aj are respectively

the largest and smallest possible value of criterion gj .

Step 4: Establish the Complete Decision Matrix = =+ + ×M M
X
P
D

[ ]i j m p n, ( 2) , by ve-

rtically concatenating = ×X a[ ]i j m n, , = ×P P[ ]k j p n, , and =D a a
a a

n
n

1
1

.

Step 5: Determine the weighted and normalized Decision Matrix = + + ×V v[ ]i j m p n, ( 2)
Step 5.1: Normalize the Decision Matrix M starting with the equations:
Option 1 (Normalization by the Max):

= = + + =r i m p j n, 1, , ( 2); 1, ,i j
Mi j
aj

,
,

Option 2 (Interval Normalization):

= = + + =r i m p j n, 1, , ( 2); 1, ,i j
Mi j aj
aj aj

,
,

Step 5.2: Calculate the weighted and normalized decision matrix = + + ×V v[ ]ij m p n( 2)

= = + + =v w r i m p j n, 1, 2, ...,( 2); 1, 2, ...,i j j i j, ,

Where: == w 1j
n

j1
Step 6: Determine the ideal and anti-ideal solutions.

= =
+

v v v v v
v g G

v g G
[ , , , ],

max ,

min ,n j
i

i j j

i
i j j

1 2
,

,

= =
+

v v v v v
v g G

v g G[ , , , ],
min ,

max ,n j
i

i j j

i
i j j

1 2
,

,

Step 7: Calculate the Euclidian distances of each alternative and profile for the ideal
and anti-ideal solutions.

= ==d v v i m( ) , 1, 2, ,ai j
n

i j j1 , 2

= ==d v v i m( ) , 1, 2, ,ai j
n

i j j1 , 2

= = = +=d v v k p i k m( ) , 1, 2, , ;Pk j
n

i j j1 , 2

= = = +=d v v k p i k m( ) , 1, 2, , ;Pk j
n

i j j1 , 2

Step 8: Calculate the closeness coefficient of each alternative and profile for the ideal
solution based on the distances obtained in the previous Step.

= =
+

Cl a i m( ) , 1, 2, ,i
dai

dai dai

= =+Cl P k p( ) , 1, 2,k
dPk

dPk dPk
Step 9: Classify the alternatives by making comparisons between their closeness c-

oefficients Cl a( )i , and those of the profiles Cl P( )k .
a C iff Cl a Cl P( ) ( )i i1 1

> =a C iff Cl P Cl a Cl P k q( ) ( ) ( ), 2, , ( 1)i k k i k1
<a C iff Cl a Cl P( ) ( )i q i q 1

TOPSIS-Sort-B differs from the original TOPSIS-Sort method set out
in Algorithm 2 because it:

i. Defines only q 1 profiles;
ii. Adds Step 3 to prevent sorting changes derived from the TOPSIS

ranking reversal problem. This step is used in RTOPSIS, which was
proposed by (Aires & Ferreira, 2019) as the solution for the ranking
reversal in TOPSIS;

iii. Adds the option of an interval normalization in Step 5.1;

For the application of TOPSIS-Sort-B, the analyst and the DM take a
constructive approach to determining the boundary profiles. The do-
main for each criterion should be defined by an expert. The definition of
only q 1 boundary profiles makes it easier to understand the role that
they play, which is to specify the limits between two consecutive ca-
tegories. Therefore, the DM does not need to define an upper limit
profile for the best category and a lower limit profile for the worst one.
In contrast, the limits of each criterion are specified as a result of having
defined the respective domain in Step 3. Furthermore, the inclusion of
Step 3 represents an important improvement to the TOPSIS-Sort algo-
rithm, with regard to the change in classification problem discussed in
Section 2.1. The fictitious alternatives (a and a ), defined in this step
will set the range of acceptable values for the application, and will
function as ideal and anti-ideal solutions. Therefore, as neither the in-
clusion nor the removal of alternatives impacts the domain, the ideal
and anti-ideal solutions do not change, and ranking reversals are
avoided.

3.2. TOPSIS-Sort-C

It is often easier to define a class by using a characteristic profile
than by defining boundary profiles in order to understand the limits
between consecutive classes. For instance, when a financial analyst
aims to define if a sovereign bond should be allocated to a risky or to a
safe category, he/she could compare the characteristics of the country
by using a set of financial criteria applied to a low-risk bond example or
a high-risk country. On the other hand, under a boundary profile per-
spective, the financial analyst would think about a profile that is at the
limit between the two defined classes, which could be less intuitive.
Taking this into consideration, methods to sort alternatives using
characteristic profiles have been proposed in the MCDM/A literature,
such as the ELECTRE-TRI-C and ELECTRE-TRI-nC variations of the
traditional ELECTRE-TRI sorting method (Almeida-Dias et al., 2010,
2012).

In this paper, we propose TOPSIS-Sort-C in order to address this
type of sorting problem from a TOPSIS perspective. This method should
be applied when a characteristic profile/action is defined so as to ex-
plain each pre-defined class. Like the previous method, TOPSIS-Sort-B,
TOPSIS-Sort-C should be applied for preference ordered classification
problems.

Let =P P P{ , , }p1 be a set of =p q profiles, in which profile Pk is a
characteristic profile of class Ck. Algorithm 4 details the TOPSIS-Sort-C
method.
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Algorithm 4: TOPSIS-Sort-C Routine

Step 1: Determine the Decision Matrix = ×X a[ ]i j m n,

Step 2: Establish the Boundary Profiles Matrix = ×P P[ ]k j p n, , where =p q
Step 3: Determine the domain of each criterion, creating maximum and minimum

values that could be reached by an alternative in each criterion. Later, these
values will play the role of Ideal and Nonideal solutions. The domain is repres-

ented by the matrix =D a a
a a

n
n

1
1

, where aj and aj are respectively the

largest and smallest possible value of criterion gj .

Step 4: Establish the Complete Decision Matrix = =+ + ×M M
X
P
D

[ ]i j m p n, ( 2) , by ve-

rtically concatenating = ×X a[ ]i j m n, , = ×P P[ ]k j p n, , and =D a a
a a

n
n

1
1

.

Step 5: Determine the weighted and normalized Decision Matrix = + + ×V v[ ]i j m p n, ( 2)
Step 5.1: Normalize the Decision Matrix M starting with the equations:
Option 1 (Normalization by the Max):

= = + + =r i m p j n, 1, , ( 2); 1, ,i j
Mi j
aj

,
,

Option 2 (Interval Normalization):

= = + + =r i m p j n, 1, , ( 2); 1, ,i j
Mi j aj
aj aj

,
,

Step 5.2: Calculate the weighted and normalized decision matrix = + + ×V v[ ]ij m p n( 2)

= = + + =v w r i m p j n, 1, 2, ...,( 2); 1, 2, ...,i j j i j, ,

Where: == w 1j
n

j1
Step 6: Determine the ideal and anti-ideal solutions.

