
Journal of Parallel and Distributed Computing 180 (2023) 104707

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

On the correctness of highly available systems in the presence of

failures ✩

Maciej Kokociński ∗, Tadeusz Kobus, Paweł T. Wojciechowski

Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 90-965, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 March 2022
Received in revised form 4 April 2023
Accepted 21 April 2023
Available online 10 May 2023

Keywords:
Fault-tolerance
CAP
Eventual consistency

In this paper we formally study the guarantees provided by highly available, eventually consistent
replicated systems in an environment in which machine failures and network splits are possible. Our
analysis accounts for possible replica recovery after a crash, and clients that are (1) stateless or stateful,
(2) sticky (always connect to a concrete set of replicas) or mobile, and (3) which can timeout before
receiving a response to the sent request. We show why the approaches to prove protocol correctness
prevalent in the literature, which do not take into account replica or network crashes, may lead to
incorrect conclusions regarding the guarantees offered by the protocol. We adapt the existing formal
correctness criteria, such as basic eventual consistency, to the considered environment by defining the
family of failure-aware consistency guarantees. We formally identify a set of undesired phenomena
(in particular phantom operations) observed by the clients, which, as we prove, are unavoidable in
highly available systems in which unrecoverable replica crashes are possible. We also introduce context
preservation, a new client-side requirement for eventually consistent systems that expose concurrency
to the client, i.e., allow clients to use, e.g., multi-value registers or observed-remove sets. Context
preservation is incomparable with classic session guarantees.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

In order to cope with the increasing traffic generated by mil-
lions of users, the distributed systems that power today’s Inter-
net must stay operational at all times. To this end, cloud ser-
vice providers utilize redundant hardware and reliable networking
infrastructure. Since hardware failures, such as transient or per-
manent machine crashes and network splits, cannot be avoided
altogether, the services themselves must be implemented in a
way that gracefully tolerates failures. More precisely, we con-
sider highly available replicated systems which serve each request
promptly even when (partial) failures occur. To this end, such
systems feature a decentralized architecture and rely on peer to
peer asynchronous communication protocols. It is a design brought
into the mainstream in the Amazon’s Dynamo storage system
[28], and followed in a plethora of popular NoSQL data stores.

✩ This work was supported by the Foundation for Polish Science, within the TEAM
programme co-financed by the European Union under the European Regional Devel-
opment Fund (grant No. POIR.04.04.00-00-5C5B/17-00).

* Corresponding author.
E-mail addresses: Maciej.Kokocinski@cs.put.edu.pl (M. Kokociński),

Tadeusz.Kobus@cs.put.edu.pl (T. Kobus), Pawel.T.Wojciechowski@cs.put.edu.pl
(P.T. Wojciechowski).
https://doi.org/10.1016/j.jpdc.2023.04.008
0743-7315/© 2023 Elsevier Inc. All rights reserved.
Many of these systems employ various Conflict-free Replicated
Data Types (CRDTs) [62,63] to offer rich semantics that includes,
among others, highly available Multi-Value Registers, PN-Counters,
Observed-Remove Sets, and structures for collaborative text editing
[15]. However, high availability is at odds with strong consistency
guarantees typical for, e.g., classic replicated DBMS [55] or state
machine replication [44,73], as formalized by the CAP theorem
[22,29].

Reasoning about correctness guarantees of a distributed system
requires taking into account both the safety and liveness aspects
of its behaviour, as shown by Lamport [42] and then further for-
malized by Alpern and Schneider [12]. Informally, proving safety
involves showing that nothing bad ever happens in any execution
of the system. On the other hand, satisfying a liveness guarantee
ensures that eventually something good happens in an execution.
These two properties require different proof techniques. Proving
safety is often deemed easier, since it involves reasoning only
about finite sequences of execution events: if nothing bad happens
in all finite executions of a system, then by induction also noth-
ing bad can happen in all infinite executions. On the other hand,
proving liveness requires reasoning directly about infinite execu-
tions. It is because while in a finite execution a crashed process
or a process that is part of a different network partition is indis-
tinguishable from a process that executes very slowly, this is not

https://doi.org/10.1016/j.jpdc.2023.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.04.008&domain=pdf
mailto:Maciej.Kokocinski@cs.put.edu.pl
mailto:Tadeusz.Kobus@cs.put.edu.pl
mailto:Pawel.T.Wojciechowski@cs.put.edu.pl
https://doi.org/10.1016/j.jpdc.2023.04.008

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
true in infinite executions. In turn, replica crashes and subsequent
recoveries or possible network splits are much harder to be ac-
counted for.

Interestingly, the majority of existing works concerning the cor-
rectness of highly available systems that can be found in the litera-
ture, abstract away from replica or network failures altogether (see,
e.g., [14,16,21,24,26,31,33,35,46–48,61,71]). It is easy to show that
analysis conducted that way may lead to incorrect conclusions. For
example, as we discuss in detail in Section 2, a simple imple-
mentation of a distributed register relying on the last-write-wins
policy [66] and best-effort broadcast [27] can be deemed correct
only when we consider no machine or network failures. However,
once we take failures into account, the implementation does not
satisfy even the simplest definition of eventual consistency, e.g., as
defined by Vogels [70]: when updates cease eventually all read op-
erations return the same value. On the other hand, the works that
do concern failures, such as [32], fail to account for liveness prop-
erties which leads to similar results as above.

Another interesting example involves our observation regarding
the CAP theorem and an existing, widely accepted and seemingly
precise definition of eventual consistency, namely Burckhardt’s ba-
sic eventual consistency (BEC) [26]. As shown in Section 6.1, by using
the original set of assumptions, we can prove a stronger result:
not only is linearizability incompatible with partition tolerance and
high availability, but so is BEC. The reason for this counter-intuitive
result lies in the fact that machine and network failures are not
properly accounted for in the formal framework proposed by Bur-
ckhardt.

In this article we holistically approach the problem of correct-
ness of highly available systems. To this end, we introduce a novel
formal framework that explicitly considers hardware failures, such
as transient or permanent machine crashes and network splits. We
define system semantics through replicated data type specification,
similarly to [26], thus allowing us to rigorously reason about both
safety and liveness guarantees of a replicated system. We define
a family of fault-aware consistency guarantees for highly available
systems that specifically account for hardware failures and fit well
with the intuition behind CAP.

To make our analysis accurately reflect how the contemporary
replicated systems function, we model a client-server architecture
with external clients that are not colocated with the service repli-
cas. In contrast, in the classic model (e.g. [16]), all participating
processes are equal and there is no distinction between replicas
and clients, or the clients are deemed to reside on the same phys-
ical nodes as the replicas and always communicate only with the
local replica. This choice has important consequences in terms of
potentially achievable correctness guarantees. For example, it is
known that causal consistency is achievable in highly available
systems in the classic model, whereas it is not achievable with
external clients [19].

Moreover, in our approach we do not consider sticky clients in
the sense found in other works (e.g., in [18]), i.e., clients that issue
all their requests always to exactly the same replica. The traditional
notion of a sticky client is enticing, since it allows the system to
achieve certain session guarantees, such as read-your-writes (RYW)
[64], essentially for free. However, if a client is locked to a sin-
gle replica and the replica suffers from an unrecoverable failure,
then the client is unable to successfully complete any of its re-
quests, which is against the very basic idea behind the notion of
high availability. Unfortunately, the definitions of high availabil-
ity found in the literature (e.g., [22,24,29]) do not preclude such
a scenario, as they only concern replicas and not clients. Accord-
ing to these definitions, the system remains available as long as
non-failed replicas eventually respond to every request. Thus, to
avoid such pitfalls, in our approach we consider only mobile clients,
which can connect to any replica, and sticky clients, which are
2

limited to a group of replicas (e.g., replicas residing in the same
geographic region), but not to a single replica.1

Once we exclude the possibility of achieving session guarantees
by stickiness it is important to consider achieving them through
caching and retaining state on the client side. However, retaining
a large amount of state information on the client is not always
possible or practical, and thus we consider stateful and stateless
clients separately.

