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Abstract—In this article we study the properties of distributed systems that mix eventual and strong consistency. We formalize such

systems through acute cloud types (ACTs), abstractions similar to conflict-free replicated data types (CRDTs), which by default work in

a highly available, eventually consistent fashion, but which also feature strongly consistent operations for tasks which require global

agreement. Unlike other mixed-consistency solutions, ACTs can rely on efficient quorum-based protocols, such as Paxos. Hence, ACTs

gracefully tolerate machine and network failures also for the strongly consistent operations. We formally study ACTs and demonstrate

phenomena which are neither present in purely eventually consistent nor strongly consistent systems. In particular, we identify

temporary operation reordering, which implies interim disagreement between replicas on the relative order in which the client requests

were executed. When not handled carefully, this phenomenon may lead to undesired anomalies, including circular causality. We prove

an impossibility result which states that temporary operation reordering is unavoidable in mixed-consistency systems with sufficiently

complex semantics. Our result is startling, because it shows that apparent strengthening of the semantics of a system (by introducing

strongly consistent operations to an eventually consistent system) results in the weakening of the guarantees on the eventually

consistent operations.

Index Terms—Eventual consistency, mixed consistency, fault-tolerance, acute cloud types, ACT
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1 INTRODUCTION

THE massive scalability and high availability of the complex
(geo-replicated) distributed systems that power today’s

Internet often hinges on the use of eventually consistent data
stores. These systems extensively employ specialized data
structures, e.g., last-write-wins registers (LWW-registers),
multi-value registers (MVRs), observed-remove sets (OR-sets)
or other conflict-free replicated data types (CRDTs) [1], [2],
[3]. These data structures are replicated onmultiple machines
(replicas) and can be read or modified independently on each
replica without prior synchronization with other replicas. It
means that replicas can promptly respond to the clients. The
communication between the replicas happens solely using a
gossip protocol. By design replicas are guaranteed to be able
to converge to a single state, automatically resolving any
inconsistencies between them.

Unfortunately, the semantics of such data structures are
very limited. To provide high availability, low response times
and eventual state convergence, these data structures require
either that all operations commute, or that there exist commu-
tative, associative, and idempotent procedures for merging
replica states. This is why these mechanisms are not suitable
for all use cases. For example, consider a simple non-negative
integer counter. The addition operation can be trivially imple-
mented in a conflict-free manner, as the addition operations

are commutative. However, the subtraction operation requires
global agreement to ensure that the value of the counter never
drops below 0. In a similar way, in an auction system, concur-
rent bids can be considered independent operations and thus
their execution does not need to be synchronized. However,
the operation that closes the auction requires solving distrib-
uted consensus to select the single winning bid [4]. Due to the
inherent shortcomings of CRDTs, recently there havebeen sev-
eral attempts in the industry (e.g., [5], [6], [7], [8]) to enrich the
semantics of the eventually consistent systems by allowing
some operations to be performed with stronger consistency
guarantees or by introducing (quasi) transactional support.
Unfortunately, these attempts lack clearly stated semantics.
For example, in Apache Cassandra using the light weight trans-
actions on data that are accessed at the same time in the regular,
eventually consistent fashion leads to undefined behaviour [9].

In this article we introduce acute cloud types (ACTs), a
family of specialized mixed-consistency data structures
designed primarily for high availability and low latency,
but that also seamlessly integrate on-demand strongly con-
sistent semantics. ACTs feature two kinds of operations:
weak operations, targeted for unconstrained scalability and
low response times (as operations in CRDTs), and strong
operations, used when eventually consistent guarantees are
insufficient. Strong operations require consensus-based
inter-replica synchronization prior to execution.

Weak operations are guaranteed to progress, and are han-
dled in such a way that the replicas eventually converge to the
same state within each network partition, even when strongly
consistent operations cannot complete due to network and
process failures. On the other hand, strong operations can pro-
vide guarantees even as strong as linearizability [10] with
respect to the already completed strong operations and a pre-
cisely defined subset of completedweak operations. Crucially,
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strong operations are non-blocking: they can leverage efficient,
quorum-based synchronization protocols, such as Paxos [11],
and thus gracefully tolerate machine and network failures.
Both weak and strong operations can be arbitrarily complex,
but theymust be deterministic.

Compared to other mixed-consistency solutions, our
approach is more robust. Most notably, unlike classic cloud
types [12] and global sequence protocol (GSP) [13], ACTs are
symmetrical in the sense that they do not assume the exis-
tence of a server or servers that mediate all communication
between remote replicas. Instead, ACTs utilize peer-to-peer
communication model. This has several advantages: a fail-
ure of a replica or a group of replicas cannot impede the
ability of other ACT replicas to execute weak operations
and propagate the resulting updates. Also, ACTs can better
tolerate network splits by allowing the replicas in all parti-
tions to execute weak operations and exchange resulting
updates. Furthermore, unlike the RedBlue consistency
model [14] and similar approaches (e.g., [15], [16], [17]),
ACTs support consistency guarantees weaker than causal
consistency, so account for a wider range of systems. Causal
consistency is known to be costly to achieve in practice [18],
and is not always needed [19]. Crucially, ACTs do not
require all replicas to be operational in order for the strong
operations to complete, contrary to the approaches men-
tioned above. This latter trait has been fundamental to the
design of ACTs.

In any run of an ACT, logically, there always exists a sin-
gle global order S of all operations. Therefore, system traces
can be reasoned about in terms of serial execution, which is
the hallmark of strong consistency [10], [20], [21], as well as
various weaker models, e.g., [22], [23], [24], [25]. During exe-
cution, strong operations are guaranteed to observe a prefix
of S up to their position in S. A weak operation may observe
a serialization S0 of operations that diverges from S, but
only by a finite number of elements. Thus weak and strong
operations are interconnected in a non-trivial way, which
intuitively ensures write stabilization: once a strong opera-
tion, during its execution, observes some weak operations
opi, opj in that order, all subsequent strong operations, and
eventually all weak operations, will also observe opi, opj in
that order. Write stabilization allows ACTs to overcome lim-
itations of models such as RedBlue consistency in which the
effects of a weak operation could never be deemed final. It
is so even though weak operations never have to directly
synchronize with strong operations (e.g., by blocking on the
completion of strong operations).

We propose a framework that enables formal reasoning
about ACTs and their guarantees. We express the depen-
dencies between operations through the visibility and arbi-
tration relations, similarly as in [26], but we allow each
operation to observe the arbitration in a temporarily incon-
sistent (but eventually convergent) form. In order to capture
the unique properties of ACTs and write stabilization in
particular, we define a novel correctness condition called
fluctuating eventual consistency (FEC) that is strictly weaker
than Burckhardt’s Basic Eventual Consistency (BEC) [27].

By formally specifying ACTs, we uncovered several
interesting phenomena unique to mixed-consistency sys-
tems (they are never exhibited by popular NoSQL systems,
which only guarantee eventual consistency, nor by strongly

consistent solutions). Crucially, some ACTs exhibit a phe-
nomenon that we call temporary operation reordering, which
happens when replicas temporarily disagree on the relative
order in which the requests (modelled as operations) sub-
mitted to the system were executed. When not handled
carefully, temporary operation reordering may lead to all
kinds of undesired situations, e.g., circular causality among
responses observed by the clients. As we formally prove,
temporary operation reordering is not present in all ACTs
but in some cases cannot be avoided. This impossibility
result is startling, because it shows that apparent strengthen-
ing of the semantics of a system (by introducing strong oper-
ations to an eventually-consistent system) results in the
weakening of the guarantees on the eventually-consistent
operations.

In order to illustrate our concepts and analysis, we present
an ACT for a non-negative counter and also revisit Bayou [23],
a seminal, always available, eventually consistent data store.
Bayou combines timestamp-based eventual consistency [28]
and serializability [20] by speculatively executing transactions
submitted by clients and having a primary replica to periodi-
cally stabilize the transactions (establish the final transaction
execution order). We show how Bayou can be improved to
form a general-purposeACT.

1.1 Contribution Summary

1) We define acute cloud types, a family of specialized
mixed-consistency data structures designed primar-
ily for high availability and low latency, which also
seamlessly integrate on-demand strongly consistent
semantics achieved through quorum-based consen-
sus protocols. Weak and strong operations in ACTs
are interconnected in a non-trivial way, which intui-
tively ensures write stabilization.

2) We identify a range of traits unique to some ACTs.
Most importantly, we define temporary operation reor-
dering, a situation in which there is an interim dis-
agreement between replicas on the relative order in
which client requests were executed.

3) We propose a framework that enables formal reason-
ing about ACTs and their guarantees. In particular,
our framework allows us to formalize temporary
operation reordering and propose a correctness con-
dition, called fluctuating eventual consistency, which
adequately captures the guarantees provided by
ACTs that exhibit this phenomenon.

4) We use our framework to prove a number of formal
results regarding ACTs. As our main contribution,
we show an impossibility result that states that tem-
porary operation reordering, while not pertinent to
all ACTs, in some ACTs cannot be avoided.

5) We revisit the seminal Bayou system, study its con-
sistency guarantees, and show how it can be
improved to form a general-purpose ACT.

1.2 Article Structure

The article is organized as follows. In Section 2 we explain
ACTs through examples: an acute non-negative counter
and an adaptation of Bayou that forms a general-purpose
ACT. We formally define ACTs in Section 3, and introduce
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the formal framework for reasoning about their correctness
in Section 4. In Section 5 we define FEC, our new correctness
criterion and prove the correctness of our example ACTs.
Next, in Section 6, we give our impossibility result. We dis-
cuss related work in Section 7, and conclude in Section 8.

A brief announcement of this article appeared in [29].

2 ACUTE CLOUD TYPES BY EXAMPLE

2.1 Acute Non-Negative Counter

As mentioned in Section 1, a non-negative integer counter
cannot be implemented as a CRDT because the subtraction
operation requires global coordination to ensure that the
value of the counter never drops below 0. In Algorithm 1
we present an acute non-negative integer counter (ANNC), a
simple ACT implementing such a counter. The add (line 5)
and get (line 31) operations are weak and thus guarantee
low response times, whereas subtract (line 11) is a strong
operation to ensure the semantics of a non-negative counter.
The crux of ANNC lies in using two complementary proto-
cols for exchanging updates (a gossip one and one that
establishes the ultimate operation serialization), and calcu-
lating the state of the counter by liberally counting add oper-
ations and conservatively counting the subtract operations.

To track the execution of weak and strong operations,
each ANNC replica maintains three variables (line 2): one
for subtraction operations (strongSub) and two for the addi-
tion operations (weakAdd and strongAdd). The replicas
exchange the information about new ADD requests (weak
updating operations) using a gossip protocol (modelled
using reliable broadcast, RB [30]) as well as a protocol that
involves inter-replica synchronization (modelled using total
order broadcast, TOB [31], which can be efficiently imple-
mented using quorum-based protocols, such as Paxos [11];
lines 9-10). The subtract operation, which does not commute
unlike the add operation, solely uses TOB. Upon receipt of a
TOB-cast SUBTRACT message, the subtract operation com-
pletes successfully only if we are certain that the value of
the counter does not drop below 0, i.e., when the aggregated
value of all confirmed addition operations (strongAdd) is
greater or equal to the aggregated value of all subtract oper-
ations (strongSub) increased by value (lines 25-27).