= =
+

v v v v v
v g G

v g G
[ , , , ],

max ,

min ,n j
i

i j j

i
i j j

1 2
,

,

= =
+

v v v v v
v g G

v g G[ , , , ],
min ,

max ,n j
i

i j j

i
i j j

1 2
,

,

Step 7: Calculate the Euclidian distances of each alternative and profile for the ideal
and anti-ideal solutions.

= ==d v v i m( ) , 1, 2, ,ai j
n

i j j1 , 2

= ==d v v i m( ) , 1, 2, ,ai j
n

i j j1 , 2

= = = +=d v v k p i k m( ) , 1, 2, , ;Pk j
n

i j j1 , 2

= = = +=d v v k p i k m( ) , 1, 2, , ;Pk j
n

i j j1 , 2

Step 8: Calculate the closeness coefficient of each alternative and profile for the ideal
solution based on the distances obtained in the previous Step.

= =
+

Cl a i m( ) , 1, 2, ,i
dai

dai dai

= =+Cl P k p( ) , 1, 2,k
dPk

dPk dPk
Step 9: Classify the alternatives by making comparisons between their closeness c-

oefficients Cl a( )i , and those of the profiles Cl P( )k .
=a C iff Cl a Cl P Cl a Cl P i m| ( ) ( )| | ( ) ( )|, 1, ,i i i1 1 2

< = =
+

a C iff Cl a Cl P Cl a Cl P
Cl a Cl P Cl a Cl P i m k q| ( ) ( )| | ( ) ( )|

| ( ) ( )| | ( ) ( )| , 1, , ; 2, , ( 1)i k
i k i k
i k i k

1
1

< =a C iff Cl a Cl P Cl a Cl P i m| ( ) ( )| | ( ) ( )|, 1, ,i q i q i q 1

The DM and the analyst establish the characteristic profiles in Step 2
and they take a constructive approach to this task. On analyzing Step 4
of Algorithm 4, notice that the classification rule changes in comparison
with Algorithm 3. Now, the allocation is based on the differences be-
tween the closeness coefficients of each alternative and those of the
profiles. Alternatives are allocated to the class for which the closeness
coefficient of the respective profile has the most similar value.

3.3. Properties of TOPSIS-Sort-B and TOPSIS-Sort-C

In order to guarantee that the proposed methods are stable and
make sense considering the features of sorting problems and what is
expected in these situations, it is important to investigate whether or
not the methods respect some properties. Therefore, we show properties
of TOPSIS-Sort-B and TOPSIS-Sort-C. The desired properties for sorting
procedures are properties 1, 2, 3, and 6 as set out by (Almeida-Dias,

Figueira, & Roy, 2010) when introducing the ELECTRE-TRI-C method.
In addition, we show that Property 4 protects TOPSIS-Sort-B and
TOPSIS-Sort-C from ranking reversals and we establish that Property 5
is a stronger version of the stability property that is valid for TOPSIS-
Sort-B. Appendix A details the verification of each property.

Property 1. - Conformity: any alternative ai similar to the boundary/
characteristic profile Pk ( =a P j,i j k j, , ) must be allocated to class Ck.

Property 2. - Homogeneity: two different alternatives must be allocated to
the same class if they are equally distant from the ideal (v ) and anti-ideal
(v ) alternatives.

Property 3. -Monotonicity: if alternative ai dominates alternative as, then
it must be allocated to a class at least as good as the class to which as is
allocated.

Property 4. – Irreversibility (ranking reversal protection): The
classification of an alternative ai must not be affected by the inclusion of
one or more new alternatives in the initial set A or by the elimination one or
more alternatives that were initially considered in set A.

Definition 1. -Merging Operation: Two consecutive classes, Ck and +Ck 1,
will be merged to become a new class Ck

' (Almeida-Dias et al., 2010).

• In the case of TOPSIS-Sort-B, the boundary profile Pk is excluded since
there is no longer a frontier between Ck and +Ck 1. +Pk 1 is renamed as P .k

'

• In the case of TOPSIS-Sort-C, a new characteristic profile Pk
' substitutes

the two profiles Pk and +Pk 1, which were defined so as to respect
Assumption 1 and Assumption 4 (the relation must be strict for at least
one criterion to guarantee dominance):

+
+

+

P P P j G

P P P j G

,

,
k j k j k j

k j k j k j

, ,
'

1,

, ,
'

1,

Definition 2. – Splitting Operation: A class Ck will be split into two new
consecutive classes, Ck

' and Ck
'' (Almeida-Dias et al., 2010).

• In the case of TOPSIS-Sort-B, a new boundary profile Pk
' is needed in

order to define the limit between Ck
' and Ck

'', thereby respecting
Assumption 1 and Assumption 4:

+P P P j G

P P P j G

,

,
k j k j k j

k j k j k j

1, ,
'

,

1, ,
'

,

• In the case of TOPSIS-Sort-C, two new profiles (Pk
' and Pk

'') are defined to
replace Pk , thereby respecting Assumption 1 and Assumption 4:

+
+

+

P P P P j G

P P P P j G

,

,
k j k j k j k j

k j k j k j k j

1, ,
'

,
''

1,

1, ,
'

,
''

1,

Property 5. – Strong Stability (applied for TOPSIS-Sort-B): After
applying a merging or a splitting operation, alternatives previously
allocated to non-modified classes will be allocated to the same class.
Alternatives previously allocated to the merged/split class will be allocated
to a new class that will be constructed after the operation.

Property 6. – Stability: (Almeida-Dias et al., 2010) After applying a
merging or a splitting operation, alternatives which were previously allocated
to a class that was non-adjacent to the modified one will be allocated to the
same class. Alternatives which were previously allocated to a class that was
adjacent to the one modified will be allocated to the same class or to a new
one after the operation. Alternatives previously allocated to the merged/split
class will be allocated to the new class or to an adjacent one.

4. Numerical application for evaluating economic freedom

Evaluating country risk by using ranking and sorting methods is a
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classic application of MCDM/A in finance (Kosmidou, Doumpos, &
Zopounidis, 2008; Zopounidis, Galariotis, Doumpos, Sarri, &
Andriosopoulos, 2015). Commonly, financial indexes are used as cri-
teria to evaluate the financial health of countries, and this information
is important as investors use it to analyze returns on sovereign bonds
and investment risk (Becerra-Fernandez, Zanakis, & Walczak, 2002; de
Lima Silva, Silva, Silva, Ferreira, & de Almeida-Filho, 2018; Doumpos,
Pentaraki, Zopounidis, & Agorastos, 2001; Greco, Matarazzo, Slowinski,
& Zanakis, 2011; Zopounidis & Doumpos, 2002b). In this paper, we
analyze countries from a different perspective, using the proposed
TOPSIS-Sort-B and TOPSIS-Sort-C to evaluate their economic freedom.
Socioeconomic data are a very interesting to deploy MCDM approaches,
similarly as in many cases found on the literature (do Carvalhal
Monteiro et al., 2020, 2018, 2019; Mazziotta & Pareto, 2015; Tervonen,
Kingdom, Dias, & Lahdelma, 2007).