To sum up, we consider clients that can be either mobile or
sticky, stateful or stateless. We also consider six different failure
models, and for each we identify which consistency guarantees
cannot be provided for a given type of clients. Additionally we
specify new correctness conditions that can be achieved. We also
show a set of phenomena observable by the clients that result
from the highly-available nature of the environment. In particu-
lar, we identify a phenomenon called a phantom operation, which
describes a successfully processed update, which however can be
observed only temporarily by some clients. The other phenomena
that we discuss include a split brain syndrome for clients who
communicate outside the system as well as the lack of various
client-session guarantees, such as eventually consistent variant of
monotonic reads and read-your-writes that we formally define us-
ing our framework. On top of that, we define a novel client-session
guarantee called context preservation that is incompatible with the
classic session guarantees and is suited for highly-available systems
utilizing CRDTs.

1.1. Contributions

We summarize our core contributions below:

• We define a framework that explicitly considers hardware
(replica and network) failures, and thus enables formal rea-
soning about both the safety and liveness guarantees of highly
available, eventually consistent systems in failure-prone envi-
ronments. In particular, we admit replica recovery after crash
considering various types of clients (stateless, stateful, sticky,
and mobile).

• We define a family of failure-aware consistency criteria, e.g.,
based on the well-known basic eventual consistency [26], to
adequately capture the behaviour of eventually consistent sys-
tems in the considered environment. We use our novel con-
sistency criteria to systematize in the formal way the existing
knowledge and intuitions regarding the correctness of highly
available systems under failure conditions.

• We show specific liveness guarantees that cannot be provided
when certain failures occur, such as eventual visibility of all
events (see Section 4.6 for the definition). Thus, we formally
identify a set of undesired phenomena, which are observable
by the clients but, as we prove, are unavoidable in the con-
sidered environments. In particular, when the unrecoverable
replica crashes are possible, a successful execution of an oper-
ation op may be first acknowledged to the client that submit-
ted it, but later op may appear as if it had never been executed
by any replica. We call such operations phantom operations.

• We discuss when clients can be stateless and, if they do need
to maintain some state, how to place requirements on their
sessions. In particular, we define context preservation (CP), a
new session guarantee for systems that expose the concur-
rency to the client, e.g., through multi-value registers [62],
observed-removed sets [63], etc. The CP guarantee is incom-
parable with the classic session guarantees [65].

1 This approach is also consistent with how in practice clients’ requests are routed
to the replicas through stateless load balancers, thus giving no pairing guarantees
between a client and a replica.

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
1.2. Article structure

The remainder of the paper is structured as follows. In Sec-
tion 2, we illustrate our motivations with an example of a simple
CRDT. Next, in Section 3, we outline the system model and then
in Section 4 we specify our formal framework. In Section 5, we
discuss the problem of maintaining state by clients and discuss
session guarantees. In Section 6, we analyze the liveness guaran-
tees that can be achieved under various combinations of possible
replica and network failures. In this section, we also specify our
new correctness criteria. In Section 7 we present the related work.
Finally, we conclude in Section 8.

2. Motivation

In order to illustrate problems with formalizing guarantees of
highly available systems, below we discuss example executions of
a simple (state-based) CRDT,2 in which each replica runs an imple-
mentation of a last-write-wins register (LWW-register, also called
epidemic register) [24].

Shapiro et al. proposed a formal framework for proving cor-
rectness of CRDTs [62] and a target consistency guarantee called
strong eventual consistency (SEC), which requires any two replicas
that receive the same set of messages to be in the same state.
Proving the correctness of a (state-based) CRDT involves show-
ing that the CRDT’s merge operation (also known as the join or
supremum) satisfies the properties of a semi-lattice. However, do-
ing so involves reasoning about internal replica states and message
exchanges, which can be considered an implementation specific
aspect of a CRDT. This is in contrast with well established and
declarative approaches to formalizing consistency through condi-
tions, such as sequential consistency [45], linearizability [37] or
serializability for database systems [55]. These consistency condi-
tions are defined over abstract system traces that represent the
externally observable behaviour.

The formal framework proposed by Burckhardt [24] completely
abstracts away from implementation-specific aspects of a repli-
cated system as it solely relies on functions that represent data
types, events that correspond to invocations of certain operations
exported by the data type, and visibility and arbitration relations
between the events. This way of reasoning about correctness is
well suited to model infinite executions, which, as we argued ear-
lier, must be considered when proving liveness guarantees. How-
ever, Burckhardt approach fails to properly account for replica or
network failures as we demonstrate below.

Consider a simple system, in which each replica runs an imple-
mentation of a last-write-wins register (LWW-register, also called
epidemic register [24]; see the pseudocode in Algorithm 1). Clearly,
the presented implementation is highly available as each replica
responds to a client request immediately, without waiting for com-
munication with other replicas. Every replica of the system has a
copy of the register and allows clients to invoke two operations:
write(v), which stores a new value v in the register, and read(),
which returns the current value of the register. When a replica’s
state changes, it sends a message to other replicas, so they can up-
date their state accordingly. In order to guarantee that eventually
the replicas converge to the same state, the replicas use times-
tamps and the last-write-wins policy [66]. More precisely, when
write(v) is invoked on some replica Ri (line 5), the replica saves v
in its copy of the register, together with a unique timestamp that
comprises of a logical clock [44] and Ri ’s identifier (line 12). Then

2 The other type of CRDTs are operation-based, where replicas exchange commu-
tative updating operations and apply them locally in any order. In this work, for
simplicity, we consider only state-based CRDTs.
3

Ri uses best-effort broadcast [27] to distribute v and the times-
tamp among other replicas (line 7). A replica updates its copy of
the register only if the received timestamp is greater than the one
corresponding to the current value stored by the replica (line 13).
Many existing NoSQL data stores, such as Apache Cassandra (in its
default configuration) [41] rely on a similar principle of operation.

It is easy to see that when neither replica crashes nor network
splits are possible, this implementation indeed ensures eventual
consistency, as defined by Vogels [70]: when updates cease all
read() operations eventually return the same value. Formally one
could show that the implementation ensures basic eventual consis-
tency (BEC) [26] (for the formal definition of BEC see Section 4).
However, as clearly follows from the executions in Fig. 1, when
replica crashes (left execution) or network splits are possible (right
example), the implementation no longer satisfies eventual consis-
tency (even according to the simple Vogels’ definition and even for
each network partition considered separately). In order to facilitate
correct (intended by the programmer) behaviour when failures can
occur some additional logic is necessary in the form of an anti-
entropy protocol. In our example a replica could simply forward
the received messages when applying the update, thus achiev-
ing reliable broadcast [27] for the update messages (see the fix
in line 14). It is easy to see that the fix neither impacts safety
(nothing bad ever happens) nor liveness (eventually something good
happens) guarantees [12,42] of the protocol when considering only
failure-free runs (the two versions, with and without the fix, are
indistinguishable from the perspective of the clients, when no fail-
ures occur). However, when even a single failure might happen,
the two versions of the protocol behave in a very different man-
ner. More precisely, in all cases both versions satisfy safety (the
reads return some correct values written earlier), but in case when
failures occur only the latter one satisfies liveness (convergence of
the returned values).

Note that our example is based on a very simple CRDT. The im-
plementations of more complex CRDTs, such as replicated growable
array (RGA) [58] (which are notoriously difficult to reason about on
their own [15,32]), are even more prone to the kinds of subtle bugs
that we showcased. Moreover, in our example we discussed just
two of many possible failure scenarios that need to be considered
in order to ensure the protocol works as intended in real-life envi-
ronments where failures are to be expected. The correctness anal-
ysis of such systems is further complicated when external clients,
which can be mobile/sticky or stateless/stateful, are accounted for.
Popular eventually consistent systems, e.g., [1–5], feature various
anti-entropy mechanisms used to detect and repair discrepancies
or inconsistencies in data, which may occur due to network splits
or system failures. These mechanisms prevent anomalies depicted
in Fig. 1. However, we are not aware of a general formal framework
which could be used to reason about the correctness of systems
which exhibit such subtle behaviour.3 Therefore we wanted to fill
this gap. In particular, the formal framework that we introduce in
this article can be used to study the correctness of highly avail-
able systems and allows us to detect defects, such as the ones in
Algorithm 1.