We ensure that on any replica and for any ADD request
r, the RB-deliverðrÞ event always happens before the
TOB-deliverðrÞ event (lines 21–22). This way weakAdd �
strongAdd. Hence, we solely use weakAdd as the approxi-
mation of the total value added to ANNC when calculating
the return value for the get operations.

Using a gossip protocol allows us to achieve propagation
of weak updating operations within network partitions,
when synchronization which requires solving distributed
consensus is not possible. On the other hand, when solving
distributed consensus is possible, replicas can agree on the
final order in which operations will be visible. This way
weak operations add and get are highly available, i.e., they
always execute in a constant number of steps and do not
depend on waiting on communication with other replicas.
Crucially, the return value of the get operation always
reflects all the add operations performed locally and, even-
tually, all add operations performed within the network
partition to which the replica belongs, if such a partition

exists. On the other hand, the strong subtract operation is
applied only if the replicas agree that it is safe to do so.

ANNC guarantees a property which is a conjunction of
basic eventual consistency (BEC) [26], [27] for weak operations
(add and get) and linearizability (LIN) [10] for strong opera-
tions (subtract). We formalize BEC and LIN in Sections 5.2
and 5.5, and prove the correctness of ANNC in Section 5.6.

2.2 Bayou

Bayou was an experimental system, so was never optimized
for performance. However, due to its unique approach to
speculative execution of transactions and their later stabiliza-
tion (establishing the final transaction execution order by a
primary replica), examining Bayou allows us to discuss var-
ious problematic phenomena that stem from having both
weak and strong semantics in a single system. We improve
Bayou to form a general-purpose, albeit not performance-
optimized ACT.

2.2.1 Protocol Overview

Below we give a high-level description of the Bayou protocol.
An interested reader may find a detailed description of Bayou
(together with a pseudocode) in Appendix A.1, which can be

Algorithm 1. Acute Non-Negative Counter (ANNC) for
Replica Ri.

1: struct Reqðtype : fADD, SUBTRACTg, value : int, id :
pairhint, inti)

2: var weakAdd, strongAdd, strongSub, currEventNo : int
3: var reqsAwaitingResp : sethpairhint, intii
4: var rbDeliveredAdds : sethpairhint, intii
5: upon invoke add(value : int) // weak operation
6: currEventNo ¼ currEventNoþ 1
7: weakAdd ¼ weakAddþ value
8: r ¼ ReqðADD, value; ði; currEventNoÞÞ
9: RB-castðrÞ
10: TOB-castðrÞ
11: upon invoke subtract (value : int) // strong operation
12: currEventNo ¼ currEventNoþ 1
13: r ¼ ReqðSUBTRACT, value; ði; currEventNoÞÞ
14: TOB-castðrÞ
15: reqsAwaitingResp ¼ reqsAwaitingResp [ fr:idg
16: upon RB-deliverðr : ReqðADD, value; idÞÞ
17: if r:id:first 6¼ i ^ r:id 2 rbDeliveredAdds then
18: rbDeliveredAdds ¼ rbDeliveredAdds [ fr:idg
19: weakAdd ¼ weakAddþ value
20: upon TOB-deliverðr : ReqðADD, value; idÞÞ
21: if r:id 62 rbDeliveredAdds then
22: trigger RB-deliverðrÞ // RB-deliver always before TOB-deliver
23: strongAdd ¼ strongAddþ value
24: upon TOB-deliverðr : ReqðSUBTRACT, value; idÞÞ
25: var res ¼ strongAdd � strongSubþ value
26: if res then
27: strongSub ¼ strongSubþ value
28: if id 2 reqsAwaitingResp then
29: reqsAwaitingResp ¼ reqsAwaitingResp n fidg
30: return res to client
31: upon invoke get() // read-only, weak operation
32: return weakAdd� strongSub to client
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found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2021.3090318. In
order to make our analysis more general, we abstract certain
aspects of the original protocol. Crucially, we allow clients to
submit to Bayou replicas deterministic, arbitrarily complex
(also as complex as, e.g., SQL transactions) operations that can
provide the clients with a return value. Each operation is
eitherweak or strong, similarly to operations inANNC.

In Bayou, each replica speculatively total-orders all client
operations, without prior agreement with other replicas,
using a simple timestamp-based mechanism (a replica
assigns a timestamp to an operation upon its submission).
The requests (operations together with their timestamps)
are disseminated to all replicas using a gossip protocol and
each replica independently executes them sequentially
according to their timestamps. When a replica delivers a
request r with a timestamp lower than some already exe-
cuted requests, the higher-timestamp requests are rolled-
back and reexecuted after r. This way a single total order,
consistent with operation timestamps, is always maintained
by all replicas.

This approach has two major downsides. The first one
concerns the performance: every time a replica receives a
request with a relatively low timestamp (compared to the
requests executed most recently), to maintain the correct
execution order, many requests need to be rolled back and
reexecuted. The second downside is related to the guaran-
tees provided: a client that submitted an operation op and
already received a response can never be sure that there
will be no other operation op0 with a lower timestamp than
op, which will eventually cause op to be reexecuted, thus
producing possibly a different return value.

To mitigate the two above problems, one of the replicas,
called the primary, periodically commits a growing prefix of
already executed operations, i.e., it decides to never rollback
them again and broadcasts this decision to other replicas.
Thus, it establishes the final operation execution order (also
called the committed order). This order may occasionally dif-
fer from the timestamp order, e.g., when a message sent to
the primary is delayed. Replicas always honour the order
established by the primary, which may force them to roll-
back and reexecute some operations. However, once an
operation is executed according to the committed order on
a replica R, it will never be rolled back and reexecuted again
on R (we then say that the operation is stable on R). Ulti-
mately, all operations (weak or strong) are committed and
become stable. However, since weak operations return
results before this occurs, the results may be inconsistent.

Intuitively, the replicas converge to the same state, which
is reflected by the prefix of operations established by the

primary (called the committed list of operations) and the
sequence of other operations ordered according to their
timestamps (the tentative list of operations). More precisely,
when the stream of operations incoming to the system
ceases and there are no network partitions (the replicas can
reach the primary), the committed lists at all replicas will be
the same, whereas the tentative lists will be empty. On the
other hand, when there are partitions, some operations
might not be successfully committed by the primary, but
will be disseminated within a partition using a gossip proto-
col. Then all replicas within the same partition will have the
same committed and (non-empty) tentative lists.

2.2.2 Anomalies

Nowwe discuss the consequences to the semantics of Bayou
resulting from having two, inconsistent with each other,
ways in which operations are ordered (the timestamp order
and the order established by the primary).

Consider the example in Fig. 1, which shows an execu-
tion of a three-replica Bayou system. Initially, replica R1

executes updating operations u1 and u2 in order u2; u1,
which corresponds to u1’s and u2’s timestamps. This execu-
tion order is observed by the client that issues query q1. On
the other hand, R2 executes the operations according to the
final execution order (u1; u2), as established by the primary
replica R3. Hence, the client that issued query q2 observes a
different execution order than the client that issued q1. Note
that replicas execute the operations with a delay (e.g., due
to CPU being busy) and that R1 reexecutes the operations
once it gets to know the final order.

Clearly, the clients that issued the operations can infer from
the return values the order inwhich Bayou executed the oper-
ations. The observed execution orders differ between the cli-
ents accessing R1 and R2. We call this anomaly temporary
operation reordering, as only eventually operations will observe
the same serialization of any two past operations. Interest-
ingly, the anomaly is present even though both u1 and u2 are
weak. Temporary operation reordering is directly related to
the sheer ability of the system to execute strongly consistent
operations. This behaviour is not present in strongly consis-
tent systems, which ensure that a single global ordering of
operation execution is always respected (e.g., [32], [33]). The
majority of eventually consistent systems which trade consis-
tency for high availability are also free of this anomaly, as they
only use one method to order concurrent operations (e.g.,
[22], [27]), or support only commutative operations (as in
strong eventual consistency [2], e.g., [3], [34]). There are also pro-
tocols that allow past operations to be perceived in different
(but still legal) orders (e.g., [14], [35], [36]). But, unlike Bayou,

Fig. 1. Example execution of Bayou showing temporary operation reordering and circular causality.
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they do not require the replicas to eventually agree on a single
execution order for all operations. Interestingly, temporary
operation reordering is not present in ANNC, because weak
updating operations (add) commute and do not provide
return values to clients.

Bayou exhibits another anomaly, which comes as very
non-intuitive, i.e., circular causality. By analysing the
return values of queries q1 and q2 one may conclude that
there is a circular dependency between u1 and u2: u1
depends on u2 as evidenced by q1’s response, while u2
depends on u1 as evidenced by q2’s response (the cycle of
causally related operations can contain more operations).
Interestingly, as we show later, circular causality does not
directly follow from temporary operation reordering but
is rather a result of the way Bayou rolls back and reexe-
cutes some operations.

‘In the original Bayou protocol, application-specific con-
flict detection and resolution is accomplished through the
use of dependency checks and merge procedure mechanisms.
Since we allow operations with arbitrary complex seman-
tics, the dependency checks and the merge procedures can
be emulated by the operations themselves, by simply incor-
porating if-else statements: the dependency check as the if
condition, and the merge procedure in the else branch (as
suggested in the original paper [23]). Hence, these mecha-
nisms do not alleviate the anomalies outlined above.

2.2.3 Correctness Guarantees

Because of the phenomena described above, the guarantees
provided by Bayou cannot be formalized using the correct-
ness criteria used for contemporary eventually consistent
systems. E.g., basic eventual consistency (BEC) by Burckhardt
et al. [26], [27] directly forbids circular causality (see Sec-
tion 5.2 for definition of BEC). BEC also requires the relative
order of any two operations, as perceived by the client, to
be consistent and to never change. Similarly, strong eventual
consistency (SEC) by Shapiro et al. [2] requires any two repli-
cas that delivered the same updates to have equivalent
states.1 Obviously, Bayou neither satisfies BEC nor SEC (as
evidenced by Fig. 1). On the other hand informal definitions
of eventual consistency which admit temporal reordering,
such as [28], involve only liveness guarantees, which is
insufficient. Hence we introduce a new correctness crite-
rion, fluctuating eventual consistency (FEC), which can be
viewed as a generalization of BEC (see Section 5.3 for defini-
tion). FEC relaxes BEC, so different operations can perceive
different operation orders. However, we require that the
different perceived operation orders converge to one final
execution order. Hence, FEC is suitable for systems that fea-
ture temporary operation reordering.

Similarly to ANNC, Bayou also ensures linearizability for
strong operations (a response of a strong operation op
always reflects the serial execution of all stabilized opera-
tions up to the point of op’s commit). In Section 5.6 we for-
mally prove that the Bayou-derived general-purpose ACT
satisfies the above correctness criteria.

In Appendix A.2, available in the online supplemental
material, an interested reader may find a brief analysis of
Bayou’s liveness guarantees.