Annually, The Heritage Foundation publishes its Index of Economic
Freedom (Foundation, 2019). 2019 saw the 25th anniversary of this
index, which evaluates various countries over a set of 12 criteria,
grouped into 4 categories: rule of law; size of government; regulatory
efficiency; and open markets. Table 3 presents the set of criteria in
addition to giving a detail description of their meaning for the decision
context presented by (Foundation, 2019).

For each criterion, the Heritage Foundation has a set of subfactors,
represented by quantitative and qualitative indexes, which are used to
obtain a criterion score that ranges between 0 and 100 for each country.
Each criterion has specific rules for determining this score, details of
which are available in (Foundation, 2019). After obtaining the perfor-
mance of the alternatives for the 12 criteria, a simple average is cal-
culated, and the result for each country represents its economic
freedom score. Thus, the index considers the criteria as being equally

Table 3
Set of criteria – economic freedom application.

Criteria Detailed description

Rule of law g1 Property Rights Secure property rights give citizens the confidence to undertake entrepreneurial activity, save their income, and make long-
term plans because they know that their income, savings, and property (both real and intellectual) are safe from unfair
expropriation or theft.

g2 Judicial Effectiveness Judicial effectiveness requires efficient and fair judicial systems to ensure that laws are fully respected, with appropriate
legal actions taken against violations.

g3 Government Integrity Practices that allow some individuals or special interests to gain government benefits at the expense of others are grossly
incompatible with the principles of fair and equal treatment that are essential ingredients of an economically free society.

Size of Government g4 Tax Burden Governments that permit individuals and businesses to keep and manage a larger share of their income and wealth for
investment and reward purposes and thus to maximize opportunities created by greater economic freedom.

g5 Government Spending Excessive government spending runs a great risk of crowding out private economic activity.
g6 Fiscal Health High levels of public debt may have numerous negative impacts such as raising interest rates, crowding out private

investment, and limiting government’s flexibility in responding to economic crises.
Regulatory Efficiency g7 Business Freedom Burdensome and redundant regulations are the most common barriers to the free conduct of entrepreneurial activity. By

increasing the costs of production, regulations can make it difficult for entrepreneurs to succeed in the marketplace.
g8 Labor Freedom The core principle of any economically free market is voluntary exchange. That is just as true in the labor market as it is in

the market for goods.
g9 Monetary Freedom Whether acting as entrepreneurs or as consumers, economically free people need a steady and reliable currency as a

medium of exchange, unit of account, and store of value. Without monetary freedom, it is difficult to create long-term value
or amass capital.

Open Markets g10 Trade Freedom Many governments place restrictions on their citizens’ ability to interact freely as buyers or sellers in the international
marketplace.

g11 Investment Freedom A free and open investment environment provides maximum entrepreneurial opportunities and incentives for expanded
economic activity, greater productivity, and job creation.

g12 Financial Freedom An accessible and efficiently functioning formal financial system ensures the availability of diversified savings, credit,
payment, and investment services to individuals and businesses.

Source: The Heritage Foundation (2019)

Fig. 3. Heat Map – Economic Freedom. Source: The Heritage Foundation (2019).
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weighted and the overall score also ranges between 0 and 100.
In this numerical application, our objective is to illustrate the

functionality of the proposed TOPSIS-based methods when a structured
decision process is used. We adopted the Heritage Foundation decision
process over the choice of criteria and weights to simulate this problem
of sorting countries according to their economic freedom. Furthermore,
we consider it makes sense to use the same criteria and data as The
Heritage Foundation does since this makes it more straightforward both
to conduct posterior analysis and to compare the assignments of dif-
ferent procedures with the original assignments. Details beyond those
given in Table 3 on the meaning of the criteria are available in the
Foundation's annual report (Foundation, 2019).

In 2019, the Heritage Foundation evaluated 180 countries and
ranked them using the calculated economic freedom index. In addition,
the Foundation assigned the countries to five categories of economic
freedom according to their overall score. Fig. 3 shows the results of
assigning the alternatives on a heat map.

In Fig. 3, the result of the sorting process are illustrated on a map of
the world which is supported by the key on the left. The colors re-
present the five different categories while gray shows countries for
which there are no data while the values shown in the key act as
boundary profiles. Table 4 details the categories considered and the
boundaries used by the Heritage Foundation to allocate the alter-
natives.

The above decision problem can be described as an MCDM/A
sorting problem. Now, we apply TOPISIS-Sort-B and TOPSIS-Sort-C to
assign the same set of 180 countries to one of the five categories de-
scribed in Table 4. As countries with the highest scores are considered
to be freer economically, we can define the ordered classes:
C C C C C1 2 3 4 5. Since the performance of the countries in each cri-
terion ranges between 0 and 100, these values were used to represent
the domain of criteria. To make comparisons between the results ob-
tained with the proposed methods and the original assignments of the
Heritage Foundation, we set parameters for TOPSIS-Sort-B and TOPSIS-
Sort-C that are similar to those used by the Foundation. First, we re-
garded criteria are being equally weighted. For TOPSIS-Sort-B we de-
fined 4 boundary profiles by respecting the intervals used by the
Foundation and which are shown in Table 4. This represents Scenario
#1. In the case of TOPSIS-Sort-C, two other scenarios were considered.
In Scenario #2, the 5 characteristic profiles were defined as the median
of the interval associated to each category in Table 4. In Scenario #3,
the characteristic profiles are the average evaluation of the alternatives
originally allocated to the different categories by the Heritage Foun-
dation.

Table 5 details the average performances of the countries for each
criterion per category in line with how the Heritage Foundation had

assigned them. In this table, criteria g4 (tax burden) and g5(government
spending) are highlighted because their values are not in descending
order. On the other hand, these criteria have positive monotonicity of
preferences (higher scores are preferable). As there are 12 equally
weighted criteria, and the classification is made by simple average,
these situations occurred because the performances of the alternatives
in the criteria allowed compensations. Also, we can see that the ranges
of the 5 averages for g4 and g5 are narrower than those for the other
criteria. If these values were used to determine the characteristic pro-
files in TOPSIS-Sort-C, inconsistencies would occur. For instance, a
preferable profile would receive a smaller value for a given criterion:

<P P2,4 3,4. To overcome this situation, we decided to order the values of
these two criteria when defining the characteristic profiles as presented
in detail in Table 6. Therefore, for all criteria and profiles considered in
this application: > +P Pk j k j, 1, .

It is important to mention that in this illustrative application we use
the Heritage Foundation’s original assessment to mimic a DM, so the
above adjustments were important to prevent inconsistencies. In con-
trast, for an application with a real DM, the characteristic profiles will
be chosen in a constructive way, in which the analyst will make sure
that profiles from preferable classes receive better scores than profiles
from less preferable classes. Still with regard to criteria g4 and g5 in
Table 5, MCDM/A methods such as rule-based and preference dis-
aggregation approaches could detect this behavior by means of a pre-
analysis of the set of reference alternatives. As we discuss in the con-
clusions, statistical tools and these types of methods should be applied
in future studies to analyze if this behavior holds for prior years.