3. System model and failure models

Since our goal is to realistically model highly available systems
facing failures, our approach somewhat deviates from the classic
one. We consider a system consisting of service replicas (or sim-
ply replicas), connected via an asynchronous network, and external

3 Interestingly, the sophisticated frameworks, such as [24,32,71], fail to correctly
address the anomalies shown in Fig. 1, and the original definition of SEC by Shapiro
et al. [62] does not admit them at all. However, the formulation by Shapiro et al.
lacks in other areas as we discuss in detail in Section 7.

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707

Algorithm 1 Naïve Replicated Register Protocol for replica Ri identified by rid.

1: struct RegRec(clk : int, rid : int, val : Val)
2: operator <(o : RegRec, o′ : RegRec)
3: return (o.clk < o′.clk)

∨(o.clk = o′.clk ∧ o.rid < o′.rid)

4: var myReg : RegRec
5: operation write(val : Val) // write
6: myReg = RegRec(myReg.clk + 1, rid, val)
7: BE-cast myReg
8: return ok

9: operation read() // read
10: return myReg.val

11: upon BE-deliver(update : RegRec)
12: if myReg < update then
13: myReg = update
14: // BE-cast update // protocol fix

R1

R2

R3

R4

read() → 3 read() → 3 read() → 3

write(3) → ok read() → 5 read() → 5

read() → 5 read() → 5

write(5) → ok

...

...

...

R1

R2

R3

R4

read() → 3 read() → 5 read() → 5

write(3) → ok read() → 3 read() → 3

read() → 5 read() → 5

read() → 5 read() → 5

write(5) → ok

...

...

...

...

Fig. 1. Example executions of a system implementing Algorithm 1. Solid arrows originating in events (dots) represent sent messages. Left execution: eventual transmission of
a message is guaranteed only for the three correct (never crashed) processes. A crash of R4 leads to inconsistent states of replicas. Right execution: a network split between
R = {R1, R2} and R′ = {R3, R4} (depicted using a wavy line) results in inconsistent states of replicas in R.
clients, which are routed to the replicas through load balancers.
The key feature of our model is that a client’s requests cannot be
guaranteed to be always routed to the same replica. Below we out-
line our assumptions together with rationales behind them.

3.1. Replicas

Replicas form a set R = {R1, R2, ..., Rn},4 which can be divided
into disjoint subsets G1, G2, ..., called ensembles. The ensembles
represent sets of replicas located physically close to each other, e.g.
in the same region, datacenter, or within the same availability zone
(the significance of this division will be discussed later). Repli-
cas communicate with each other solely through message passing.
Each replica has access to its own volatile memory as well as sta-
ble storage.5 Data stored in the latter survive crashes and can be
used by the replica for recovery. The replicas issue regular or syn-
chronous writes to stable storage, where the latter writes block the
code execution on the replica until the written data is guaranteed
to be persisted. Both kinds of writes can be interrupted by a crash.
For simplicity we assume full replication of application data (each
replica holds all data necessary to serve any particular request).
We briefly discuss an extension to a partial replication setting in
Appendix A.

We consider three replica failure models: the no-crash (NC)
model, in which no replica ever crashes, the crash-stop (CS) model,
in which a replica can crash by stopping execution and ceasing
all communication but never recovers, and the crash-recovery (CR)
model, in which a replica can recover after crash by using, e.g.,
the data saved in its stable storage. In the CR model we discern
between transient and fatal failures: after the latter one a replica
never recovers. A hardware failure that causes repeated restarts
that prevent the replica from completing any meaningful compu-
tation is also treated as a fatal failure. Formally, a replica that never
crashes or experiences a finite number of (transient) failures is cor-
rect, otherwise it is faulty. Any number of replicas can be faulty.
We expect the system to remain available: (1) even if only a sin-
gle replica is correct, and (2) in the case of sticky clients (explained
later), if only a single replica in each ensemble is correct. Once a
client request is received by a replica, the replica starts to execute

4 For simplicity we assume that the set is fixed, however reconfiguration could
be easily supported.

5 Stable storage may comprise of any technology which allows the replicas to
persist data, such as HDDs, SSDs, or non-volatile/persistent memory (NVM/PM) [60].
4

it, and unless the replica subsequently crashes, the replica returns
a response without waiting for any external events, such as mes-
sages from other replicas.

We make no assumptions on relative speeds of the replicas and
we assume no bounds on replica clocks skew. We consider fair in-
finite executions: each correct replica executes an infinite number
of steps of the implemented algorithm and receives a never ending
stream of client requests.

3.2. Clients

Clients are the abstractions through which users interact with
the system, and which are responsible for passing user requests
(possibly with some metadata) to the replicas in an appropriate
format.6 A client issues a single request at a time. A series of re-
quests issued by a client forms a session. Sessions allow us to track
dependencies between requests issued by the same user. Clients
may be stateful, or stateless. In particular a stateful client may rep-
resent, e.g., a desktop application maintaining a stable connection
with the system. On the other hand, a stateless client may rep-
resent an application that cannot store state by design (e.g., due
to performance considerations), or because of technical limitations
(e.g., a web app in a browser with local storage and cookies dis-
abled). A client may also lose state when the user’s device is
restarted without saving the state to stable storage, or when the
user switches between devices during a session.

As discussed in Section 1, we elect to represent clients as ex-
ternal entities to better reflect the client-server architecture used
in practice, and because of important consequences from the cor-
rectness point of view. Recall that causal consistency is achiev-
able in highly available systems in a classic model, whereas it is
not achievable with external clients [19]. It is so even when the
clients are stateful and cache all their requests and responses. To
achieve causal consistency clients would need to continuously ex-
change information with replicas and other clients about other
clients’ requests, which would render them full replicas and which
is impractical. Moreover, a client may not be able to maintain per-
manent connections with other clients or even replicas. Thus, we
believe it is essential to include the clients in our analysis of highly
available systems as external entities.

6 A client may also be used by another service. Then, the service is the user of
the system.

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
We distinguish mobile and sticky clients. Mobile clients may is-
sue their requests to any of the replicas from R. On the other
hand, sticky clients are associated with a single ensemble Gi and
issue their requests only to replicas from Gi . Our notion of sticky
clients is different than in other works (e.g. [18]), where a sticky
client issues all requests always to exactly the same replica. We
discuss this difference below.

3.3. Interactions between clients and replicas

Although a client issues only a single request at a time, when
the replica does not respond fast enough the request may timeout
allowing the client to issue the same request again to a different
replica. Such a mechanism is necessary in a failure prone environ-
ment because otherwise, as discussed in Section 1, in case of a
fatal crash of a replica, the client would remain blocked, which vi-
olates high availability requirements.7 This is one of the reasons
why we exclude from our model a notion of sticky clients which
always connect to the same replica.

In practical replicated systems client requests are routed to
the replicas through (hardware or software) load balancers, which
are either external (load balancing through external DNS servers)
or internal (dedicated devices or replicas themselves balance the
load). The load balancers can be stateless (treating each request in-
dependently and assigning the requests to replicas in round-robin
fashion), or stateful (maintaining the information about client con-
nections and routing the requests of a given client always to the
same replica). In general, stateful load balancing only works if the
client maintains a stable connection with the system, but even
then there is a problem with this scheme: the load balancers
themselves may crash and lose state, or become unavailable. Thus,
it is impossible in a highly available system to guarantee that ev-
ery request from the same session reaches the same replica.8 In
practice, load balancing is often stateless by default and no at-
tempt is made to route all requests within a session to the same
replica (e.g., this is the case in Apache Cassandra [41], where repli-
cas serve as the load balancers). This is the second reason why we
exclude the notion of sticky clients issuing all requests to the same
replica. We model load balancers only implicitly by their effect on
request routing. We do not control on the client side which replica
will serve the issued request.9

However, we do discern between mobile clients, which are
completely unrestricted in terms of replicas they can connect to,
and sticky clients, which always connect to the same group of
replicas, e.g. from the same geographical region. Such behaviour
can be achieved by geo-sensitive load-balancing under the as-
sumption that users do not cross geographical boundaries.