2.2.4 Fault-Tolerance

Bayou’s reliance on the primary means that it provides only
limited fault-tolerance. Even though the primary may
recover, when it is down, operations do not stabilize, and
thus no strong operation can complete. Hence, the primary
is the single point of failure. Alternatively, the primary
could be replaced by a distributed commit protocol. If two-
phase-commit (2PC) [37] is used, the phenomena illustrated
in Fig. 1 are not possible. In this case each replica votes to
commit a given request. A replica postpones the commit of
a request with a higher timestamp to ensure that its requests
with lower timestamps are committed first. However, in
this approach, a failure of any replica blocks the execution
of strong operations. On the other hand, if a non-blocking
commit protocol, e.g., one that utilizes a quorum-based
implementation of TOB is used (as in ANNC), the system
may stabilize operations despite (a limited number of) fail-
ures.2 As we prove later, ACTs (which do not depend on
the synchronous communication with all replicas and thus
can operate despite failures of some of them) with general-
purpose semantics similar to Bayou, are necessarily prone
to the temporary operation reordering.

2.2.5 The Improved Bayou Protocol

Bayou can be improved to make it more fault-tolerant and
free of some of the phenomena described above.

First, we use TOB in place of the primary to establish the
final operation execution order. More precisely, each time a
replica receives an operation op from a client, it still dissemi-
nates op using a gossip protocol (so it can reach at least all
replicas within the same network partition) but it also
broadcasts the operation using TOB (in a similar way in
which weak updating operations are handled in ANNC).
Since TOB guarantees that all replicas deliver the same set
of messages in the same order, all replicas will stabilize the
same set of operations in the same order. As we argued ear-
lier, TOB can be implemented in a way that avoids a single
point of failure [11].

The second modification is aimed at eliminating circular
causality in Bayou. To this end (1) strong operations are
broadcast using TOB and never a gossip protocol, and (2)
upon being submitted, a weak operation op is executed
immediately on the current state to produce the return
value, even when other requests with lower timestamps are
queued for execution; however, eventually all requests are
executed in the order consistent with their timestamps. In
Appendix A.3, available in the online supplemental mate-
rial, we formally prove that above changes to the protocol
allow us to avoid circular causality.

With the above modifications the improved Bayou proto-
col becomes the general-purpose ACT, called AcuteBayou.

1. BEC can be seen as a refinement of SEC, which abstracts away
from CRDTs implementation details and ensures that no return value
is constructed out of thin air.

2. Sharded 2PC [38] can be considered non-blocking, if within each
shard at least one process remains operational at all times. Then, in
such a scheme not every process needs to be contacted to commit a
transaction, thus it falls under the quorum-based category.
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2.3 ANNC versus AcuteBayou

While ANNC implements a very specific narrow data type,
we can consider AcuteBayou as a generic ACT, capable of
executing any set of weak and strong operations. In fact we
could trivially implement a non-negative integer counter
using AcuteBayou by executing each counter operation as a
separate AcuteBayou operation, albeit such an implementa-
tion would be suboptimal: in some cases the operations
would have to be rolled back and temporary operation reor-
dering would be possible again.

Despite the many differences between ANNC and Acute-
Bayou, they share several design assumptions, which are
common to all ACT implementations. First, in order to facili-
tate high availability and low response times (which are
essential in geo-replicated environments), frequently invoked
operations should be declared weak and replicas should pro-
cess them similarly to operations in CRDTs (automatically
resolve conflicts between concurrent updates; converge to the
same state within a network partition). To enforce this behav-
iour without resorting to distributed agreement, we impose
the same assumptions asAttiya et al. for highly available even-
tually consistent data stores in [34] (see Section 3.3 for details).
Second, when weak consistency guarantees are insufficient,
strong operations can be used. Strong operations use a global
agreement protocol for inter-replica synchronization, e.g.,
TOB. We require that strong operations do not block the exe-
cution ofweak operations and that they do not require all rep-
licas to be operational at all times in order to complete (as in
2PC).

ACTs constitute a modular abstraction layer that handles
all the complexities of replication, while enabling flexibility,
high performance and clear mixed-consistency semantics.
In the next section we specify ACTs formally.

3 ACUTE CLOUD TYPES

3.1 Definition

An acute cloud type (ACT) is an abstract data type, imple-
mented as a replicated data structure, that offers a precisely
defined set of operations, divided into two groups: weak and
strong. The operations can be either updating or read-only
(RO), and all operations are allowed to provide a return value
(in Section 4 we show how the semantics of operations can be
specified formally). We impose the following implementation
restrictions over ACTs: invisible reads, input-driven processing,
op-driven messages, highly available weak operations and non-
blocking strong operations. The first four, are adapted from the
definition of write-propagating data stores [34] and guarantee
genuine, low-latency, eventually-consistent processing for
weak operations (as in, e.g., CRDTs [2]). The last restriction
guarantees that strong operations are implemented using a
non-blocking agreement protocol, instead of a fault-prone
approach requiring all the replicas to be operational. In Sec-
tions 3.2 and 3.3 we formalize the system model and provide
precise definitions of the implementation restrictions.

3.2 System Model

3.2.1 Replicas and Clients

We consider a system consisting of n � 2 processes called
replicas, which maintain full copies of an ACT and to which
external clients submit requests in the form of operations to

be executed.3 Each operation invoked by a client is marked
either weak or strong. Replicas communicate with each other
through message passing. We assume the availability of a
gossip protocol, which is used when ordering constraints
are not necessary, and some global agreement protocol,
used for tasks that require solving distributed consensus.
For simplicity, as in Algorithm 1, we formalize these proto-
cols using reliable broadcast (RB) [30], and TOB, respectively.
Replicas can implement point-to-point communication sim-
ply by ignoring messages for which they are not the
intended recipient. We model replicas as deterministic state
machines, which execute atomic steps in reaction to external
events (e.g., operation invocation or message delivery), and
can execute internal events (e.g., scheduled processing of
rollbacks). A specific event is enabled on a replica, if its pre-
conditions are met (e.g., an RB-deliverðmÞ event is enabled
on a replica R, if m was previously RB-cast and R has not
delivered message m yet). Replicas have access to a local
clock, which advances monotonically, but we make no
assumptions on the bound on clock drift between replicas.

We model crashed replicas as if they stopped all compu-
tation (or compute infinitely slowly). We say that a replica
is faulty if it crashes (in an infinite execution it executes only
a finite number of steps). Otherwise, it is correct.

3.2.2 Network Properties

In a fully asynchronous system, a crashed replica is indistin-
guishable to its peers from a very slow one, and it is impos-
sible to solve the distributed consensus problem [39]. Real
distributed systems which exhibit some amount of syn-
chrony can usually overcome this limitation. For example, in
a quasi-synchronous model [40], the system is considered to
be synchronous, but there exist a non-negligible probability
that timing assumptions can be broken. We are interested in
the behaviour of protocols, both in the fully asynchronous
environment, when timing assumptions are consistently
broken (e.g., because of prevalent network partitions), and
in a stable one, when the minimal amount of synchrony is
available so that consensus eventually terminates. Thus, we
consider two kinds of runs: asynchronous runs and stable
runs. Replicas are not aware which kind of a run they are
currently executing. In stable runs, we augment the system
with the failure detector V (which is an abstraction for the
synchronous aspects of the system). We do so implicitly by
allowing the replicas to use TOB through the TOB-cast and
TOB-deliver primitives. Since, TOB is known to require a
failure detector at least as strong as V to terminate [41], we
guarantee it achieves progress only in stable runs.

In both asynchronous and stable runs we guarantee the
basic properties of reliable message passing [30], i.e.,:

� if a message is RB-delivered, or TOB-delivered, then
it was, respectively, RB-cast, or TOB-cast, by some
replica,

� no message is RB-delivered, or TOB-delivered, more
than once by the same replica,

� if a correct replica RB-casts some message, then
eventually it RB-delivers it,

3. We assume full replication for simplicity.
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� if a correct replica RB-delivers some message, then
eventually all correct replicas RB-deliver it,

� if any (correct or faulty) replicaTOB-delivers somemes-
sage, then eventually all correct replicas TOB-deliver
it,

� messages are TOB-delivered by all replicas in the
same total order.

We define tobNoðmÞ as the sequence number of the TOB-
deliverðmÞ event (among other TOB-deliver events in the
execution) on any replica (we leave it undefined, i.e.,
tobNoðmÞ ¼ ?, ifm is never TOB-delivered by any replica).

Solely in stable runs, we also guarantee the following:

� if a correct replica TOB-casts some message, then
eventually all correct replicas TOB-deliver it.

� if a message m was both RB-cast and TOB-cast by
some (correct or faulty) replica, and m was RB-
delivered by some correct replica, then eventually all
correct replicas TOB-deliver it.

The last guarantee is non-standard for a total-order
broadcast, but could be easily emulated by the application
itself. We include it to simplify the presentation of certain
algorithms, such as ANNC and AcuteBayou.

3.2.3 Fair Executions

An execution is fair, if each replica has a chance to execute
its steps (all replicas execute infinitely many steps of each
type of an enabled event, e.g., infinitely many RB-deliver
events for infinitely many messages RB-cast).

We analyze the correctness of a protocol by evaluating a
single arbitrary infinite fair execution of the protocol, simi-
larly to [26] and [42]. If the execution satisfies the desired
properties, then all the executions of the protocol (including
finite ones and the ones featuring crashed replicas) satisfy
all the safety aspects verified (nothing bad ever happens [43],
[44]). Additionally, all fair executions of the protocol satisfy
liveness aspects (something good eventually happens).

3.3 Implementation Restrictions

Below we state the five rules that ACTs need to adhere to.
1. Invisible Reads. Replicas do not change their state due to

an invocation of a weak read-only operation. Formally, for
each weak read-only operation op invoked on a replica R in
state s, the state of R after a response for op is returned is
equal s. Note that, the consequence of this is that weak
read-only operations need to return a response to the client
immediately in the invoke event, without executing any
other steps. We allow strong read-only operations to change
the state of a replica, because sometimes it is necessary to
synchronize with other replicas, and then the replica needs
to note down that a response is pending.

2. Input-Driven Processing. Replicas execute a series of
steps only in response to some external stimulus, e.g., an
operation invocation or a received message. A state s of a
replica R is passive if none of the internal events on the rep-
lica are enabled in s. Initially each replica is in a passive
state. An external event may bring a replica to an active state
s0 in which it has some internal events enabled. Then, after
executing a finite number of internal events (when no new
external events are executed), the replica enters a passive

state. More formally, for each replica R, we require that in a
given execution, either there is only a finite number of inter-
nal events executed on R, or there is an infinite number of
external events executed on R. We say that R is passive, if it
is in a passive state, otherwise it is active.

3. Op-Driven Messages. RB or TOBmessages are only gener-
ated and sent as a result of some non-read-only client opera-
tion, and not spontaneously or in response to a received
message. More formally, a message can be RB-cast or TOB-
cast by a replicaR, if previously somenon-read-only operation
was invoked on R, and since then R did not enter a passive
state.