Table 6 presents the Decision Matrix with a subset of 10 alternatives
(180 countries are too large a number for this paper to analyze), the
domain chosen and the profiles used in this application. The set of
criteria is the same as that presented in Table 3. The complete Decision
Matrix is available as supplementary material.

Table 6 details how the characteristics profiles changed between
Scenarios #2 and #3. As explained above, while Scenario #2 considers
only the median of each interval from Table 4, in Scenario #3 the
characteristic profiles considered the real performances of the countries
assigned to the categories in each criterion. It is expected that these
differences impact the final classification of alternatives as the medians
of the intervals may not necessarily represent the reality of the alter-
natives. For example, the average values for only two criteria (g6 and
g10) were considered greater than the median of the intervals for cate-
gory C1.

After defining the Decision Matrix, the data should be normalized
and weighted as described in Step 5 of Algorithm 3. In this application,
the domain is the same for all criteria. Therefore, the two options of
normalization procedures give the same results. Table 7 presents the
normalized decision matrix, again considering only a subset of 10 al-
ternatives. The complete table is available as supplementary material.

Table 8 details the results obtained by using the methods proposed
for the three scenarios studied and the original assignments made by
the Heritage Foundation for a subset of 10 alternatives. Furthermore,
the Euclidean distances calculated for the ideal and anti-ideal solutions
and the closeness coefficients of each alternative and profile are also
shown in Table 8. The complete table with the results for the 180 al-
ternatives is available as supplementary material.

Table 4
Categories of Economic Freedom.

Category Boundary Profiles

C1 Free score80 100
C2 Mostly Free <score70 80
C3 Moderately Free <score60 70
C4 Mostly Unfree <score50 60
C5 Repressed <score0 50

Table 5
Average performance of countries using the considering assignments made by the Heritage Foundation.

Category g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

C1 89.32 81.35 86.92 77.35 72.28 91.68 87.50 83.13 86.33 90.53 85.00 83.33
C2 78.98 69.33 69.46 72.82 55.38 88.28 80.11 66.72 80.81 85.01 77.76 68.97
C3 57.45 46.40 42.19 79.74 63.57 75.91 68.36 61.18 78.70 78.73 68.14 55.76
C4 41.70 38.11 31.46 78.98 71.52 57.77 58.51 58.02 72.60 69.26 45.31 37.34
C5 30.07 23.68 24.95 71.05 56.61 34.46 41.05 44.03 64.46 59.60 32.27 25.91
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Table 6
Decision Matrix with a Subset of Alternatives.

Alternative g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

Afghanistan 19.6 29.6 25.2 91.7 80.3 99.3 49.2 60.4 76.7 66.0 10 10
Albania 54.8 30.6 40.4 86.3 73.9 80.6 69.3 52.7 81.5 87.8 70 70
Algeria 31.6 36.2 28.9 76.4 48.7 18.7 61.6 49.9 74.9 67.4 30 30
Angola 35.9 26.6 20.5 83.9 80.7 58.2 55.7 58.8 55.4 61.2 30 40
Argentina 47.8 44.5 33.5 69.3 49.5 33.0 56.4 46.9 60.2 70.0 55 60
Armenia 57.2 46.3 38.6 84.7 79.0 53.0 78.3 71.4 77.8 80.8 75 70
Australia 79.1 86.5 79.9 62.8 60.1 86.2 88.3 84.1 86.6 87.6 80 90
Austria 84.2 71.3 77.4 50.5 24.5 85.5 74.9 68.7 81.5 86.0 90 70
Azerbaijan 59.1 53.1 44.7 87.5 59.5 89.4 69.5 63.9 63.0 74.6 60 60
Bahamas 42.2 46.9 43.7 97.3 86.8 65.7 68.5 67.5 78.1 47.8 50 60
Domain of the Criteria
a 100 100 100 100 100 100 100 100 100 100 100 100
a 0 0 0 0 0 0 0 0 0 0 0 0
Scenario #1: TOPSIS-Sort-B Boundary Profiles
P1 80 80 80 80 80 80 80 80 80 80 80 80
P2 70 70 70 70 70 70 70 70 70 70 70 70
P3 60 60 60 60 60 60 60 60 60 60 60 60
P4 50 50 50 50 50 50 50 50 50 50 50 50
Scenario #2: TOPSIS-Sort-C Characteristic Profiles (considering the median of the intervals)
P1 90 90 90 90 90 90 90 90 90 90 90 90
P2 75 75 75 75 75 75 75 75 75 75 75 75
P3 65 65 65 65 65 65 65 65 65 65 65 65
P4 55 55 55 55 55 55 55 55 55 55 55 55
P5 25 25 25 25 25 25 25 25 25 25 25 25
Scenario #3: TOPSIS-Sort-C Characteristic Profiles (considering the average scores of the original allocations)
P1 89.32 81.35 86.92 79.74 72.28 91.68 87.50 83.13 86.33 90.53 85.00 83.33
P2 78.98 69.33 69.46 78.98 71.52 88.28 80.11 66.72 80.81 85.01 77.76 68.97
P3 57.45 46.40 42.19 77.35 63.57 75.91 68.36 61.18 78.70 78.73 68.14 55.76
P4 41.70 38.11 31.46 72.82 56.61 57.77 58.51 58.02 72.60 69.26 45.31 37.34
P5 30.07 23.68 24.95 71.05 55.38 34.46 41.05 44.03 64.46 59.60 32.27 25.91

Table 7
Weighted and Normalized Decision Matrix.

Alternative g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

Afghanistan 0.016 0.025 0.021 0.076 0.067 0.083 0.041 0.050 0.064 0.055 0.008 0.008
Albania 0.046 0.026 0.034 0.072 0.062 0.067 0.058 0.044 0.068 0.073 0.058 0.058
Algeria 0.026 0.030 0.024 0.064 0.041 0.016 0.051 0.042 0.062 0.056 0.025 0.025
Angola 0.030 0.022 0.017 0.070 0.067 0.049 0.046 0.049 0.046 0.051 0.025 0.033
Argentina 0.040 0.037 0.028 0.058 0.041 0.028 0.047 0.039 0.050 0.058 0.046 0.050
Armenia 0.048 0.039 0.032 0.071 0.066 0.044 0.065 0.060 0.065 0.067 0.063 0.058
Australia 0.066 0.072 0.067 0.052 0.050 0.072 0.074 0.070 0.072 0.073 0.067 0.075
Austria 0.070 0.059 0.065 0.042 0.020 0.071 0.062 0.057 0.068 0.072 0.075 0.058
Azerbaijan 0.049 0.044 0.037 0.073 0.050 0.075 0.058 0.053 0.053 0.062 0.050 0.050
Bahamas 0.035 0.039 0.036 0.081 0.072 0.055 0.057 0.056 0.065 0.040 0.042 0.050
Domain of the Criteria
a 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
a 0 0 0 0 0 0 0 0 0 0 0 0
Scenario #1: TOPSIS-Sort-B Boundary Profiles
P1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
P2 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058
P3 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
P4 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
Scenario #2: TOPSIS-Sort-C Characteristic Profiles (considering the median of the intervals)
P1 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075
P2 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063
P3 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054
P4 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
P5 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Scenario #3: TOPSIS-Sort-C Characteristic Profiles (considering the average scores of the original allocations)
P1 0.074 0.068 0.072 0.066 0.060 0.076 0.073 0.069 0.072 0.075 0.071 0.069
P2 0.066 0.058 0.058 0.066 0.060 0.074 0.067 0.056 0.067 0.071 0.065 0.057
P3 0.048 0.039 0.035 0.064 0.053 0.063 0.057 0.051 0.066 0.066 0.057 0.046
P4 0.035 0.032 0.026 0.061 0.047 0.048 0.049 0.048 0.061 0.058 0.038 0.031
P5 0.025 0.020 0.021 0.059 0.046 0.029 0.034 0.037 0.054 0.050 0.027 0.022
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In Table 8, it is important to notice how the closeness coefficients of
the characteristic profiles changed between Scenario #2 and Scenario
#3. The largest difference is associated with categoryC5, this being 0.25
for Scenario #2 and 0.4297 for Scenario #3.