3.4. Network properties

We have so far strayed away from the network properties. In
a typical asynchronous system model it is assumed that fair-loss
links are available [27], which means that certain messages may
be lost, but by utilizing stubborn retransmission it is possible to
eventually contact every process. On the other hand, in the CAP

7 Recall, however, that to satisfy high availability as defined in [22,24,29], only
correct replicas need to eventually respond, and clients connected to a crashed
replica may remain blocked infinitely.

8 Note that if the load balancers use a replicated state machine [43] and a con-
sensus protocol to maintain the client connections data, then such an approach is
not highly available. It is because before routing a new client’s request to a replica,
the load balancer would have to first consult other load balancers, and would block
during a network split.

9 More precisely, the system may try to route all requests from the same session
to the same replica by maintaining stable client-replica connections, but there is no
guarantee that this will succeed.
5

theorem [22,29] a network is allowed to lose arbitrarily many mes-
sages. Thus, in the former approach only temporary network splits
(or partitionings) can be modelled, whereas in the latter perma-
nent network partitionings are also possible. Both approaches are
useful as we discuss below.

Although in practice network splits are rare, they do occur, as
shown by several studies that quantify network reliability in a rig-
orous manner [13,30,52,67] (see also [18] for discussion on some
high-profile cases). While most network failures are short-lived,
some can take hours to resolve. Network splits may be caused
by hardware failures or software issues, such as misconfigurations.
The split may occur between datacenters or within a datacenter.
In reality, network failure patterns can be complex. For example,
partial partitionings [10,13] occur, in which two groups of replicas
cannot communicate with each other, but are otherwise reachable
from a third group of replicas (or by external clients).

We choose to model short-lived and long-lived network splits
separately, as temporary and permanent, respectively. Even a single
message loss can be considered a very short-lived network split.
Thus, temporary splits simply represent the regular mode of oper-
ation in an asynchronous network. On the other hand, permanent
splits cannot be justified by asynchrony itself and represent actual
failures of network hardware, such as link or switch failures, or
even misconfiguration events. In practice, temporary splits may be
caused by a sudden congestion spike causing hardware overload,
or by a minor hardware failure which can be fixed automatically,
e.g. by an automatic failover procedure. On the other hand, perma-
nent network splits are major failure events, lasting in time, and
requiring manual intervention of the system operators.

Moreover, temporary and permanent splits’ impact is perceived
differently by end users. Note that even though a highly available
system is still required to respond to each request during a net-
work split, these responses may not reflect previous operations,
or otherwise violate business logic of the application. However,
in case of temporary splits, these anomalies may be even unno-
ticed by end users, or simply cause the system to return correct
responses with a small delay, e.g. prompting the end user to re-
fresh a webpage a couple of times. On the other hand, permanent
splits may render the system completely useless to the end user,
and force the user to abandon the current activity (users’ experi-
ence is compromised and as a result users decide to finish their
sessions early).

Thus, we consider the following two network failure models: the
temporary network partitionings (TNP) model and the permanent net-
work partitionings (PNP) model. The former corresponds to fair-loss
links [27], while the latter is similar to the model assumed in the
CAP theorem, in which arbitrarily many messages can be lost. In
the PNP model the set R of replicas can be divided into disjoint
sets of replicas, P1, P2, ..., Pk , called partitions (or final network par-
titions). Replicas within a single partition maintain fair-loss links
with each other. On the other hand, communication between repli-
cas from different partitions may be possible for some time, but
from some point on all messages will be lost. Thus, partitions rep-
resent the final state of connectivity between replicas in the limit
at infinity.

When considering sticky clients which always connect to a spe-
cific ensemble Gi , in the PNP model we assume that there exists
P j , such that Gi ⊆ P j . In other words, network partitionings do
not cross ensemble boundaries. Thus, if we define ensembles to
represent separate datacenters, we model network splits between
datacenters, but not inside of them. Then, the model allows us
to compare guarantees provided to: (1) clients that switch be-
tween replicas which cannot communicate with each other (mo-
bile clients), and (2) clients that stick to replicas which can com-
municate with each other, but not with the rest of replicas (sticky

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707

Property Element-wise Definition Algebraic Definition
∀x, y, z ∈ A:

symmetric x
rel−→ y ⇒ y

rel−→ x rel = rel−1

reflexive x
rel−→ x idA ⊆ rel

irreflexive x �rel−→ x idA ∩ rel = ∅
transitive (x

rel−→ y
rel−→ z) ⇒ (x

rel−→ z) (rel; rel) ⊆ rel

acyclic ¬(x
rel−→ ...

rel−→ x) idA ∩ rel+ = ∅
total x �= y ⇒ (x

rel−→ y ∨ y
rel−→ x) rel ∪ rel−1 ∪ idA = A × A

Property Definition

natural ∀x ∈ A : |rel−1(x)| < ∞
partialorder irreflexive ∧ transitive

totalorder partialorder ∧ total

enumeration totalorder ∧ natural

equivalencerelation reflexive ∧ transitive ∧ symmetric

Fig. 2. Definitions of common properties of a binary relation rel ⊆ A × A.
clients).10 Also, we assume that within each ensemble Gi there is
at least a single correct replica reachable by external clients.

3.5. Summary

By having three replica failure models and two network failure
models, in total we consider six failure models: NC-TNP, NC-PNP, CS-
TNP, CS-PNP, CR-TNP, CR-PNP. Additionally, we separately consider
mobile and sticky, as well as stateful and stateless clients.

4. Formal framework

Below we provide the formal framework that allows us to rea-
son about execution histories and correctness criteria. We extend
the framework by Burckhardt et al. [24,26] (also used in several
other works, e.g., [14,16,21,40,69]).

4.1. Preliminaries

A binary relation rel over set A is a subset rel ⊆ A × A. By rel,
we denote the complement of the relation rel, i.e. (A × A) \ rel.
For a, b ∈ A, we use the notation a rel−→ b to denote (a, b) ∈ rel, and
the notation rel(a) to denote {b ∈ A|a rel−→ b}. Thus, rel(a) = {b ∈
A|a � rel−→ b}. We use the notation rel−1 to denote the inverse relation,

i.e. (a rel−1−−→ b) ⇔ (b rel−→ a). Thus, rel−1(b) = {a ∈ A|a rel−→ b}. Given
two binary relations rel, rel′ over A, we define the composition
rel; rel′ = {(a, c)|∃b ∈ A : a rel−→ b rel′−→ c}. We let idA be the identity
relation over A, i.e., (a idA−→ b) ⇔ (a ∈ A) ∧ (a = b). For n ∈ N0, we
let reln be the n-ary composition rel; rel...; rel, with rel0 = idA . We
let rel+ = ⋃

n≥1 reln and rel∗ = ⋃
n≥0 reln . For some subset A′ ⊆ A,

we define the restricted relation rel|A′ def= rel ∩ (A′ × A′). In Fig. 2
we summarize various properties of relations.

If rel is an equivalence relation, we can use the notation a ≈rel

b def⇐⇒ a rel−→ b. An equivalence relation rel on A partitions A into
equivalence classes [x]rel = {y ∈ A|y ≈rel x}. The classes are pair-
wise disjoint and cover A. We write A/≈rel to denote the set of
equivalence classes wrt. relation rel. For example, the parity rela-
tion par over the set of natural numbers N , produces: N /≈par=
{[0]par, [1]par}, with [0]par = [2]par = ..., 7 ∈ [1]par , and 13 ≈par 101.