4. Highly Available Weak Operations. Weak operations
need to eventually return a response without communicat-
ing with other replicas. A weak operation op may remain
pending only if the execution is finite, and the executing
replica remains active since the invocation of op (in an infi-
nite execution a pending weak operation is never allowed).

5. Non-Blocking Strong Operations. Strong operations need
to eventually return a response if a global agreement has
been reached. More formally, for a strong operation op
invoked on a replica R, let msgs be the set of all messages
TOB-cast by R since the invocation of op but before R enters
a passive state. Then, opmay remain pending only if:

� the execution is finite, and R remains active since the
invocation of op, or R remains active because of the
delivery of any messagem 2 msgs, or

� there exists a message m 2 msgs, which has not been
TOB-delivered by R yet.

It means that in order to execute a strong operation repli-
cas may synchronize by TOB-casting multiple messages,
but once TOB completes, the response must be returned in a
finite number of steps.

All the above requirements are commonly met by vari-
ous eventually consistent data stores and CRDTs (when we
consider them as ACTs with only weak operations and
using our communication model4), see, e.g., [1], [2], [34],
[42], [45], [46], [47], [48], [49]. Restrictions 1–4 are inspired
by the ones defined for write-propagating data stores [34],
but modified appropriately to accommodate for the more
complex nature of ACTs. In particular, we allow implemen-
tations that do not execute each invoked operation in one
atomic step, but divide the execution between many internal
steps (e.g., see the pseudocode of Bayou in Appendix A.1,
available in the online supplemental material). On the other
hand, the 5th requirement concerns strong operations, and so
is specific for ACTs. As discussed in [34], [42], requirements
1–4 preclude implementations which offer stronger consis-
tency guarantees but do not provide a real value to the pro-
grammer (and still fall short of the guarantees possible to
ensure if global agreement can be reached). For example, a
register’s implementation lacking invisible reads can return
not themost recent value, but a stale one, unless the read oper-
ation was invoked earlier a certain number of times. Such an
implementation is more restrictive compared to a classic

4. In case of geo-replicated systems which are weakly consistent
between data centers, but feature state machine replication within a
data center to simulate reliable processes, we can consider the whole
data center as a single replica.

1344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on November 02,2022 at 12:34:03 UTC from IEEE Xplore.  Restrictions apply. 



register, i.e., it admits fewer execution traces. Thus it satisfies a
more stringent consistency guarantee, albeit not a very useful
one. On the other hand, with the above restrictions, it is still
possible to attain causal consistency and variants of it, such as
observable causal consistency [34].

4 FORMAL FRAMEWORK

Belowwe provide the formal framework that allows us to rea-
son about execution histories and correctness criteria. We
extend the framework by Burckhardt et al. [26], [27] (also used
by several other researchers, e.g., [34], [42], [50], [51]).

4.1 Preliminaries

Relations. A binary relation rel over set A is a subset rel �
A�A. For a; b 2 A, we use the notation a

rel�! b to denote

ða; bÞ 2 rel, and the notation relðaÞ to denote fb 2 A : a
rel�! bg.

We use the notation rel�1 to denote the inverse relation, i.e.,

ða rel�1���! bÞ , ðb rel�! aÞ. Therefore, rel�1ðbÞ ¼ fa 2 A : a
rel�! bg.

Given two binary relations rel, rel0 overA, we define the com-

position rel; rel0 ¼ fða; cÞ : 9b 2 A : a
rel�! b

rel0�! cg. We let idA
be the identity relation overA, i.e., ða idA�! bÞ , ða 2 AÞ ^ ða ¼
bÞ. For n 2 N0, we let reln be the n-ary composition
rel; rel . . . ; rel, with rel0 ¼ idA. We let relþ ¼ S

n�1rel
n and

rel� ¼ S
n�0rel

n. For some subset A0 � A, we define the
restricted relation reljA0 ¼ rel \ ðA0 �A0Þ. In Fig. 2 we sum-
marize various properties of relations.

We define by wordsðAÞ the set of all sequences (words)
containing only elements from the set A. When not ambigu-
ous we use A� to denote wordsðAÞ (i.e., when A is not a
binary relation).

Let rankðA; rel; aÞ denote the number of elements of
set A that are in relation rel to element a 2 A. Thus,
rankðA; rel; aÞ ¼ jfx 2 A : x

rel�! agj ¼ jrel�1ðaÞ \Aj.
We also define two operators sort and foldl. A:sortðrelÞ 2

A� arranges in an ascending order the elements of set A
according to the total order rel. foldlða0; f; wÞ 2 A reduces
sequence w 2 B� by one element at a time using the function
f : A�B ! A and accumulator a0 2 A:

foldlða0; f; wÞ ¼ a0 if w ¼ �
fðfoldlða0; f; w0Þ; bÞ if w ¼ w0b

�
:

Event Graphs. To reason about executions of a distributed
systemwe encode the information about events that occur in
the system and about various dependencies between them in
the form of an event graph. An event graph G is a tuple

ðE; d1; . . . :; dnÞ, where E � Events is a finite or countably
infinite set of events drawn from universe Events, n � 1,
and each di is an attribute or a relation over E. Vertices in G
represent events that occurred at some point during the exe-
cution and are interpreted as opaque identifiers. Attributes
label vertices with information pertinent to the correspond-
ing event, e.g., operation performed, or the value returned.
All possible operations of all considered data types form the
Operations set. All possible return values of all operations
form the Values set. Relations represent orderings or group-
ings of events, and thus can be understood as arcs or edges of
the graph.

Event graphs are meant to carry information that is inde-
pendent of the actual elements of Events chosen to repre-
sent the events (the attributes and relations in G encode all
relevant information regarding the execution). Let G ¼
ðE; d1; . . . :; dnÞ and G0 ¼ ðE0; d01; . . . :; d

0
nÞ be two event

graphs. G and G0 are isomorphic, written G ’ G0, if (1) for all
i � 1, di and d0i are of the same kind (attribute versus rela-
tion) and (2) there exists a bijection f : E ! E0 such that for
all di, where di is an attribute, and all x 2 E, we have diðxÞ ¼
d0iðfðxÞÞ, and such that for all di where di is a relation, and all

x; y 2 E, we have x
di!y , fðxÞ d0

i!fðyÞ.

4.2 Histories

We represent a high-level view of a system execution as a his-
tory. We omit implementation details such as message
exchanges or internal steps executed by the replicas. We
include only the observable behaviour of the system, as per-
ceived by the clients through received responses. Formally, we
define a history as an event graph H ¼ ðE; op; rval; rb; ss; lvlÞ,
where:

� op : E ! Operations, specifies the operation invoked
in a particular event, e.g., opðeÞ ¼ writeð3Þ,

� rval : E ! Values [ frg, specifies the value returned
by the operation, e.g., rvalðeÞ ¼ 3, or rvalðe0Þ ¼ r, if
the operation never returns (e0 is pending inH),

� rb, the returns-before relation, is a natural partial order
over E, which specifies the ordering of non-overlap-
ping operations (one operation returns before the
other starts, in real-time),

� ss, the same session relation, is an equivalence relation
which groups events executed within the same ses-
sion (the same client), and finally

� lvl : E ! fweak; strongg, specifies the consistency
level demanded for the invoked operation.

We consider only well-formed histories, which satisfy:

Fig. 2. Definitions of common properties of a binary relation rel � A�A.
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� 8a; b 2 E : ða rb!b ) rvalðaÞ 6¼ rÞ (a pending opera-
tion does not return),

� 8a; b; c; d 2 E : ða rb!b ^ c
rb!dÞ ) ða rb!d _ c

rb!bÞ (rb is
an interval order, i.e., it is consistent with a timeline
interpretation, where operations correspond to seg-
ments [26], [52]),

� for each event e 2 E and its session S ¼ fe0 2 E :
e

ss!e0g, the restriction rbjS is an enumeration (clients
issue operations sequentially).

4.3 Abstract Executions

In order to explain the history, i.e., the observed return
values, and reason about the system properties, we need
to extend the history with information about the abstract
relationships between events. For strongly consistent sys-
tems typically we do so by finding a serialization [21] (an
enumeration of all events) that satisfies certain criteria.
For weaker consistency models, such as eventual consis-
tency or causal consistency, it is more natural to reason
about partial ordering of events. Hence, we resort to
abstract executions.

An abstract execution is an event graph A ¼ ðE; op; rval; rb;
ss; lvl; vis; ar; parÞ, such that:

� ðE; op; rval; rb; ss; lvlÞ is some historyH,
� vis is an acyclic and natural relation,
� ar is a total order relation, and
� par : E ! 2E�E is a function which returns a binary

relation in E.
For brevity, we often use a shorter notation A ¼ ðH; vis;

ar; parÞ and let HðAÞ ¼ H. Just as serializations are used to
explain and justify operations’ return values reported in a
history, so are the visibility (vis) and arbitration (ar) relations.
Perceived arbitration (par) is a function which is necessary to
formalize temporary operation reordering.

Visibility (vis) describes the relative influence of opera-
tion executions in a history on each others’ return values: if

a is visible to b (denoted a
vis�! b), then the effect of a is visible

to the replica performing b (and thus reflected in b’s return
value). Visibility often mirrors how updates propagate
through the system, but it is not tied to the low-level phe-
nomena, such as message delivery. It is an acyclic, natural
relation, which may or may not be transitive. Two events
are concurrent if they are not ordered by visibility.

Arbitration (ar) is an additional ordering of events
which is necessary in case of non-commutative opera-
tions. It describes how the effects of these operations
should be applied. If a is arbitrated before b (denoted
a

ar�! b), then a is considered to have been executed earlier
than b. Arbitration is essential for resolving conflicts
between concurrent events, but it is defined as a total-
order over all operation executions in a history. It usually
matches whatever conflict resolution scheme is used in an
actual system, be it physical time-based timestamps, or
logical clocks.

Perceived arbitration (par) describes the relative order of
operation executions, as perceived by each operation
(parðeÞ defines the total order of all operations, as perceived
by event e). If 8e 2 E : parðeÞ ¼ ar, then there is no tempo-
rary operation reordering in A.

4.4 Correctness Predicates

A consistency guarantee PðAÞ is a set of conditions on an
abstract execution A, which depend on the particulars of A
up to isomorphism. For brevity we usually omit the argu-
ment A. We write A � P if A satisfies P. More precisely: A �
P ()def 8A0 : A0 ’ A : PðA0Þ. A history H is correct according
to some consistency guarantee P (writtenH � P) if it can be
extended with some vis, ar relations and par function to an
abstract execution A ¼ ðH; vis; ar; parÞ that satisfies P. We
say that a system is correct according to some consistency
guarantee P if all of its histories satisfy P.

We say that a consistency guarantee Pi is at least as
strong as a consistency guarantee Pj, denoted Pi � Pj, if
8H : H � Pi ) H � Pj. If Pi � Pj and Pj 6� Pi then Pi is
stronger than Pj, denoted Pi > Pj. If Pi 6� Pj and Pj 6� Pi,
then Pi and Pj are incomparable, denoted Pi6Pj.