Table 9 presents the percentages of similarities in the final classi-
fication of the three scenarios tested in relation to the original assign-
ments made by the Heritage Foundation for each category and con-
sidering all the 180 alternatives. TOPSIS-Sort-B assigned 89.44% of the
alternatives to the same category as the original classification did. The
highest percentage is represented by the alternatives originally assigned
to C3 (89.83% of 59 alternatives) while the lowest value was associated
to the category C1 (66.67% of 6 alternatives).

On analyzing the results in the two TOPSIS-Sort-C scenarios, we
notice that C1 was also the one with the lowest similarity. The per-
centage achieved in Scenario #2, represented by the median profiles of
the intervals, is the lowest. This was expected since a characteristic
profile should represent a typical alternative and the Heritage rule uses
boundary values which sort the final evaluation of the alternatives
among the categories. When analyzing the averages obtained in
Table 5, we see that the countries’ performances are not well re-
presented by the medians of the intervals. On the other hand, in Sce-
nario #3, the overall similarity percentage achieved by TOPSIS-Sort-C
was 90% (162 alternatives were assigned to the original category). In
this scenario, the method also achieved the highest similarity for an

individual category (93.1% for C2).
In general, the proposed MCDM/A methods succeed in classifying

many alternatives in a real sorting problem. The results were coherent
and differences in comparison to the original classification of Heritage
Foundation were expected since instead of working with a simple
average value, TOPSIS algorithms observe the distances of each alter-
native for an ideal and an anti-ideal situation. Thus, the compensation
among criteria values occurs differently. On the other hand, it can be
seen from Table 8 that all the differences in classification happened
between consecutive categories, which confirms the consistency of the
results.

In total, 9 countries were assigned differently in relation to the
Heritage Foundation in the scenarios. Table 10 illustrates these situa-
tions by detailing the overall score for economic freedom given by the
Foundation and the standard deviation over the scores of the 12 cri-
teria. An interesting situation of compensation can be seen for Austria,
which received a score of only 24.5 in the criterion of “government
spending”. The overall evaluation was compensated by better perfor-
mances for the other criteria, as can be seen in the Decision Matrix
presented in Table 6. While this compensation was enough to classify
the alternative in C2 by using the simple average of the Heritage
Foundation, this did not happen with the proposed TOPSIS procedures.

In order to test the similarity between the results obtained with the

Table 8
Sorting Results.

Alternative di di Cli TOPSIS-Sort-B TOPSIS-Sort-C Original Assignments

Sc#2 Sc#3

Afghanistan 0.1657 0.1730 0.5109 4 4 4 4
Albania 0.1091 0.1984 0.6453 3 3 3 3
Algeria 0.1647 0.1442 0.4667 5 4 5 5
Angola 0.1533 0.1564 0.5050 4 4 4 4
Argentina 0.1420 0.1542 0.5207 4 4 4 4
Armenia 0.1022 0.1998 0.6615 3 3 3 3
Australia 0.0613 0.2352 0.7932 2 2 2 1
Austria 0.0954 0.2141 0.6918 3 3 3 2
Azerbaijan 0.1064 0.1921 0.6437 3 3 3 3
Bahamas 0.1180 0.1881 0.6145 3 3 3 3
Scenario #1: TOPSIS-Sort-B Boundary Profiles
P1 0.0577 0.2309 0.8 – – – –
P2 0.0866 0.2021 0.7 – – – –
P3 0.1155 0.1732 0.6 – – – –
P4 0.1443 0.1443 0.5 – – – –
Scenario #2: TOPSIS-Sort-C Characteristic Profiles (considering the median of the intervals)
P1 0.0289 0.2598 0.9 – – – –
P2 0.0722 0.2165 0.7 – – – –
P3 0.1010 0.1876 0.65 – – – –
P4 0.1299 0.1588 0.55 – – – –
P5 0.2165 0.0722 0.25 – – – –
Scenario #3: TOPSIS-Sort-C Characteristic Profiles (considering the average scores of the original allocations)
P1 0.0464 0.2451 0.8408 – – – –
P2 0.0710 0.2212 0.7570 – – – –
P3 0.1081 0.1893 0.6364 – – – –
P4 0.1405 0.1588 0.5306 – – – –
P5 0.1729 0.1303 0.4297 – – – –

Table 9
Similarity Percentages.

Category number of original
assignments

TOPSIS-
Sort-B

TOPSIS-Sort-C

Scenario #2 Scenario #3

C1 6 66.67% 33.33% 66.67%
C2 29 89.66% 79.31% 93.10%
C3 59 89.83% 76.27% 86.44%
C4 64 82.81% 68.75% 81.25%
C5 22 77.27% 63.64% 81.82%
Total 180 89.44% 77.78% 90.00%

Table 10
Countries assigned differently in the three scenarios.

Country Global
Score

Standard
Deviation

Original
Assignment

TOPSIS
Assignments

Australia 80.9 9.353817 1 2
Austria 72.0 17.5897 2 3
Finland 74.9 23.294 2 3
Ireland 80.5 6.994298 1 2
Latvia 70.4 16.76381 2 3
Macau 71.0 18.42927 2 3
Macedonia 71.1 12.34906 2 3
Norway 73.0 19.67385 2 3

D.F. de Lima Silva and A.T. de Almeida Filho Computers & Industrial Engineering 141 (2020) 106328

10



proposed TOPSIS-based methods and the results that one would obtain
using classic MCDM/A sorting approaches, PROMETHEE-based and
ELECTRE-based methods were applied to the same numerical example.
It is important to note that different MCDM/A methods work under
different paradigms and follow different guidelines. Therefore, it is not
expected that different sorting methods result in the same assignments.
PROMETHEE and ELECTRE methods, for example, are outranking
methods and should be used when a non-compensatory relation among
the criteria is expected, while TOPSIS is distance-based approach and
allows compensation when the criteria are evaluated. Additional
parameters may also be necessary depending on the method used for
the decision process.