To reason about executions of a system we encode the informa-
tion about events that occur in the system and about dependencies
between them in the form of an event graph. An event graph G is a
tuple (E, d1,, dn), where E ⊆ Events is a finite or countably in-
finite set of events drawn from universe Events, n ≥ 1, and each
di is an attribute (represented as a function) or a relation over E .
Vertices in G represent events that occurred during the execution
and are interpreted as opaque identifiers. Attributes label vertices

10 If network splits can occur, e.g., between datacenters and inside of a datacenter,
but not within a rack of servers, ensembles need to be adequately defined. On the
other hand, if in this scenario certain clients are sticky at the regional or datacenter
level, but not at the rack level, they need to be treated as mobile, not sticky.
6

with information pertinent to the corresponding event, e.g., the
performed operation, or the returned value. The operations and
return values of all considered data types form the Operations and
Values sets, respectively. Relations represent orderings or groupings
of events, so can be understood as arcs/edges of the graph.

Event graphs are meant to carry information that is indepen-
dent of the actual elements of Events chosen to represent the
events (the attributes and relations in G encode all relevant in-
formation regarding the execution). Let G = (E, d1,, dn) and
G ′ = (E ′, d′

1,, d
′
n) be two event graphs. G and G ′ are isomorphic,

written G � G ′ , if (1) for all i ≥ 1, di and d′
i are of the same kind

(attribute vs. relation) and (2) there exists a bijection φ : E → E ′
such that for all di , where di is an attribute, and all x ∈ E , we have
di(x) = d′

i(φ(x)), and such that for all di where di is a relation, and

all x, y ∈ E , we have x di−→ y ⇔ φ(x)
d′

i−→ φ(y).

4.2. Histories

We represent a high-level view of a system execution as a his-
tory. We omit implementation details, such as message exchanges
or internal execution steps. We include only the observable be-
haviour of the system (as perceived by the clients through re-
ceived responses), and the information about failures. While the
latter is not directly observable by clients,11 we rely on this in-
formation to formalize the expected behaviour of the system in
the presence of failures. Formally, a history is an event graph
H = (E, op, rval, rb, so, sp, crash), where:

• op : E → Operations, specifies the operation invoked in a par-
ticular event, e.g., op(e) = write(3),

• rval : E → Values ∪ {∇}, specifies the value returned by the op-
eration, e.g., rval(e) = 3, or rval(e′) = ∇ , if the operation never
returns (e′ is pending in H),

• rb, the returns-before relation is a natural partial order over
E , which specifies the ordering of non-overlapping operations
(one operation returns before the other starts, in real-time),

• so, the session order relation is a natural partial order over E ,
which specifies the ordering of operations executed within the
same session,

• sp, the same-partition relation, is an equivalence relation,
which groups events according to the final network partition
in which they occurred,

• crash : E → {true, false}, specifies if a particular event was ex-
ecuted on a replica that subsequently crashed (true), or not
(false).

Note that, for some event e ∈ E , crash(e) = true does not mean
that, the replica on which e was executed, crashed during, or im-
mediately after, the execution of e. Similarly, for any two events
a, b ∈ E , a �≈sp b does not mean that replicas, which executed a
and b, could not communicate with each other at the time these

11 For example, a timeout on a client’s operation does not necessarily result from
a replica failure.

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
events were executed; the final permanent network split that sep-
arated the replicas might have happened later. Our definition of a
history does not include the information about which event was
executed on which replica. We rather give only indirect informa-
tion, regarding which network partition was the replica located in,
and whether the replica subsequently crashed or not.

Since replicas may crash shortly after receiving a request, just
before the request is executed, or before the response is returned
to the client, we need to consider a few edge cases. rval(e) �= ∇
means the response was generated by the replica, but this fact is
independent of whether the response was actually received by the
client or not (e.g., because the message carrying the response was
dropped and the replica did not retransmit it due to a crash, or
because the client already issued the request to a different replica
and was no longer interested in the response). On the other hand,
rval(e) = ∇ means that the replica has already started processing
the operation, perhaps sending some messages to other replicas,
but did not manage to produce any output (e.g., because of a
crash). Finally, if a client sent a request, but the replica never
received it, then there is no e ∈ E pertaining to this particular
request. Consecutive operations issued by the same client are or-
dered by the session order relation. If an operation timeouts, and
the client issues the operation to another replica, there can be two
concurrent operations within the same session, but the former one
is abandoned and forms a dead-end, i.e., it is not followed by fur-
ther operations in the session order.

We consider only well-formed histories, for which the following
holds:

• if |E| ≮ ∞, then ∀e ∈ E : (¬crash(e) ⇒ rval(e) �= ∇) (in infinite
executions replicas which do not crash eventually respond),

• ∀a, b ∈ E : (a rb−→ b ⇒ rval(a) �= ∇) (a pending operation does
not return),

• ∀a, b, c, d ∈ E : (a rb−→ b ∧ c
rb−→ d) ⇒ (a rb−→ d ∨ c

rb−→ b) (rb is an
interval order, i.e. it is consistent with a timeline interpretation
where operations correspond to segments [24,34]),

• so ⊆ rb (session order respects the returns-before order),
• for all e ∈ E , the set so−1(e) is well ordered by the relation so

(so is a union of trees),

• ∀a, b, c ∈ E : (a so−→ b ∧ a so−→ c) ⇒ (op(b) = op(c) ∧ (so(b) =
∅ ∨ so(c) = ∅)) (there is only limited branching in so due to
timeouts),

• ∀a, b, c ∈ E : (a so−→ b ∧a so−→ c∧so(b) = ∅ ∧so(c) �= ∅) ⇒ (c � rb−→ b)

(a client issues a request again only if it has abandoned the
previous attempt),

• |/≈sp | < ∞ (there is only a finite number of permanent net-
work partitions).

4.3. Abstract executions

In order to explain the history, i.e., the observed return values,
and reason about the system properties, we need to extend the
history with information about the abstract relationships between
events. For strongly consistent systems typically we do so by find-
ing a serialization [45] (an enumeration of all events) that satisfies
certain criteria. For weaker consistency models, such as eventual
consistency or causal consistency, it is more natural to reason about
partial ordering of events. Hence, we resort to abstract executions.

An abstract execution is an event graph A = (E, op, rval, rb, so,

sp, crash, vis, ar), such that (E, op, rval, rb, so, sp, crash) is some
history H , vis is an acyclic and natural relation, and ar is a to-
tal order relation. For brevity, we often use a shorter notation
A = (H, vis, ar) and let H(A) = H . Just as serializations are used
to explain and justify operations’ return values reported in a his-
tory, so are the visibility (vis) and arbitration (ar) relations. Note
7

that they are abstract notions and do not relate directly to the
history’s underlying execution.

Visibility describes the relative influence of operation execu-
tions in a history on each others’ return values: if a is visible to
b (denoted a vis−→ b), then the effect of a is visible to the replica
performing b (and thus reflected in the b’s return value). Visibil-
ity often mirrors how updates propagate through the system, but
it is not tied to the low-level phenomena, such as message deliv-
ery. It is an acyclic and natural relation, which may or may not
be transitive. Two events are concurrent if they are not ordered by
visibility.

Arbitration is an additional ordering of events which is neces-
sary in case of non-commutative operations. It describes how the
effects of these operations should be applied. If a is arbitrated be-

fore b (denoted a ar−→ b), then a is considered to have been executed
earlier than b. Arbitration is essential for resolving conflicts be-
tween concurrent events, but it is defined as a total-order over all
operation executions in a history. It usually matches the conflict
resolution scheme used in the system, e.g., physical time-based
timestamps, or logical clocks.

4.4. Correctness predicates

A consistency guarantee P(A) is a set of conditions on an ab-
stract execution A, which depend on the particulars of A up to
isomorphism. For brevity we usually omit the argument A. We
write A |= P if A satisfies P . More precisely: A |= P def⇐⇒ ∀A′ :
A′ � A : P(A′). A history H is correct according to some consis-
tency guarantee P (written H |= P) if it can be extended with
some vis and ar relations to an abstract execution A = (H, vis, ar)
that satisfies P . We say that a system is correct according to con-
sistency guarantee P if all its histories satisfy P .