4.5 Replicated Data Type

In order to specify semantics of operations invoked by the
clients on the replicas, we model the whole system as a sin-
gle replicated object (as in case of Algorithm 1). Even
though we use only a single object, this approach is general,
as multiple objects can be viewed as a single instance of a
more complicated type, e.g., multiple registers constitute a
single key-value store. Defining the semantics of the repli-
cated object through a sequential specification [10] is not
sufficient for replicated objects which expose concurrency
to the client, e.g., multi-value register (MVR) [2] or
observed-remove set (OR-Set) [3]. Hence, we utilize repli-
cated data types specification [46].

In this approach, the state on which an operation op 2
Operations executes, called the operation context, is formal-
ized by the event graph of the prior operations visible to op.
Formally, for any event e in an abstract execution A ¼
ðE; op; rval; rb; ss; lvl; vis; ar; parÞ, the operation context of e

in A is the event graph contextðA; eÞ ¼def ðvis�1ðeÞ; op; vis; arÞ.
Note that an operation context lacks return values, the
returns-before relation, and the information about sessions.
The set of previously invoked operations and their relative
visibility and arbitration unambiguously defines the output
of each operation. This brings us to the formal definition of
a replicated data type.

A replicated data type F is a function that, for each operation
op 2 opsðFÞ (where opsðFÞ � Operations) and operation con-
text C, defines the expected return value v ¼ Fðop;CÞ 2
Values, such that v does not depend on events, i.e., is the same
for isomorphic contexts: C ’ C0 ) Fðop;CÞ ¼ Fðop;C0Þ for
all op, C, C0. We say that op 2 opsðFÞ is a read-only operation
(denoted op 2 readonlyopsðFÞ), if and only if, for any opera-
tion op0, context C ¼ ðE; op; vis; arÞ and event e 2 E, such that
opðeÞ ¼ op, Fðop0; CÞ ¼ Fðop0; C0Þ, where C0 ¼ ðE n feg; op;
vis; arÞ. In other words, read-only operations can be excluded
from any contextC, producingC0, and the result of any opera-
tion op0 will not change.

In Fig. 3 we give the specification of three replicated data
types: FMVR (a multi-value register), F seq (an append-only
sequence), and FNNC (a non-negative counter). We use F seq

in the subsequent sections to illustrate various consistency
models.
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4.6 ACT Specification

To accommodate for the mixed-consistency nature of ACTs
we extend replicated data type specification with the infor-
mation on supported consistency levels for a given opera-
tion. Thus, we define ACT specification as a pair ðF ; lvlmapÞ,
where F is a replicated data type specification and lvlmap :
Operations ! 2fweak;strongg is a function which specifies for
each op 2 Operations with which consistency levels it can
be executed. We assume that clients follow this contract,
and thus, when considering a history H ¼ ðE; op; rval; rb;
ss; lvlÞ of an ACT compliant with the specification ðF ; lvlmapÞ,
we assume that for each e 2 E : lvlðeÞ 2 lvlmapðopðeÞÞ.

Then, ANNC’s specification is ðFNNC; lvlmapNNCÞ, where
lvlmapNNCðaddÞ ¼ lvlmapNNCðgetÞ ¼ fweakg and lvlmapNNC

ðsubtractÞ ¼ fstrongg.

5 CORRECTNESS GUARANTEES

In this section we define various correctness guarantees for
ACTs. We define them as conjunctions of several basic pred-
icates. We start with two simple requirements that should
naturally be present in any eventually consistent system.
For the discussion below we assume some arbitrary abstract
execution A ¼ ðE; op; rval; rb; ss; lvl; vis; ar; parÞ.

5.1 Key Requirements for Eventual Consistency

The first requirement is the eventual visibility (EV) of events.
EV requires that for any event e in A, there is only a finite
number of events in E that do not observe e. Formally

EV ¼def 8e 2 E : jfe0 2 E : e
rb�! e0 ^ e 6 vis���! e0gj < 1:

Intuitively, EV implies progress in the system because repli-
cas must synchronize and exchange knowledge about oper-
ations submitted to the system.

The second requirement concerns avoiding circular cau-
sality, as discussed in Section 2.2.2. To this end we define
two auxiliary relations: session order and happens-before. The
session order relation so ¼def rb \ ss represents the order of

operations in each session. The happens-before relation
hb ¼def ðso [ visÞþ (a transitive closure of session order and
visibility) allows us to express the causal dependency

between events. Intuitively, if e
hb�! e0, then e0 potentially

depends on e. We simply require no circular causality:

NCC ¼def acyclicðhbÞ:
In the following sections we add requirements on the

return values of the operations in A. Formalizing the prop-
erties of ACTs which, similarly to AcuteBayou, admit tem-
porary operation reordering, requires a new approach. We
start, however, with the traditional one.

5.2 Basic Eventual Consistency

Intuitively, basic eventual consistency (BEC) [26], [27], in addi-
tion to EV and NCC, requires that the return value of each
invoked operation can be explained using the specification
of the replicated data type F , which is formalized as fol-
lows:

RValðFÞ ¼def 8e 2 E : rvalðeÞ ¼ FðopðeÞ; contextðA; eÞÞ:
Then

BECðFÞ ¼def EV ^ NCC ^ RValðFÞ:

An example abstract execution ABEC that satisfies BEC

ðF seqÞ is shown in Fig. 4. In ABEC, replicas R1 and R2 concur-
rently execute two appendðÞ operations, and then each rep-
lica executes an infinite number of readðÞ operations.
Consider the readðÞ operations on R2: the first one observes
only appendðaÞ (which is in the operation context of readðÞ),
whereas the second observes only appendðbÞ. BEC admits
this kind of execution, because it does not make any require-
ments in terms of session guarantees [53]. Eventually, both
appendðaÞ and appendðbÞ become visible to all subsequent
readðÞ operations, thus satisfying EV.

Fig. 3. Formal specifications of a multi-value register data type FMVR, an append-only sequence data type F seq, and a non-negative counter FNNC .
An instance of FMVR stores multiple values when there are concurrent writeðÞ operations (writeðÞ operations not ordered by the vis relation). F seq

can be used to create a sequence of characters (a word), where the set of characters is limited to a through z. F seq features two operations:
appendðxÞ, which appends x to the end of the sequence and returns ok 2 Values, and readðÞ, which returns a sequence (a word) w 2 $�. FNNC stores
an integer value, that can be increased using the add operation or decreased using the subtract operation, but only if the value of the counter will not
decrease below 0. The get operation simply returns the current value of the counter. See the definition of operators sort and foldl in Section 4.1.
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By the definition of the context function (Section 4.5),
whenA satisfiesRValðFÞ, the return value of each operation
is calculated according to the ar relation. It is then easy to see
that there are executions of AcuteBayou (or other ACTs that
admit temporary operation reordering) which do not satisfy
RValðFÞ. It is because weak operations (as shown in Sec-
tion 2.2.2) might observe past operations in an order that dif-
fers from the final operation execution order (ar). Hence
AcuteBayou does not satisfy BECðFÞ for an arbitrary F . But
it could satisfy BECðFÞ for a sufficiently simple F , such as a
conflict-free counter, in which all operations always com-
mute (as opposed to FNNC). It is so, because then, even if
AcuteBayou reorders some operations internally, the final
result never changes and thus the reordering cannot be
observed by the clients.

5.3 Fluctuating Eventual Consistency

In order to admit temporary operation reordering, we give a
slightly different definition of the context function, in which
the arbitration order fluctuates, i.e., it changes from one event
to another. Let fcontextðA; eÞ ¼def ðvis�1ðeÞ; op; vis; parðeÞÞ,
which means that now we consider the operation execution
order as perceived by e, and not the final one. The definition
of the fluctuating variant ofRVal is straightforward:

FRValðFÞ ¼def 8 2 E : rvalðeÞ ¼ FðopðeÞ; fcontextðA; eÞÞ:

To define the fluctuating variant of BEC, that could be used
to formalize the guarantees provided by ACTs we addition-
ally must ensure that the arbitration order perceived by
events is not completely unrestricted, but that it gradually
converges to ar for each subsequent event. It means that each
e 2 E can be temporarily observed by the subsequent events
e0 according to an order that differs from ar (but is consis-
tent with parðe0Þ). However, from some moment on, every
event e0 will observe e according to ar. To define this
requirement, we use the rank function (defined in Sec-
tion 4.1). Let Ee ¼ fe0 2 E : e

vis�! e0g. This intuition is formal-
ized by convergent perceived arbitration:

CPar ¼def 8e 2 E : jfe0 2 Ee : rankðvis�1ðe0Þ; parðe0Þ; eÞ
6¼ rankðvis�1ðe0Þ; ar; eÞgj < 1:

If A satisfies CPar, then for each event e, the set of events e0,
which observe the position of e not according to ar is finite.
Thus, the position of e in parðe0Þ for subsequent events e0

stabilizes, and parðe0Þ eventually converges to ar.

Now we can define our new consistency criterion fluctu-
ating eventual consistency (FEC):

FECðFÞ ¼def EV ^ NCC ^ FRValðFÞ ^ CPar:

An example abstract execution AFEC that satisfies FEC is
shown in Fig. 4. In AFEC, replica R2 temporarily observes
the appendðÞ operations in the order appendðbÞ; appendðaÞ
which is different than the eventual operation execution
order (as evidenced by the infinite number of readðÞ ! ab
operations). We call this behaviour fluctuation.

It is easy to see that FECðFÞ < BECðFÞ, in the sense that:
for each F , FECðFÞ 	 BECðFÞ, and for some F , FECðFÞ <
BECðFÞ. It is so, because FEC uses par instead of ar to calcu-
late the return values of operation executions, but par even-
tually converges to ar. Hence, BECðFÞ is a special case of
FECðFÞ, when 8e 2 E : parðeÞ ¼ ar. It is easy to see that
ABEC from Fig. 4 satisfies both BEC and FEC, whereas AFEC

satisfies only FEC.

5.4 Operation Levels

The above definitions can be used to capture the guarantees
provided by a wide variety of eventually consistent sys-
tems. However, our framework still lacks the capability to
express the semantics of mixed-consistency systems. ACTs
offer different guarantees for different classes of operations
(e.g., consistency guarantees stronger than BEC or FEC are
provided in AcuteBayou or ANNC only for strong opera-
tions). Hence, we need to parametrize the consistency crite-
ria with a level attribute (as indicated by the lvl function for
each event). Since consistency level is specified per opera-
tion invocation, we need to assure that the respective oper-
ations’ responses reflect the demanded consistency level.