In addition to the three TOPSIS-based Scenarios, two variations of
PROMETHEE II Flow-Sort (Nemery & Lamboray, 2008) were tested, one
using boundary profiles (Scenario #4) and another one using central
profiles (Scenario #5). Regarding the use of PROMETHEE, the “usual
criterion” was used for this numerical example (further details about
the choice of usual criteria are to be found in (Brans & Vincke, 1985)).
For the ELECTRE variations, we used a cutting-level = 0.7 and con-
structed the pseudo-criteria using respectively =qt 2, =pt 5, and

=v 15 as the indifference, preference, and veto thresholds (further in-
formation about ELECTRE parameters can be found in (de Almeida
et al., 2015)). Regarding the ELECTRE family, we tested the classic
ELECTRE-TRI-B (Scenario #6) in addition to ELECTRE-TRI-C. As
ELECTRE-TRI-C does not always assign the alternatives to a unique
class, three cases were considered for this method: the worst possible
allocation (Scenario #7), the best possible allocation (Scenario #8), and
the whole interval (Scenario #9). The results are summarized in
Table 11 where we compare the overall similarities among the sce-
narios tested.

Analysis of Table 11 shows that the TOPSIS-Sort-C method in Sce-
nario #3 was the one which achieved the greatest similarity with the
original assessment of the Heritage Foundation (HF). The good simi-
larity found for ELECTRE-TRI-C in Scenario #9 is a consequence of the
imprecise results given by this method, considering an interval of
possible assignments. Note also that TOPSIS-Sort-C (scenarios #2 and
#3) sorting results fall into more than 90% similarity with the
ELECTRE-TRI-C wide interval. Although each method brings different
perspectives within its assumptions, and therefore, different results are
expected, what numerical experiments can do is to let the sensitivity on
assumptions be observed in the light of the expected results. Thus, one
could expect that row #6 would have the smallest values of similarity
since stronger outranking relations are considered to have less flex-
ibility in its ELECTRE algorithm. Thus, the greater similarity between
the Heritage Foundation and the TOPSIS-based approaches is a direct
consequence of the additive properties of such methodologies, which
are not found in outranking approaches.

5. Conclusion

This paper has presented TOPSIS variations for sorting problems
that already include solutions that have recently been developed for the
TOPSIS ranking reversal problem. TOPSIS-Sort-B is presented as an
improved version of TOPSIS-Sort, as this includes a step for determining
a domain for each criterion and an interval normalization option. This
method is addressed to problems with boundary profiles. For the pro-
blems where characteristics profiles are used, this paper proposes
TOPSIS-Sort-C.

A numerical application was made to test and validate the use of the
proposed algorithms. The problem concerned the classification of 180
countries into five ordinal categories. First, the methodology used by
the Heritage Foundation for its Index of Economic Freedom was ana-
lyzed, and on which basis the parameters were set for the proposed
TOPSIS applications. Three scenarios were tested, and the proposed
methods performed well when the results from them were matched
against the original assignments of the Foundation. TOPSIS-Sort-B as-
signed 89.44% of the alternatives to their original categories while
TOPSIS-Sort-C achieved 90%.

The results showed coherence and consistency with what was ex-
pected. For all scenarios, the differences in the classifications occurred
only between consecutive categories and these are caused by the dif-
ferences in the methodology of classification. Some differences were
expected because while the Heritage Foundation uses a simple average
to determine a global score for the alternatives, the proposed methods
have the traditional characteristics of TOPSIS, and thus calculate per-
formances based on differences from ideal and anti-ideal solutions.

Therefore, the main contributions of this paper include: a discussion
regarding the impact of ranking reversal when sorting with TOPSIS; an
improved version of TOPSIS for sorting that uses boundary profiles; a
new method, TOPSIS-Sort-C, for sorting problems with characteristic
profiles; and a new MCDM/A application which has a large set of al-
ternatives. Regarding future studies, we expect to conduct new appli-
cations of the proposed methods to tackle different sorting problems.
Furthermore, it would be useful to explore the Economic Freedom
sorting problem more thoroughly. For instance, we discussed when
analyzing Table 5 that the averages for two criteria seemed inconsistent
with the original classification. Thus, it would be useful for future
studies to investigate whether this behavior is also to be found in past
years and if these criteria are necessary. To do so, statistical analysis,
rule-based methods, or preference disaggregation can be applied in
order to examine and reach a fuller understanding of this situation.
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Appendix A. - Proofs

This appendix discusses verifications on the properties observed for the TOPSIS-Sort-B and TOPSIS-Sort-C methods.

Property 1. Conformity
– Proof: The calculus of the closeness coefficient of any alternative depends on its evaluation, the weights, and the domain. Therefore, given a

vector of weights =W w w[ , , ]n1 and domain alternatives {a a, }, if =a P ji j k j, , , then it is always true that =Cl a Cl P( ) ( )i k .
Step 9 of TOPSIS-Sort-B takes an optimistic rule in the limit situation, allocating ai to class Ck whenever =Cl a Cl P( ) ( )i k .Thus, this property is

verified.
Step 9 of TOPSIS-Sort-C allocates any alternative ai to the class represented by the closest profile in terms of the closeness coefficient. If

=Cl a Cl P( ) ( )i k , =Cl a Cl P| ( ) ( )| 0i k , which is the minimum possible distance, and alternative ai is allocated to Ck. If Assumption 4 is true, no other
profile will have the same closeness coefficient as ai.

Property 2. Homogeneity
– Proof: If two alternatives ai and as have the same distance from the ideal and anti-ideal solutions, =d da ai s and =d da ai s. From Step 8 of

Algorithms 3 and 4, the closeness coefficient of any alternative depends only on its distances from the ideal and the anti-ideal solution Therefore:
Cl( =a Cl a) ( ).i s From Step 9 of Algorithms 3 and 4, we see that the classification of each alternative depends only on its closeness coefficient and the
closeness coefficient of the profiles. Therefore, it is impossible thatCl( =a Cl a) ( )i s and they are allocated to different classes and Property 2 is verified
for both methods.

Property 3. Monotonicity
– Proof: If alternative ai dominates alternative as then a a ji j s j, , and a ai j s j, , for at least one criterion. Then, after the normalization steps and

the determination of the ideal and anti-ideal solutions, vi is closer to v and farther from v in comparison to vs. In other words, <d da ai s and
>d da ai s. Therefore, >+ +

d
d d

d
d d

ai
ai ai

as
as as

which means that Cl( >a Cl a) ( )i s . Using the same logic, if Assumptions 1 and 4 are true, we know the closeness
coefficients of the profiles are ordered: Cl( >P Cl)1 ( > >P Cl)2 (P )p .