4.5. Replicated data type

We model the whole system as a single replicated object (as in
case of Algorithm 1). This approach is general, as multiple objects
can be viewed as a single instance of a more complicated type,
e.g., multiple registers constitute a single key-value store. We de-
fine the semantics of the replicated object through replicated data
types [25]. Unlike classic sequential data types [37], replicated data
types (defined formally below) can be used when system exposes
concurrency to the client (see, e.g., multi-value register, MVR [62],
or observed-remove set, OR-Set [63]).

In this approach, the state on which an operation op ∈ Ope-
rations executes, called the operation context, is formalized by the
event graph of the prior operations visible to op. Formally, for any
event e in an abstract execution A = (E, op, rval, rb, so, sp, crash,

vis, ar), the operation context of e in A is the event graph
context(A, e) def= (vis−1(e), op, vis, ar). Note that the context lacks
return values, the returns-before relation, the session order, and
the information about failures. The set of previously invoked op-
erations and their relative visibility and arbitration unambiguously
defines the output of each operation.

A replicated data type F is a function that, for each operation
op ∈ ops(F) (where ops(F) ⊆ Operations) and operation context
C , defines the expected return value v = F(op, C) ∈ Values, such
that v does not depend on events, i.e., is the same for isomor-
phic contexts: C � C ′ ⇒ F(op, C) = F(op, C ′) for all op, C , C ′ .
Fig. 3 shows example replicated data types. We say that op ∈
ops(F) is a read-only operation (denoted op ∈ readonlyops(F)), if
and only if, for any operation op′ , context C = (E, op, vis, ar) and
event e ∈ E , such that op(e) = op, F(op′, C) = F(op′, C ′), where
C ′ = (E \ {e}, op, vis, ar). In other words, read-only operations can
be excluded from any context C , producing C ′ , and the result of

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707

Freg(write(v), (E,op, vis,ar)) = ok

Freg(read(), (E,op, vis,ar)) = if ∃e ∈ E : (op(e) = write(v) ∧ �e′ ∈ E : (op(e′) = write(v ′) ∧ e
ar−→ e′)) then v else 0

FMVR(write(v), (E,op, vis,ar)) = ok

FMVR(read(), (E,op, vis,ar)) = {v|∃e ∈ E : (op(e) = write(v) ∧ �e′ ∈ E : (op(e′) = write(v ′) ∧ e
vis−→ e′))}

Forset(add(v), (E,op, vis,ar)) = Forset(remove(v), (E,op, vis,ar)) = ok

Forset(read(), (E,op, vis,ar)) = {v|∃e ∈ E : op(e) = add(v) ∧�e′ ∈ E : op(e′) = remove(v) ∧ e
vis−→ e′}

Fig. 3. The replicated data type specifications for LWW-register, MVR, and OR-set.
any operation op′ will not change. On the other hand, if an op-
eration op is not read-only, we say that it is an update (denoted
op ∈ updateops(F)).

4.6. Basic eventual consistency

Now we introduce a baseline correctness criterion: basic even-
tual consistency (BEC) [26]. It consists of three simple requirements,
which lie at the basis of modern eventually consistent systems, in-
cluding the popular NoSQL data stores and CRDTs. Formally:

BEC(F)
def= EV ∧ NCC ∧ RVal(F)

The first requirement is the eventual visibility (EV) of events. EV

requires that for any not pending operation executed in an event
e ∈ E , there is only a finite number of events in E that do not
observe e. Additionally, a pending operation executed in an event e
may become visible to other events, but then the same rules apply
to it as if it was not pending. Formally: EV

def= ∀e ∈ E : (
(rval(e) �=

∇ ∨ vis(e) �= ∅) ⇒ |vis(e)| < ∞)
. Intuitively, EV implies progress in

the system as replicas must synchronize and exchange knowledge
about operations executed in the system.

The second requirement concerns avoiding circular causality. To
formalize it, we introduce an auxiliary definition: the happens-

before relation hb
def= (so ∪ vis)+ (the transitive closure of session

order and visibility). It allows us to express the causal dependency
between events. Intuitively, if e hb−→ e′ , then e′ potentially depends
on e. We simply require no circular causality, NCC

def= acyclic(hb).
Finally, we specify return value consistency (RVal), which re-

quires that the return value of each non-pending operation can
be explained using the specification of the replicated data type
F and the operation’s context: RVal(F) def= ∀e ∈ E : (rval(e) �= ∇ ⇒
rval(e) =F(op(e), context(A, e))

)
.

BEC, as the name suggests, provides only very basic guaran-
tees. It treats each operation independently, so it can be described
as client session agnostic. If a client issues two operations op and
op′ , op does not need to be visible to op′ . Moreover, op (and op′)
might be visible to some subsequent operations, and then not be
visible again. BEC only requires that after some time, there will
be no more operations which fail to observe op (and op′). This
mimics how stateless clients, switching between different replicas,
may observe the incomplete process of update propagation. Even
though BEC is such a weak correctness criterion, as we later show
in Section 6, it cannot be satisfied when failures occur. Thus, it ad-
equately captures the guarantees provided by eventually consistent
systems only in the best case, i.e., in failure-free scenarios.

5. Client-side guarantees

Before we proceed with our analysis of highly available systems
in face of failures, let us first discuss additional client-side guaran-
tees called session guarantees. The four classic session guarantees
[65] facilitate an intuitive and pragmatic programming model that
8

builds on top of basic eventual consistency. System architects typi-
cally optimize their systems’ designs for the read your writes (RYW)
and monotonic reads (MR) session guarantees, as these are mostly
anticipated by the users [20]. RYW guarantees that each event e
is visible to events that follow e in the same session. MR guaran-
tees that events which are visible to any event e are also visible to
events that follow e in the same session. They can be expressed in
our model as: RYW

def= so ⊆ vis and MR
def= (vis; so) ⊆ vis.

Unfortunately, as we have discussed in Section 3 (see also Sec-
tion 7), in highly available systems classic session guarantees are
difficult to provide (and cannot be provided altogether when the
clients are stateless). Moreover, it is debatable just how important
such guarantees are to the users and system architects. For ex-
ample, MR is usually described as important in the context of a
webmail client: whenever a user has seen an email in her inbox,
after a page refresh the email should not disappear. However, as
common experience teaches us, the mainstream webmail clients
often forgo this guarantee and it is possible for a once visible mes-
sage to become temporarily not available. On the other hand, it is
imperative that if a message was once seen, then it eventually be-
comes visible, which is exactly the guarantee that BEC provides.
In Section 6.1 we provide variants of RYW and MR, called eventual
session guarantees, which are ensured only eventually.

5.1. Context preservation

Although eventual session guarantees (implied by BEC) seem
attractive, as they can be provided easily with stateless clients,
they are not always sufficient for certain replicated data types, as
we discuss below.

Let us start by considering a system that implements an
observed-remove set (OR-set). The specification of an OR-set
(Forset) is in Fig. 3. An OR-set functions like a regular set but binds
the remove() operations with the read() operations, in a way that
restricts a client’s ability to remove elements from the set only
to the elements which the client has observed. This way the client
cannot accidentally remove elements that were concurrently added
by other clients. Assume that a client received x in response to a
read() operation (read() → S and x ∈ S) and then attempts to re-
move it. If the read() and remove(x) operations issued by the client
are executed by two different replicas Ri and R j , it might happen
that the operation add(x) that added x to the OR-set was visible
to read(), but not to remove(x) (R j has not yet received the rele-
vant update message). Then remove(x) will take no effect (because
according to the specification of Forset only observed elements can
be removed). Thus, without some form of a session guarantee the
use of an OR-set leads to unintended behaviour of the system. In
practice, this problem can be easily solved using client state. All
elements added to the OR-set can be tagged with some unique
identifier. These identifiers are returned as metadata in read() op-
erations and stored as part of the client’s state. When a client
issues a remove(x) operation, it passes x’s identifier to the execut-
ing replica, which thus learns about x’s existence (add(x) becomes
visible to remove(x)).