Let us revisit BEC first. Let L ¼ fe 2 E : lvlðeÞ ¼ lg for a
given l. Then

EVðlÞ ¼def 8e 2 E : jfe0 2 L : e
rb�! e0 ^ e 6 vis���! e0gj < 1

NCCðlÞ ¼def acyclicðhb \ ðL� LÞÞ
RValðl;FÞ ¼def 8e 2 L : rvalðeÞ ¼ FðopðeÞ; contextðA; eÞÞ
BECðl;FÞ ¼def EVðlÞ ^ NCCðlÞ ^ RValðl;FÞ:

The above parametrized definition of BEC restricts the RVal

predicate only to events issued with the given consistency
level l (the events that belong to the set L). It means that for
any such event the response has to conformwith the replicated
data type specification F , and with the vis and ar relations (as

Fig. 4. Example abstract executions of systems with a list semantics that satisfy BECðF seqÞ, FECðF seqÞ, SeqðF seqÞ, and LinðF seqÞ respectively (for
brevity, we omit the level parameter l and assume that all operations belong to the same class l). We use solid and dashed underlines to depict which
updating operations are visible (through relation vis) in A to the readðÞ operations (we assume that every readðÞ operation observes all other readðÞ
operations that happened prior to it). In the arbitration order, appendðaÞ precedes appendðbÞ, and both updates are followed by all the reads in the
order they appear on the timeline.
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defined by the definition of the context function). For all
other events this requirement does not need to be satis-
fied, so they can return arbitrary responses (unless
restricted by other predicates targeted for these events).
Similarly, for EV and NCC, the predicates are restricted
to affect only the events from the set L. In case of EV,
each event eventually becomes visible to the operations
executed with the level l. In case of NCC, there must be
no cycles in hb involving events from the set L.

The parametrized variant of FEC is formulated analo-
gously. Let L be defined as before, and for any event e 2 E,

let Le ¼ fe0 2 L : e
vis�! e0g be the subset of events from L

which observe e. Then

FRValðl;FÞ ¼def 8e 2 L : rvalðeÞ ¼ FðopðeÞ; fcontextðA; eÞÞ
CParðlÞ ¼def 8e 2 E : jfe0 2 Le : rankðvis�1ðe0Þ; parðe0Þ; eÞ

6¼ rankðvis�1ðe0Þ; ar; eÞgj < 1
FECðl;FÞ ¼def EVðlÞ ^ NCCðlÞ ^ FRValðl;FÞ ^ CParðlÞ:

As before, we restrict the return values only for the events
from the setL. Additionally, we restrict the predicateCPar, so
that parðeÞ converges towards ar only for events e 2 L. Other
events can differently perceive the arbitration of events (in
principle, the observed arbitration can be completely different
from the final one, specified by ar).

We can compare the parametrized variants of BEC and
FEC as before: FECðl;FÞ < BECðl;FÞ.

All of the strong consistency criteria which we are going
to discuss next, we define already in the parametrized form
with the given level l in mind, so they can be used, e.g., for
strong operations in AcuteBayou and ANNC.

5.5 Strong Consistency

A common feature of strong consistency criteria, such as
sequential consistency [21], or linearizability [10], is a single
global serialization of all operations. It means that a history
satisfies these criteria, if it is equivalent to some serial execu-
tion (serialization) of all the operations. Additionally, depend-
ing on the particular criterion, the serialization must, e.g.,
respect program-order, or real-time order of operation execu-
tions. Although we provide a serialization of all operations
(through the total order relation ar, which is part of every
abstract execution), the equivalence of a history to the seriali-
zation is not enforced in the correctness criteria we have
defined so far. For example, given a sequence of three events
ha; b; ci, such that a

ar�! b
ar�! c, the response of c according to

BEC, does not need to reflect neither a, nor b, as theymay sim-
ply be not visible to c (a 6 vis��! c _ b 6 vis��! c). Thus, to guarantee
conformance to a single global serialization, we must enforce
that for any two events e1; e2 2 E, e1

ar�! e2 , e1
vis�!e2 (unless

e1 is pending, since a pending operation might be arbitrated
before a completed one, yet still be not visible). We express
this through the single order predicate:

SinOrd ¼def 9E0 � rval�1ðrÞ : vis ¼ ar n ðE0 � EÞ
SinOrdðlÞ ¼def 9E0 � rval�1ðrÞ : visL ¼ arL n ðE0 � EÞ
where visL ¼ vis \ ðE � LÞ and arL ¼ ar \ ðE � LÞ:

Note that rval�1ðrÞ represents all pending events, while E0

is a subset of these events. Thus, for certain pending events

e1 2 E0, e1
ar�! e2 , e1

vis�! e2 does not need to hold. In the

parametrized form, the conformance to the serialization is

required only for the events from the set L (but the serializa-

tion includes all the events).
In order to capture the eventual stabilization of the opera-

tion execution order, which happens in AcuteBayou and in
ACTs similar to it, we now define two additional correct-
ness criteria that feature SinOrd.

Sequential Consistency. Informally, sequential consistency (Seq)
[21] guarantees that the system behaves as if all operations
were executed sequentially, but in an order that respects the
program order, i.e., the order in which operations were executed
in each session. Hence, Seq implies RVal together with
SinOrd, and additionally, session arbitration (SessArb). SessArb
simply requires that for any two events e; e0 2 E, if e

so�! e0,
then e

ar�! e0. In the parametrized form we are interested only
in the guarantees for events in L, and thus we use soL ¼
so \ ðE � LÞ instead of so (see Section 5.1). SinOrd together
with SessArb imply NCC and EV [26], however this does not
hold for the parametrized forms of these predicates. Thus, we
define Seq by extending BEC (which explicitly includes EV,
NCC andRVal):

SessArbðlÞ ¼def soL � ar

Seqðl;FÞ ¼def SinOrdðlÞ ^ SessArbðlÞ ^ BECðl;FÞ:

An example abstract execution ASeq that satisfies SEQ is
shown in Fig. 4. According to SEQ, since the appendðÞ opera-
tions are arbitrated appendðaÞ; appendðbÞ (as evidenced by any
readðÞ operation that observes both appendðÞ operations), any
readðÞ can either return ab or a, a non-empty prefix of ab.

Linearizability. The linearizability (Lin) [10] correctness
condition is similar to Seq but instead of program order it
enforces a stronger requirement called real-time order. Infor-
mally, a system that is linearizable guarantees that for any
operation op0 that starts (in real-time) after any operation op
ends, op0 will observe the effects of op. We formalize Lin

using the real-time order (RT) predicate, that uses the rbL ¼
rb \ ðL� LÞ relation in its parametrized form:

RTðlÞ ¼def rbL � ar

Linðl;FÞ ¼def SinOrdðlÞ ^ RTðlÞ ^ BECðl;FÞ:

Note that, Seq and Lin are incomparable in their parame-
trized forms. While Linðl;FÞ requires any two events to be
arbitrated according to real-time if they both belong to L,
Seqðl;FÞ enforces real-time only within the same session,
but only one of the events needs to belong to L. By using a
stronger definition of RT0ðlÞ with rb0L ¼ rb \ ðE � LÞ, we
would force all operations to synchronize, which is incom-
patible with high availability of weak operations.

An example abstract execution ALIN that satisfies LIN is
shown in Fig. 4. According to LIN, since appendðaÞ ended
before appendðbÞ started, the operations must be arbitrated
appendðaÞ; appendðbÞ (as evidenced by any readðÞ operation
that observes both appendðÞ operations). If some readðÞ
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operation started after appendðaÞ ended but executed con-
currently with appendðbÞ (appendðbÞ would start before
readðÞ ended), readðÞ could return either a or ab.

5.6 Correctness of ANNC and AcuteBayou

Having defined BEC, FEC and LIN, we show four formal
results: two regarding ANNC and two regarding Acute-
Bayou. The proofs of all four theorems can be found in
AppendixA.5, available in the online supplementalmaterial.

As we have discussed in Section 3.2.2, we are interested
in the behaviour of systems, both in a fully asynchronous
environment, when timing assumptions are constantly bro-
ken (e.g., because of prevalent network partitions), and in a
stable one, when sufficient synchrony is available so that
consensus eventually terminates. Thus, we consider two
kinds of runs: asynchronous and stable.

Theorem 1. In stable runs ANNC satisfies BECðweak;FNNCÞ
^ Linðstrong;FNNCÞ.

Theorem 2. In asynchronous runs ANNC satisfies BECðweak;
FNNCÞ and does not satisfy Linðstrong;FNNCÞ.
ANNC does not guarantee Linðstrong;FNNCÞ in asyn-

chronous runs, because strong operations in general (for
arbitrary F ) cannot be implemented without solving global
agreement, and since in asynchronous runs TOB completion
is not guaranteed, some of the operations may remain pend-
ing. It means that for some e 2 E, such that lvlðeÞ ¼ strong,
rvalðeÞ ¼ r, even though it is not allowed by F (recall from
Section 3.2.3 that we consider fair executions).

By satisfying BECðweak;FNNCÞ, we prove that temporary
operation reordering is not possible in ANNC. As we dis-
cussed in Section 2.2.2, it is not the case for AcuteBayou.
However, we can prove that AcuteBayou satisfies our new
correctness criterion FECðweak;FÞ (for arbitrary F ).

Theorem 3. In stable runs AcuteBayou satisfies FECðweak;
FÞ ^ Linðstrong;FÞ for any arbitrary ACT specification
ðF ; lvlmapÞ.

Theorem 4. In asynchronous runs AcuteBayou satisfies
FECðweak;FÞ and it does not satisfy Linðstrong;FÞ for any
arbitrary ACT specification ðF ; lvlmapÞ.
The observation that some undesired anomalies are not

inherent to all ACTs leads to interesting questions that we
plan to investigate more closely in the future, e.g., what are
the common characteristics of the replicated data types with
mixed-consistency semantics that can be implemented as
ACTs that are free of temporary operation reordering.

6 IMPOSSIBILITY

Now we proceed to our central contribution: we show that
there exists an ACT specification for which it is impossible
to propose an ACT implementation that avoids temporary
operation reordering.

If a mixed-consistency ACT that implements some repli-
cated data type F could avoid temporary operation reorder-
ing, it would mean that it ensures BEC for weak operations
and also provides at least some criterion based on SinOrd

for strong operations (to ensure a global serialization of all
operations). Hence we state our main theorem:

Theorem 5. There exists an ACT specification ðF ; lvlmapÞ,
for which there does not exist an implementation that satis-
fies SinOrdðstrongÞ ^ BECðstrong;FÞ in stable runs, and
BEC ðweak;FÞ in both asynchronous and stable runs.

To prove the theorem, we take F seq (defined in Fig. 3) as
an example replicated data type specification F . We consider
an ACT specification, which features append and read opera-
tions in both consistency levels, weak, and strong. Thus,
ðF ; lvlmapÞ ¼ ðF seq; lvlmapseqÞ, where lvlmapseqðappendÞ ¼
lvlmapseqðreadÞ ¼ fweak; strongg.

Let us begin with an observation. Whenever any ACT
implementation of ðF seq; lvlmapseqÞ that satisfies BECðweak;
F seqÞ in asynchronous runs, executes a weak append opera-
tion, it has to RB-cast some messagem. Since the implemen-
tation satisfies EV (through BECðweak;F seqÞ) we know that
all replicas have to be informed about the invocation of
append. The replica executing the append operation may not
postpone sending the message until some other invocation
happens, because all the subsequent operation invocations
on the replica may be operations, which do not grant the
replica the right to send messages (e.g., RO operations, by
the invisible reads requirement). Moreover, the replica may
not depend on TOB-cast messages, because in asynchro-
nous runs they are not guaranteed to be delivered to other
replicas.5 Thus, a message must be RB-cast. Since replicas
cannot distinguish between asynchronous and stable runs,
the same observation also holds for stable runs. We utilize
this fact in our proof by considering asynchronous and sta-
ble executions and establishing certain invariants which
need to hold in both kinds of runs.