In Step 9 of TOPSIS-Sort-B, assuming Cl( >a Cl a) ( )i s , it is impossible that Cl a Cl P( ) ( )s k and <Cl a Cl P( ) ( )i k . Thus, ai is allocated to a class at
least as good as as and Property 3 is verified.

In Step 9 of TOPSIS-Sort-C, assuming Cl( >a Cl a) ( )i s , if Cl P( )k is the closest closeness coefficient to Cl(a )i and Cl P( )t is the closest closeness
coefficient to Cl a( )s , it is impossible that >k t . In other words, ai is allocated to a class at least as good as as and Property 3 is verified.

Property 4. Irreversibility (ranking reversal protection)
– Proof: We know from Step 9 of TOPSIS-Sort-B and TOPSIS-Sort-C that the allocation of any alternative ai depends on comparisons between its

closeness coefficient Cl a( )i and the closeness coefficients of profiles Cl P( k), where =k p1, 2 . In addition, we know from Step 7 and Step 8 that the
calculation of the closeness coefficients is based on distances from the corresponding alternative/profile and the ideal v and anti-ideal v solutions.
From Step 6, we know the ideal and anti-ideal solutions are obtained using maximum and minimum values from the normalized decision matrix

= + + ×V v[ ]i j m p n, ( 2) .

= =
+

v v v v v
v g G

v g G[ , , , ],
max ,

min ,n j
i

i j j

i
i j j

1 2

,

,

= =
+

v v v v v
v g G

v g G[ , , , ],
min ,

max ,n j
i

i j j

i
i j j

1 2

,

,

If assumption 2 is true, the domain of the criteria is known. Moreover, Step 3 from TOPSIS-Sort-B and TOPSIS-Sort-C defines alternatives that
describe this domain (a and a ) and these alternatives are included in the initial decision matrix. The definition of these alternatives guarantees that
the construction of the ideal and anti-ideal solutions will not change after the inclusion or elimination of alternatives from the initial set

=A a a a{ , , , }m1 2 . This happens because the modification of the initial set of alternatives will not expand or compress the domain of the criteria. In
other words, as well as the initial set A, the new set of alternatives will respect the relation a a a i j, ,j i j j, . Therefore, changes in the initial set of
alternatives do not impact the calculation of closeness coefficients of the profiles and the remaining alternatives. As a result, the initial class
allocation does not change, and Property 4 is verified.

Property 5. Strong Stability
– Proof: Because of the dominance condition of the profiles described in Assumption 4 and the monotonicity property (Property 3) we know that

Cl( > >P Cl)1 ( >P Cl)k 1 ( >P Cl)k ( > >+P Cl)k 1 (P )p . In addition, we know the operations described in Definition 1 and Definition 2 respect
Assumption 4 and Property 3.

Consider a merging operation between Ck and +Ck 1, where a new class Ck
' is constructed. After the merging operation:

Cl( >P Cl)k 1 ( >P Cl)k
' ( +P )k 2 . Thus:

i. If alternative ai is initially allocated to class Ck, then, before the operation: >Cl P Cl a Cl P( ) ( ) ( ).k i k1 After the operation,
Cl( >P Cl)k 1 (a Cl)i (P )k

' and the alternative is allocated to the new class Ck
' .

ii. If alternative ai is initially allocated to class +Ck 1, then: > > +Cl P Cl P Cl a Cl P( ) ( ) ( ) ( ).k k i k1 1 After the operation, Cl( >P Cl)k 1 (a Cl)i (P )k
' and

the alternative is allocated to the new class Ck
' .
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iii. If alternative ai is initially allocated to class Ck 1 or better, then: >Cl a Cl P( ) ( ).i k After the operation, Cl( >a Cl)i (P )k
' and the alternative remains

in the same class as the closeness coefficients of the other profiles do not change.
iv. If alternative ai is initially allocated to class +Ck 2 or worse, then: >+Cl P Cl a( ) ( ).k i1 After the operation, Cl( >P Cl)k

' (a )i and the alternative
remains in the same class as the closeness coefficients of the other profiles do not change.

Considering that class Ck is split between the classes Ck
' and C ,k

'' where C Ck k
' '', a new profile is created Pk

' , defined in the limit between the two new
classes. The following relation is respected: >Cl P Cl( )k 1 ( >P Cl)k

' (P )k . Thus:

i. If alternative ai is initially allocated to class Ck, then, before the operation: > > +Cl P Cl a Cl P Cl P( ) ( ) ( ) ( ).k i k k1 1 After the operation, we know
that Cl(a Cl)i (P )k . Therefore, if Cl(a Cl)i (P )k

' , alternative ai is allocated to the new class Ck
' . Otherwise, alternative ai is allocated to the new

class Ck
''.

ii. If alternative ai is initially allocated to class Ck 1 or better, then: Cl a Cl P( ) ( )i k 1 and these closeness coefficients do not change after the split
operation. As after the operation Cl( >P Cl)k 1 ( >P Cl)k

' (P )k because of the monotonicity property, and the closeness coefficients of the other
profiles do not change, the alternative remains in the same class.

iii. If alternative ai is initially allocated to class +Ck 1 or worse, then: >Cl P Cl a( ) ( )k i and these closeness coefficients do not change after the split
operation. As after the operation Cl( >P Cl)k

' ( >P Cl a) ( )k i because of the monotonicity property, and the closeness coefficients of the other
profiles do not change, the alternative remains in the same class.

Property 6. Stability
– Proof: As Property 5 is a more constrained version of Property 6, the Stability condition is already proved for TOPSIS-Sort-B. In TOPSIS-Sort-C,

the classification of alternatives occurs based on the distance of their closeness coefficients to the closeness coefficients of the profiles. Because of the
dominance condition of profiles described in Assumption 4 and the monotonicity property (Property 3) we know that
Cl( > >P Cl)1 ( >P Cl)k 1 ( >P Cl)k ( > >+P Cl)k 1 (P )p . In addition, we know the operations described in Definition 1 and Definition 2 respect
Assumption 4 and Property 3.

Considering classes Ck and +Ck 1 are merged, creating a new class Ck
' . The adjacent classes to the modified ones are Ck 1 and +Ck 2. After the

merging operation, the closeness coefficient of the new profile Pk
' must be larger than Cl( +P )k 1 and smaller than Cl(P )k , then:

Cl( >P Cl)k ( >P Cl)k
' ( +P )k 1 .

i. If an alternative ai is allocated initially to a non-adjacent class, it belongs to class Ck 2 (or better) or to class +Ck 3 (or worse).
a. In the first case, we know that Cl| (a Cl)i (P Cl)| |k 2 (a Cl)i ( <P Cl)| |k 1 (a Cl)i (P )|k . After the merger, this relation does not change, and

the new closeness coefficient will be even farther from Cl(a )i because Cl( >a Cl)i ( >P Cl)k (P )k
' .

b. In the second case, the following relation would be true before the operation: Cl| (a Cl)i ( <+P Cl)| |k 3 (a Cl)i ( +P Cl)| |k 2 (a Cl)i ( +P )|k 1 .
Again, the merge operation would not affect this relation and the new closeness coefficient would be even farther from Cl(a )i because
Cl(P )k