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
This problem is even more evident in case of a system that
implements a multi-value register (MVR), so systems, such as Dy-
namo [28] and Riak [3]). The specification of an MVR (FMVR) is in
Fig. 3. Unlike in a typical register, in an MVR concurrent write() op-
erations do not lead to a race condition. Instead, all values written
concurrently (called siblings in Riak) are stored in the MVR and
are returned to the client as a set by executing the read() oper-
ation. A write() operation that follows a read() operation logically
overwrites all siblings returned in read(), thus resolving the con-
flicts resulting from previous concurrent write() operations. Clearly,
a stateless client cannot bind the invocation of read() and write()

operations on an MVR and each write() creates a new sibling. Again
some form of a session guarantee is necessary, so that an MVR can
be used as intended. Such a session guarantee requires some meta-
data to be kept in the client state.12

Interestingly not always more is better: if a system provides
classic session guarantees (or causal consistency), unintended be-
haviour may also ensue. Consider a system that, similarly to
Dynamo and Riak, implements multiple MVR registers (a key-
value store with MVRs as values), and an abstract execution A =
(E, op, rval, rb, so, sp, crash, vis, ar) in which two clients concur-
rently issue operations regarding registers x and y. The first client
issues a following chain of operations: read(x) → {u}, read(y) →
{v}, write(x, u′), in events e1, e2 and e3, respectively (which means,
e.g., that op(e1) = read(x) and rval(e1) = {u}). The second client is-
sues: read(x) → {u}, write(x, u′′), in events e4 and e5. Both clients
read u from x and want to overwrite it with a different value.
Now, if e5 occurs before e2, it is possible that e5

vis−→ e2. This does
not influence the return value in e2, but the first client may ob-
tain metadata that include information about u′′ in x. Then, if MR

is to be satisfied, e5
vis−→ e3 must hold. Thus, the write of u′ to x

will overwrite not only u, but also u′′ , and subsequent reads on x
will return {u′} instead of the intended {u′, u′′}.

Clearly, the relative visibility of events in case of an MVR needs
to be carefully managed. The set of writes visible to some other
write must correspond exactly to the writes that were visible to
the previous read executed in the same session (and when con-
sidering multiple MVRs, on the same register). If additional writes
are visible, they will be erroneously overwritten, and if insufficient
writes are visible, unnecessary siblings will be created. Assuming
some abstract execution A = (E, op, rval, rb, so, sp, crash, vis, ar),
we can express this requirement through a new predicate that
we call context preservation (CP):

CP(FMVR)
def= ∀e, e′ ∈ E, v ∈ Values :

(op(e) = read ∧ op(e′) = write(v) ∧ e
so−→ e′

∧ �e′′ ∈ E : (op(e′′) = read ∧ e
so−→ e′′ so−→ e′)

⇒ vis−1(e′) = vis−1(e) ∪ {e})
CP(FMVR) explicitly defines the set of events visible to a write()

operation as the set of events visible to the most recent read()

operation performed by the same client, as well as the read() op-
eration itself. CP is incomparable with classic session guarantees (it
is neither stronger, nor weaker). Note that slightly different defini-
tions of CP are needed, e.g., for a key-value store of multiple MVRs,
or an OR-set. Additionally, observe that for certain data types, no
such guarantee is necessary. E.g., in a distributed LWW-register
(see the specification of Freg in Fig. 3, and the implementation
in Algorithm 1) all operations are independent and concurrency is
never exposed to the client. Thus, an LWW-register can work cor-
rectly with stateless clients.

12 Such metadata can be efficiently maintained by using, e.g., dotted version vec-
tors [11,57], as in Riak.
9

6. Correctness in the face of failures

In this section we present a formal analysis of the behaviour
of highly available replicated systems in the presence of failures.
In our analysis we consider NC-PNP, CS-TNP, CS-PNP, CR-TNP, and
CR-PNP models. We omit the NC-TNP model, because, as we dis-
cuss later, for highly available, eventually consistent systems it is
equivalent to a failure-free model. In Section 4.6 we have shown
that BEC is indeed a very weak correctness criterion. It may come
as a surprise then, that BEC is too strong to be satisfied when fail-
ures occur, as we discuss below. We also define correctness criteria
that can be satisfied in a failure-prone environment, and then we
show how to mitigate some of the undesired phenomena that are
present in certain failure models.

For our discussion we assume a non-trivial replicated data
type F , i.e., F features at least one read-only operation, and
one updating operation, which is detectable through the read-
only operation. Formally, assuming some abstract execution A =
(E, op, rval, rb, so, sp, crash, vis, ar): ∃opr ∈ readonlyops(F), opu ∈
updateops(F), e ∈ E : (op(e) = opu ∧ F(opr, (∅, op, vis, ar)) �=
F(opr, ({e}, op, vis, ar))). All practical replicated data types (includ-
ing the ones in Fig. 3) are non-trivial.

6.1. Network splits and state convergence

We begin with the simple case of permanent network splits
and assume that every replica is correct and no crashes occur
(the NC-PNP model). Recall the example from Section 2. Clearly,
the implementation of a register provided in Algorithm 1 does
not guarantee eventual visibility (EV) in case of network splits.
Hence, it does not ensure system-wide state convergence as well,
even with the proposed fix in line 14. The fix allows the replicas
to converge within each network partition, but still some events
executed within one (final) network partition will never become
visible to events in other network partitions. Thus, Algorithm 1
does not satisfy EV and, in consequence, also BEC(Freg). A similar
argument can be made for any system implementing a non-trivial
replicated data type F (we include CS-PNP and CR-PNP models for
completeness):

Theorem 1. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP
models, it is impossible to implement a highly available system that sat-
isfies BEC(F).

Proof. We conduct the proof by contradiction. Consider a sys-
tem featuring two replicas R1, R2 and an execution with a net-
work split that separates the two replicas from the very begin-
ning. Client c1 connects to R1, while client c2 connects to R2.
Firstly, c1 issues an updating operation opu . Then, both c1 and
c2, take turns to issue, in a continuous fashion, a series of read-
only operations opr , such that opu is detectable through opr (c1
issues operations on R1, c2 issues operations on R2). Since no
crashes occur, each invoked operation returns a response to the
appropriate client. Let us call the depicted scenario the history
H = (E, op, rval, rb, so, sp, crash). If the system satisfies BEC(F),
then there exists an abstract execution A = (H, vis, ar), that sat-
isfies BEC(F).

There is a single event e0 ∈ E , such that op(e0) = opu and in-
finitely many events ei ∈ E , with i ≥ 1, such that op(ei) = opr . For
all ei, e j ∈ E , i < j ⇔ ei

rb−→ e j . For each ei ∈ E , with i ≥ 1, let i ≡
1 (mod 2) if the operation executed in ei was issued by c2, and i ≡
0 (mod 2) if the operation executed in ei was issued by c1. Because
of EV, there exists some k ≥ 1, such that for each i ≥ k, e0

vis−→ ei .
Then, for each ei ∈ (E \ vis(e0)), rval(ei) = F(opr, context(A, ei)) =
F(opr, (∅, op, vis, ar)) = v , and for each e j ∈ vis(e0), rval(e j) =

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
F(opr, context(A, e j)) = F(opr, ({e0}, op, vis, ar)) = v ′ , because of
RVal(F), and because read-only operations can be removed from
a context without changing the expected return values. Note that
v �= v ′ .