We conduct the proof by contradiction using a specially
constructed execution, in which a replica that executes a
strong operation has to return a value without consulting all
replicas. Thus, we consider an ACT implementation of ðF seq;
lvlmapseqÞ that satisfies BECðweak;F seqÞ in asynchronous
runs, and BECðweak;F seqÞ ^ SinOrdðstrongÞ ^ BECðstrong;
F seqÞ in both the asynchronous and stable runs (see definition
ofF seq in Fig. 3).

Proof. We give a proof for a system of three replicas R1, R2

and R3. We begin with an empty execution represented by a
history H ¼ ðE; op; rval; rb; ss; lvlÞ, which we will extend in
subsequent steps. Initially all replicas are separated by a
temporary network partition, which means that the mes-
sages broadcast by the replicas do not propagate (however,
eventually they will be delivered once the partition heals).
A weak appendðaÞ operation is invoked on R1 in the event
ea and a weak appendðbÞ operation is invoked on R2 in the
event eb. By input-driven processing and highly available
weak operations both replicas return responses for the oper-
ations and become passive afterwards. Let msgsRB

a and
msgsRBb denote the set of messages RB-cast by, respectively,
R1 and R2, until this point. LetmsgsTOB

a andmsgsTOB
b denote

the set of messages TOB-cast by, respectively, R1 and R2,
until this point. R1 RB-delivers messages from the set
msgsRBa , while R2 RB-delivers messages from the set
msgsRBb . No other messages are delivered by either replica

5. A replica may TOB-cast some messages due to the invocation of a
weak append operation, but its correctness cannot depend on their
delivery.
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(due to the temporary network partition). Subsequently rep-
licas become passive (if msgsTOB

a 6¼ ; or msgsTOB
b 6¼ ;, then

these messages remain pending).
Consider another execution represented by history

H 0 ¼ ðE0; op0; rval0; rb0; ss0; lvl0Þ in which the network parti-
tion heals, and R1 RB-delivers all messages in the set
msgsRB

b , R2 RB-delivers all messages in the set msgsRB
a , R3

RB-delivers all messages in both the sets msgsRB
a and

msgsRB
b , and then a weak read operation is invoked on R1

in the event e0c and a weak read operation is invoked on
R2 in the event e0d. By invisible reads and highly available
operations, both replicas remain passive and immediately
return a response.

Claim 1. rval0ðe0cÞ ¼ rval0ðe0dÞ ¼ v, and v ¼ ab or v ¼ ba.

Proof. We extend H 0 with infinitely many weak read invo-
cations on each replica, in events e0k, for k � 1. Similarly to
e0c and e0d, the read operations invoked in each e0k return
immediately and leave the replicas in the unmodified
passive state. Since none of the read operations generate
any new messages, H 0 represents a fair infinite execu-
tion that satisfies all network properties of an asyn-
chronous run. Then, by our base assumption, there
exists an abstract execution A0 ¼ ðH 0; vis0; ar0; par0Þ,
such that A0 � BECðweak;F seqÞ.

Because R1 and R2 remain in the same state since the
execution of e0c and e0d, respectively, each read operation
invoked in e0k on these replicas, returns the same
response as e0c or e0d, depending on which replica the
given event was executed on. By EVðweakÞ, the two
updating events ea and eb have to be both observed by
infinitely many of the e0k events. Let e

0
p be one such event

executed on R1 and e0q be one such event executed on R2,

then ðea vis0��! e0p ^ ea
vis0��! e0q ^ eb

vis0��! e0p ^ eb
vis0��! e0qÞ. There is

either: ea
ar0�! eb, or eb

ar0�! ea. Now, by the definition of

read-only operations we can exclude the RO operations

from the context of any operation without affecting the

return value of all operations. Thus F seqðreadðÞ;
contextðA0; e0pÞÞ ¼ F seqðreadðÞ; contextðA0; e0qÞÞ ¼ v0 for

some v0. Because of RValðweak;F seqÞ, rval0ðe0pÞ ¼ v0 ¼
rval0ðe0qÞ. Therefore, all read operations in H 0 return the

same value v0, including the earliest ones e0c and e0d, which

means that v ¼ v0. By the definition of F seq, either v ¼ ab

or v ¼ ba (depending on whether ea
ar0�! eb, or eb

ar0�! ea). tu
Without loss of generality, let us assume that v obtained

in the history H 0 equals ab. Let us return to our main history
H. We extend it similarly to the way we extended H 0, but
we do not allow the network partition to heal completely.
Instead, we just let msgsRB

b to reach R1, which RB-delivers
them exactly as in H 0. Then, similarly to H 0, in H we invoke
a weak read operation on R1 in an event er.

Claim 2. In historyH, rvalðerÞ ¼ v ¼ ab.

Proof. Since R1 executes exactly the same steps in both H
and H 0 up to the invocation of er and e0c, respectively, and
because replicas are deterministic, the current state of R1

when executing er must be the same as it was in H 0

during the execution of e0c. Thus, the return values of both
operations are equal. tu

Consider yet another execution represented by history
H 00 ¼ ðE00; op00; rval00; rb00; ss00; lvl00Þ which is obtained from
our main execution H by removing any steps executed by
R1. The events executed on R2 and R3 remain unchanged,
since the replicas were all the time separated by a network
partition, and no messages from R1 reached neither R2 nor
R3. We let the network partition heal. R1 RB-delivers mes-
sages from the set msgsRBb , R3 RB-delivers messages from
both the sets msgsRBa and msgsRBb , all replicas TOB-deliver
messages from the set msgsTOB

b , and afterward all replicas
become passive.

We now extend H 00 by infinitely many times applying
the following procedure (for k from 1 to infinity):

1) invoke a strong read on R2 in the event e003k,
2) let R2 execute its steps until it becomes passive,
3) on each replica, RB-deliver and TOB-deliver all mes-

sages, respectively, RB-cast or TOB-cast, by R2 in
step 2,

4) let each replica reach a passive state,
5) invoke a weak read on R1 in the event e003kþ1,
6) invoke a weak read on R3 in the event e003kþ2.

The resulting execution is fair and satisfies all the net-
work properties of a stable run. Note that the strong read
operations executed on R2 are not restricted by invisible
reads and thus may freely change the state of R2. Moreover,
they can cause R2 to RB-cast and TOB-cast messages. On
the other hand, the weak read operations executed on R1

and R3 are always executed on a passive state, and leave the
replica in the same state. Moreover, R1 and R3 do not
RB-cast, nor TOB-cast any messages. By non-blocking
strong operations no strong read operation may be pending
in H 00. This is so, because for each k, by step 4, there is no
pending message not yet TOB-delivered on R2, and R2 is in
a passive state.

Claim 3. There exists an event e00x 2 E00, with x ¼ 3k for some
natural k, such that rval00ðe00xÞ ¼ b.

Proof. By our base assumption, there exists an abst-
ract execution A00 ¼ ðH 00; vis00; ar00; par00Þ, such that A00 �
SinOrdðstrongÞ ^ BECðstrong;F seqÞ. Then, for each
k, by RValðstrong;F seqÞ, rval00ðe003kÞ ¼ F seqðreadðÞ;
contextðA00; e003kÞÞ. Moreover, because of EVðstrongÞ, eb
needs to be observed from some point on by every e003k.

Thus, we let eb
vis00��! e00x. Since eb is the only append opera-

tion visible to e00x (there are no other append operations

in A00), by definition of F seq, rval
00ðe00xÞ ¼ b. tu

Let us return to our main history H. Note that, when we
restrictH andH 00 only to events on R2, H constitutes a prefix
of H 00. Moreover, the state of R2 at the end of H is the same
as in H 00 just before TOB-delivering messages from the set
msgsTOB

b (if any) and executing the first strong read opera-
tion. First, we allow the partition between R2 and R3 to heal
(but R1 remains disconnected). Then, we extend H in a few
steps. We let R3 RB-deliver messages from the set msgsRBb .
Next, we TOB-deliver on R2 and R3 the messages from the
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set msgsTOBb . Finally, we extendH with steps executed on R2

and R3 generated using the repeated procedure for H 00, for k
from 1 to x

3 . We can freely omit the steps executed onR1, since
none of them influenced in anyway the other replicas (neither
R2, nor R3, RB-deliver, nor TOB-deliver any message from
R1). Thus, there exists an event ex 2 E executed on R2, an
equivalent of the e00x event fromH 00, such that opðexÞ ¼ readðÞ,
lvlðexÞ ¼ strong and rval ðexÞ ¼ b.

Finally, we allow the network partition to heal
completely. R2 and R3 RB-deliver messages from the set
msgsRB

a , and R1 RB-delivers and TOB-delivers any outstand-
ing messages generated by R2 (naturally, R1 TOB-delivers
messages in the same order as R2 and R3 did). Then, we
let the replicas reach a passive state, and in order to make
our constructed execution fair, we extend it with infinitely
many weak read operations as we did with H 0. By
our base assumption, there exists an abstract execution
A ¼ ðH; vis; ar; parÞ, such that A � BECðweak;F seqÞ ^
SinOrdðstrongÞ ^ BECðstrong;F seqÞ. There are only two
append operations invoked in A in the events ea and eb.
Since rvalðerÞ ¼ ab (which we have established in Claim 2),
by RValðweak;F seqÞ and the definition of F seq, it can be
only that ea

ar�! eb. We also know that rvalðexÞ ¼ b (ex is a

strong read operation executed on R2), which means

that eb
vis�! ex ^ ea 6 vis��! ex. By SinOrdðstrongÞ, eb

ar�! ex^
ea 6 ar��! ex, and thus ex

ar�! ea. Therefore, a cycle forms in the

total order relation ar: ea
ar�! eb

ar�! ex
ar�! ea, a contradiction.

This concludes the proof. tu
Since from Theorem 5 we know that there exists an ACT

specification ðF ; lvlmapÞ for whichwe cannot propose (even a
specialized) implementation that satisfies BECðweak;FÞ, we
can formulate amore general result about generic ACTs:

Corollary 1. There does not exist a generic implementation that
for an arbitrary ACT specification ðF ; lvlmapÞ satisfies
SinOrdðstrongÞ ^ BECðstrong;FÞ in stable runs, and
BECðweak;FÞ both in asynchronous, and in stable runs.

Theorem 5 shows that it is impossible to devise a system
similar to AcuteBayou (for arbitrary F ) that never admits
temporary operation reordering (so satisfies BECðweak;FÞ
instead of FECðweak;FÞ). Hence, admitting temporary
operation reordering is the inherent cost of mixing eventual
and strong consistency when we make no assumptions
about the semantics of F . Naturally, for certain replicated
data types, such as FNNC , achieving both BECðweak;FÞ and
Linðstrong;FÞ is possible, as we show with ANNC.