' >Cl( >+P Cl)k 1 (a )i .
ii. Considering an initial allocation to a class adjacent to the modified one, then ai belongs to Ck 1 or +Ck 2 before the operation.

a. If ai is initially allocated to Ck 1, we know that Cl| (a Cl)i (P Cl)| |k 1 (a Cl)i (P )|k and as a consequence Cl( >a Cl)i (P )k . As after the
operation Cl( >P Cl)k (P )k

' , we know that Cl| (a Cl)i ( <P Cl)| |k 1 (a Cl)i (P )|k
' and the alternative is allocated to the same class.

b. If ai is initially allocated to +Ck 2, then Cl| (a Cl)i ( <+P Cl)| |k 2 (a Cl)i ( +P )|k 1 and Cl( <a Cl)i ( +P )k 1 . As after the operation Cl( >P Cl)k
' ( +P )k 1 ,

then Cl| (a Cl)i ( <+P Cl)| |k 2 (a Cl)i (P )|k
' and the alternative is allocated to the same class. The principle is the same as that used for non-

adjacent classes.
iii. Considering an initial allocation to a merged class, then ai initially belongs to Ck or +Ck 1.

a. If ai is initially allocated to Ck, we know that Cl| (a Cl)i ( <P Cl)| |k (a Cl)i (P )|k 1 , and so Cl( >P Cl)k 1 (a )i . In addition, we know that
Cl| (a Cl)i (P Cl)| |k (a Cl)i ( +P )|k 1 , and so Cl( >a Cl)i ( +P )k 1 . Therefore, or Cl( >P Cl)k 1 (a Cl)i ( >P Cl)k ( +P )k 1 or
Cl( >P Cl)k 1 (P Cl)k ( >a Cl)i ( +P )k 1 . After merging to Ck and +Ck 1 and creating profile Pk

' , we know that Cl( >P Cl)k ( >P Cl)k
' ( +P )k 1 . Thus,

two allocations are possible. If Cl| (a Cl)i ( <P Cl)| |k
' (a Cl)i (P )|k 1 , then, the alternative is allocated to the new class: Ck

' . Otherwise, ai is
allocated to the adjacent class Ck 1.

b. If ai is initially allocated to +Ck 1, we know that Cl| (a Cl)i ( <+P Cl)| |k 1 (a Cl)i (P )|k , and so Cl( >P Cl)k (a )i . In addition, we know that
Cl| (a Cl)i ( +P Cl)| |k 1 (a Cl)i ( +P )|k 2 , and so Cl( >a Cl)i ( +P )k 2 . Therefore, either Cl( >P Cl)k (a Cl)i ( >+P Cl)k 1 ( +P )k 2 or
Cl( >P Cl)k ( +P Cl)k 1 ( >a Cl)i ( +P )k 2 . After merging to Ck and +Ck 1 and creating profile Pk

' , we know that Cl( >P Cl)k ( >P Cl)k
' ( +P )k 1 . Thus,

two allocations are possible. If Cl| (a Cl)i (P Cl)| |k
' (a Cl)i ( +P )|k 2 , then, the alternative is allocated to the new class: Ck

' . Otherwise, ai is
allocated to the adjacent class +Ck 2.

Considering that class Ck is split into two classes Ck
' and Ck

''. Then, profile Pk is also split and > >Cl P Cl P Cl P( ) ( ) ( )k k k
' '' .

i. If an alternative ai is allocated initially to a non-adjacent class, it belongs to class Ck 2 (or better) or to class +Ck 2 (or worse).
a. In the first case, we know that Cl| (a Cl)i (P Cl)| |k 2 (a Cl)i ( <P Cl)| |k 1 (a Cl)i (P )|k , and so Cl( >a )i Cl(P )k 1 . After the splitting opera-

tion, we know that Cl( > >P Cl P Cl P) ( ) ( )k k k1
' '' because of the monotonicity property. Thus, as the closeness coefficients of the non-modified

profiles do not change after the operation, the initial allocation of the alternative will not be affected, and the alternative remains allocated to
the same class.

b. In the second case, we know that Cl| (a Cl)i ( <+P Cl)| |k 2 (a Cl)i ( <+P Cl)| |k 1 (a Cl)i (P )|k , and so Cl( >+P )k 1 Cl(a )i . After the splitting op-
eration, we know that > >Cl P Cl P Cl( ) ( )k k

' '' ( +P )k 1 because of the monotonicity property. Thus, as the closeness coefficients of the non-modified
profiles do not change after the operation, the initial allocation of the alternative will not be affected, and the alternative remains allocated to
the same class.

ii. If an alternative ai is allocated initially to an adjacent class, it belongs to class Ck 1 or to class +Ck 1.
a. In the first case, we know that Cl| (a Cl)i (P Cl)| |k 1 (a Cl)i (P )|k , and so Cl( >a Cl)i (P )k . As >Cl P Cl P( ) ( )k k

' , after the operation two
allocations are possible. If Cl| (a Cl)i (P Cl)| |k 1 (a Cl P) ( )|i k

' , alternative ai remains in the same class, otherwise, the alternative is allocated
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to the new class Ck
' .

b. In the second case, we know that Cl| (a Cl)i ( <+P Cl)| |k 1 (a Cl)i (P )|k , and so Cl( >P Cl)k (a )i . As <Cl P Cl P( ) ( )k k
'' , after the operation two

allocations are possible. If Cl| (a Cl P Cl) ( )| |i k
'' ( +a Cl P) ( )|i k 1 , alternative ai is allocated to the new classCk

'', otherwise the alternative remains
allocated in the same class.

iii. Considering that alternative ai is initially allocated to the modified class Ck. Then, it is true that Cl| (a Cl)i ( <P Cl)| |k (a Cl)i (P )|k 1 , and so
>Cl P Cl( )k 1 (a )i . It is also true that Cl| (a Cl)i (P Cl)| |k (a Cl)i ( +P )|k 1 , and so Cl( > +a Cl P) ( )i k 1 . Therefore, either
>Cl P Cl( )k 1 (P Cl)k ( >a Cl)i ( +P )k 1 or >Cl P Cl( )k 1 (a Cl)i ( >P Cl)k ( +P )k 1 , or both are true in case Cl( =P Cl)k (a )i . We know that after the

split, the two new profiles will respect the relation > > > > +Cl P Cl P Cl P Cl P Cl P( ) ( ) ( ) ( ) ( )k k k k k1
' ''

1 . Thus, it is impossible that
Cl| (a Cl)i (P Cl)| |k 1 (a Cl)i (P )|k

' and it is also impossible that Cl| (a Cl)i ( <+P Cl)| |k 1 (a Cl)i (P )|k
'' . Therefore, as class Ck will no longer

exist, two allocations are possible. If Cl| (a Cl)i (P Cl)| |k
' (a Cl)i (P )|k

'' , the alternative is allocated to the new class Pk
' . Otherwise, it is allocated

to the new class Pk
''.

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2020.106328.
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