In the next section we discuss several approaches that
avoid temporary operation reordering, albeit at the cost of
compromising fault-tolerance (e.g., by requiring all replicas
to be operational), or sacrificing high availability (e.g., by
forcing replicas to synchronize on weak operations).

7 RELATED WORK

7.1 Symmetric Models With Strong Operations
Blocking Upon a Single Crash

We start with symmetric mixed-consistency models, in
which all replicas can process both weak and strong opera-
tions and communicate directly with each other (thus
enabling processing of weak operations within network

partitions), but either do not enable fully-fledged strong
operations (there is no stabilization of operation execution
order) or require all replicas to synchronize in order for a
strong operation to complete. In turn, the way these models
bind the execution of weak and strong operations can be
understood as an asymmetric (1–n) variant of quorum-
based synchronization. Hence, unlike in ACTs, strong oper-
ations cannot complete if even a single replica cannot
respond (due to a machine or network failure), which is a
major limitation.

Lazy Replication [15] features three operation levels:
causal, forced (totally ordered with respect to one another)
and immediate (totally ordered with respect to all other
operations). In this approach, it is possible that two replicas
execute a causal operation opc and a forced operation opf in
different orders. Since opc is required to commute with opf ,
replicas will converge to the same state. However, the user
is never certain that even after the completion of opf , on
some other replica no weaker operation op0c will be executed
prior to opf . Hence the guarantees provided by forced oper-
ations are inadequate for certain use cases, which require
write stabilization, e.g., an auction system [4] (see also Sec-
tion 1). On the other hand, immediate operations offer
stronger guarantees, but their implementation is based on
three-phase commit [54], and thus requires all replicas to
vote in order to proceed.

RedBlue consistency [14] extends Lazy Replication (with
blue and red operations corresponding to the causal and
forced ones), by allowing operations to be split into (side-
effect free) generator and (globally commutative) shadow
operations. This greatly increases the number of operations
which commute, but red operations still do not guarantee
write stabilization. To overcome this limitation, RedBlue
consistency was extended with programmer-defined partial
order restrictions over operations [17]. The proposed imple-
mentation, Olisipo, relies on a counter-based system to syn-
chronize conflicting operations. Synchronization can be
either symmetric (all potentially conflicting pairs of opera-
tions must synchronize, which means that weak operations
are not highly available any more) or asymmetric (all repli-
cas must be operational for strong operations to complete).

The formal framework of [16] can be used to express var-
ious consistency guarantees, including those of Lazy Repli-
cation and RedBlue consistency, but not as strong as, e.g.,
linearizability. Conflicts resulting from operations that do
not commute are modelled through a set of tokens. On the
other hand, in explicit consistency [55], stronger consistency
guarantees are modelled through application-level invari-
ants and can be achieved using multi-level locks (similar to
readers-writer locks from shared memory).

All models mentioned so far assume causal consistency
(CC) as the base-line consistency criterion and thus do not
account for weaker consistency guarantees, such as FEC or
BEC, as our framework. CC is argued to be costly to ensure
in real-life [18], which makes our approach more general.

Finally, the model in [27] is similar to ours but treats
strong operations as fences (barriers). It means that all repli-
cas must vote in order for a strong operation to complete.

Temporary operation reordering is not possible in the
models discussed so far. It is because they are either state-
based (and thus their formalism abstracts away from the
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operation return values which clients observe and interpret)
and feature no write stabilization, or they require all repli-
cas to vote in order to process strong operations (as
explained in Section 2.2.4).

7.2 Symmetric Bayou-Like Models

In Section 2 we have already discussed the relationship
between the seminal Bayou protocol [23] and ACTs.

In eventually-serializable data service (ESDS) [56], opera-
tions are executed speculatively before they are stabilized,
similarly to Bayou. However, ESDS additionally allows a
programmer to attach to an operation an arbitrary causal
context that must be satisfied before the operation is exe-
cuted. Zeno [57] is similar to Bayou but has been designed
to tolerate Byzantine failures.

All three systems (Bayou, ESDS, Zeno) are eventually con-
sistent, but ensure that eventually there exists a single seriali-
zation of all operations, and the client may wait for a
notification that certain operation was stabilized. Since these
systems enable an execution of arbitrarily complex operations
(as ACTs), they admit temporary operation reordering.

Several researchers attempted a formal analysis of the
guarantees provided by Bayou or systems similar to it.
E.g., the authors of Zeno [57] describe its behaviour using
I/O automata. In [58] the authors analyse Bayou and
explain it through a formal framework that is tailored to
Bayou. Both of these approaches are not as general as
ours and do not enable comparison of the guarantees pro-
vided by other systems. Finally, the framework in [50]
enables reasoning about eventually consistent systems
that enable speculative executions and rollbacks and so
also AcuteBayou. However, the framework does not for-
malize strong consistency models, which means it is not
suitable for our purposes.

7.3 Asymmetric Models With Cloud as a Proxy

Contrary to our approach, the work described below assumes
an asymmetric model in which external clients maintain local
copies of primary objects that reside in a centralized (repli-
cated) system, referred to as the cloud. Clients perform weak
operations on local copies and only synchronize with the
cloud lazily or to complete strong operations. Since the cloud
functions as a communication proxy between the clients,
when it is is unavailable (e.g., due to failures of majority of
replicas or a partition), clients cannot observe even each others
new weak operations. Hence, this approach is less flexible
than ours. However, since the cloud serves the role of a single
source of truth, conflicts between concurrent updates can be
resolved before they are propagated to the clients, so tempo-
rary operation reordering is not possible.

In cloud types [12], clients issue operations on replicated
objects stored in the local revision and occasionally syn-
chronize with the main revision stored in the cloud, in a
way similar as in version control systems. The synchroni-
zation happens either eagerly or lazily, depending on the
used mode of synchronization. The authors use revision
consistency [59] as the target correctness criterion. In a
subsequent work [13] a global sequence protocol (GSP) was
introduced, which refines the programming model of
cloud types, and replaces revision consistency with an

abstract data model, as revisions and revision consistency
were deemed too complicated for non-expert users. Global
sequence consistency (GSC) [60] is a consistency model that
generalizes GSP and a few other approaches that assume
external clients that either eagerly or lazily push or pull
data from the cloud.

7.4 Asymmetric Master-Slave Models

There are systems which relax strong consistency by allow-
ing clients to read stale data, either on demand (the client
may forgo recency guarantees by choosing a weak consis-
tency level for an operation), or depending on the replica
localization (in a geo-replicated system the client accessing
the nearest replica can read stale data that are pertinent to a
different region). However, in such systems all updating
operations (including the weak ones) must pass through the
primary server designated for each particular data item.
Thus, similarly to the asymmetric, cloud as a proxy models, in
this approach weak operations are not freely disseminated
among the replicas. Since all updates (of a concrete data
item) are serialized by the primary, temporary operation
reordering is not possible.

Examples of systems which follow this design and
allow users to select an appropriate consistency level
include PNUTS [61], Pileus [62], and also the widely pop-
ular contemporary cloud data stores, such as AmazonDB
[5] and CosmosDB [6]. Systems that guarantee strong con-
sistency within a single site and causal consistency
between sites include Walter [63], COPS [48], Eiger [64]
and Occult [65].

7.5 Other Approaches

Certain eventually consistent NoSQL data stores enable
strongly consistent operations on-demand. E.g., Riak allows
some data to be kept in strongly consistent buckets [8], which is
a namespace completely separate from the one used for data
accessed in a regular, eventually-consistent way. Apache Cas-
sandra provides compare-and-set-like operations, called light-
weight transactions (LWTs) [7], which can be executed on any
data, but the user is forbidden from executing weakly consis-
tent updates on that data at the same time. Concurrent
updates and LWTs result in undefined behaviour [9], which
means that mixed-consistency semantics of LWTs can be con-
sidered broken.

In Lynx [66] and Salt [67] mixed-consistency transactions
are translated into a chain of subtransactions, each commit-
ted at a different primary site. Thus such transactions can
block or raise an error if a specific site is unavailable.

Observable Atomic Consistency Protocol [68] is symmetric
and supports strong operations via synchronization based
on distributed consensus. However, unlike in ACTs, weak
operations block when any strong operation is in progress,
thus are not highly available.

Systems based on escrow techniques [69] enable strongly
consistent operations to be executed simultaneously with
weak operations, albeit in a non-fault-tolerant manner or by
enforcing strong synchronization, at least within a single
data center, also for weak operations [70].

Recently some work has been published on the program-
ming language perspective of mixed-consistency semantics.
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Since this research is not directly related to our work, we
briefly discuss only a fewpapers.Correctables [71] are abstrac-
tions similar to futures, that can be used to obtain multiple,
incremental views on the operation return value (e.g., a result
of a speculative execution of the operation and then the final
return value). Correctables are used as an interface for the
modified variants of Apache Cassandra and ZooKeeper [72]
(a strongly consistent system). InMixT [73] each data item is
marked with a consistency level that will be used upon
access. A transaction that accesses datamarkedwith different
consistency levels is split into multiple independently exe-
cuted subtransactions, each corresponding to a concrete con-
sistency level. The compilation-time code-level verification
ensures that operations performed on data marked with
weaker consistency levels do not influence the operations on
data marked with stronger consistency levels. Understand-
ably, the execution of a mixed-level transaction can be block-
ing. Finally, in [74] the authors advocate the use of the
release-acquire semantics (adapted from low-level concur-
rent programming) and propose Kite, a mixed-consistency
key-value store utilizing this consistencymodel. In Kite weak
read operations occasionally require inter-replica synchroni-
zation and block on network communication, thus they are
not highly available.

7.6 Comparison of FEC With Other Correctness
Criteria

In Section 5 we discussed the relation of FEC with BEC [26],
[27] by Burckhardt et al. FEC can be considered a relaxation
of the Consistent Prefix [26] property (later also described as
Monotonic Prefix Consistency [25]). In the latter properties
events become visible to subsequent read operations only
when their final arbitration is established.

In the framework of [24] FEC operations’ ordering can be
expressed as Capricious TOE (however, note that the model
of [24] does not account for mixed consistency approaches).
Thus, FEC bears some similarities with non-permissioned
blockchains [75].

8 CONCLUSION

In this paper we defined acute cloud types, a class of repli-
cated systems that aim at seamless mixing of eventual and
strong consistency. ACTs are primarily designed to execute
client-submitted operations in a highly available, eventu-
ally-consistent fashion, similarly to CRDTs. However, for
tasks that cannot be performed in that way, ACTs at the
same time support operations that require some form of dis-
tributed consensus-based synchronization.

We defined ACTs and the guarantees they provide in
our novel framework which is suited for modeling
mixed-consistency systems. We also proposed a new con-
sistency criterion called fluctuating eventual consistency,
which captures a common trait of many ACTs, namely
temporary operation reordering. Interestingly, temporary
operation reordering appears neither in systems that are
purely eventually consistent (e.g., NoSQL data stores) nor
purely strongly consistent (e.g., traditional DBMS). More-
over, it is not necessarily present in all ACTs, but as we
formally prove, it cannot be avoided in ACTs that feature

arbitrarily complex (but deterministic) semantics (e.g.,
arbitrary SQL transactions).
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