Now, let us consider an alternative history H ′ = (E ′, op′, rval′,
rb′, so′, sp′, crash′), in which client c1 did not issue operation opu ,
and the events initiated by c2 are exactly the same as in H . Thus,
e0 /∈ E ′ , each ei>0 ∈ E ′ , and op′ , rval′ , rb′ , so′ , sp′ , crash′ when re-
stricted to E ′′ = {ei ∈ E ′|i ≡ 1 (mod 2)}, are equivalent to their
counterparts in H when similarly restricted, i.e., the events exe-
cuted on R2 are exactly the same. In particular for every e′′ ∈ E ′′ ,
rval′(e′′) = rval(e′′). Such a history H ′ must exist, because the repli-
cas in H were separated by a network split, and the events on R2
occurred independently of R1 and c1. Clearly, it must be possi-
ble for the system to produce history H ′ , if it produces H , since
H and H ′ are indistinguishable to R2. Then, there must also exist
an abstract execution A′ = (H ′, vis′, ar′), that satisfies BEC(F). By
RVal(F) and properties of read-only operations, for each e′ ∈ E ′ ,
rval(e′) = F(opr, context(A′, e′)) = F(opr, (∅, op′, vis′, ar′)) = v . But
clearly, for some e′′ ∈ E ′′ ⊂ E ′ , rval(e′′) = v ′ , such that v ′ �= v . A
contradiction. �

The above result is clearly related to the CAP theorem [22,29],
which states that it is impossible to achieve strong consistency
in highly available systems in the presence of network splits. The
proof provided by Gilbert and Lynch [29] uses linearizability [37]
as the consistency criterion. On the other hand, our result concerns
the impossibility of satisfying Burckhardt’s BEC, a much weaker
correctness criterion, and thus can be viewed as a strengthening
of the CAP theorem. The reason for this counter-intuitive result lies
in the fact that machine and network failures are not reflected by
the definition of BEC itself. Additionally, we consider arbitrary non-
trivial types, and not only registers, as in CAP. In terms of proof
techniques, Gilbert and Lynch base their proof on violation of a
safety guarantee (linearizability’s real-time requirement), whereas
we rely on violation of a liveness property (EV). Thus, Gilbert and
Lynch’s proof requires only finite executions, whereas our proof
utilizes infinite ones.

Interestingly, Burckhardt considers a variant of the CAP theo-
rem in [24] implicitly assuming only temporary network splits (so
the NC-TNP model) and arrives at a different conclusion. He shows
that for certain data types such as Freg not only it is possible to
achieve BEC(Freg), but even sequential consistency [45]. However,
he shows that for other data types, under these assumptions, it is
impossible to satisfy sequential consistency. The above highlights
just how important it is to clearly state all the assumptions. Since
temporary network splits do not constitute substantial obstacles
for highly available, eventually consistent systems (as Burckhardt
shows for Freg , and as we later show in general with our Theo-
rem 8), we do not focus on the TNP model alone (NC-TNP), but
only in combination with CS or CR models.

The crux of the proof of our Theorem 1 is the impossibility
to satisfy EV. Hence, we cannot expect the replica states to ever
converge, as shown in Fig. 1. However, in this system not only
the states of replicas in different network partitions never con-
verge, but the replica states never converge even within the same
network partition. This behaviour could be easily prevented if Al-
gorithm 1 featured the proposed fix in line 14.

Below we propose a variant of BEC with a weakened EV re-
quirement, which can be satisfied under permanent network splits,
but which directly prohibits the unnecessary phenomena present
in Algorithm 1 without the fix. We first formalize the weakened
version of EV: partition-aware EV (PAEV):

PAEV
def= ∀e ∈ E : ((rval(e) �= ∇ ⇒ |[e]sp ∩ vis(e)| < ∞)

∧ ∀p ∈ E/≈ : (p ∩ vis(e) �= ∅ ⇒ |p ∩ vis(e)| < ∞))
sp

10
PAEV states that for any event e, (1) if e is not pending, it has
to be visible to every event that happened from some point on
within the same network partition as e, and (2) within every other
network partition, if e has been observed by some event e′ ∈ p
executed in that partition, it has to be visible to every event in
p that happened from some point on. Note that if we consider
an execution with only one network partition (no network splits),
PAEV reduces to EV. Then, the weakened variant of BEC, called
partition-aware basic eventual consistency (PABEC), is obtained by
simply substituting EV with PAEV:

PABEC(F)
def= PAEV ∧ NCC ∧ RVal(F)

Clearly, our new criterion allows us to differentiate between al-
gorithms, which strive to achieve state convergence without wait-
ing for network splits to heal, from the ones that do not (e.g.,
Algorithm 1 with and without the fix).

Note that network splits lead to a phenomenon called split
brain syndrome, in which mobile clients that switch between repli-
cas from different partitions can observe diverging system replies
concerning some data. On the other hand, sticky clients are not di-
rectly affected by this phenomenon, but if they communicate with
each other outside of the system, they can observe it indirectly.

Let us now discuss the eventual variants of key session guar-
antees: eventually read your writes (ERYW) and eventually monotonic
reads (EMR). Below we state them formally:

ERYW
def= ∀e ∈ E : |so(e) ∩ vis

−1
(e)| < ∞

EMR
def= ∀e ∈ E ∀e′ ∈ vis−1(e) : |so(e) ∩ vis(e′)| < ∞

ERYW requires that for each event e the number of events that
follow e in the same session and which do not observe e is finite.
On the other hand, EMR requires that when an event e observes
some other event e′ , there is only a finite number of events e′′
that follow e in the same session (e′′ ∈ so(e)) that do not observe
e′ . Both ERYW and EMR are implied by BEC, but not by PABEC.
Neither of them can be provided for stateless mobile clients in the
PNP model:

Theorem 2. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP
models, it is impossible to implement a highly available system that
ensures PABEC(F) ∧ ERYW or PABEC(F) ∧ EMR for stateless mobile
clients.

The proofs involving session guarantees can be found in Ap-
pendix B.

On the other hand, it can be shown that for sticky clients,
which always connect to replicas from the same network partition,
ERYW and EMR trivially hold when PABEC is satisfied. Moreover,
stateful clients can even achieve the classic RYW and MR guar-
antees by caching requests and responses (see Sections 7 and 3).
Note also, that context preservation CP (see Section 5.1) can also
be achieved in the PNP model, but using less resources than in
case of RYW or MR.

6.2. Replica crashes and phantom operations

We continue our analysis by introducing replica crashes but not
yet allowing crashed replicas to recover (the CS-TNP and CS-PNP
models). Even without network splits, certain phenomena can oc-
cur, which we call phantom operations. We explain them first using
an example.

Assume that a client issues an update operation to a faulty
replica Ri , which responds with some return value (e.g., ok), and
soon afterwards crashes. Ri might have tried to propagate the up-
date to other replicas before the crash, but it could only do so

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
asynchronously. Because of fair-loss links there is no guarantee of
successful dissemination of messages when the sender fails. The
client is then misled that the update operation was successfully
completed (the system acknowledged the execution of the update),
but there is no guarantee that it will be included in any future
state of the replicas. Moreover, the client could communicate out-
side of the system with other entities and spread invalid information
based on conviction that the update will eventually become visi-
ble. We call such an operation a phantom operation.

Phantom operations do not need to be confined to a single
faulty replica, nor a single client. Multiple clients can observe the
effects of a phantom operation op by, e.g., performing operations
on the faulty replica after op was executed but before the replica
crashed. Furthermore, a faulty replica Ri can manage to propagate
the update to some other faulty replica R j which crashes before
successfully propagating the update to other replicas. The com-
mon trait of the situations described above is that some update
is acknowledged or observed, but then permanently lost due to a
failure. In our framework this can be expressed as eventual invisi-
bility of a particular event e: only a finite number of events, out of
infinitely many, observe e. When there are no phantom operations
(in an infinite abstract execution) the following predicate (which
we could call phantom-freedom) holds:

XEV
def= |E|≮∞

⇒ ∀e ∈ E : (rval(e) �= ∇ ∨ vis(e) �= ∅ ⇒ |vis(e)| ≮ ∞)

Note that this visibility predicate is much weaker than EV (or
even PAEV). Whereas EV requires that an event becomes visible
to all subsequent events from some point on, XEV only requires
the event to be visible to some (infinitely many) events, but still
infinitely many other events may not observe it. We can define the
weakest variant of BEC that is phantom-free as:

XBEC(F)
def= XEV ∧ NCC ∧ RVal(F)

Some acknowledged updates that were not propagated due to
crashes are benign. For example, if an update a was overwritten by
a subsequent update b, then no information is lost. This is mirrored
in the definition above, as for such an update a, we can always add
artificial visibility arcs in the abstract execution (pretending that
a was visible to every event which already observed b), in effect
making a not a phantom anymore. Still, in principle we cannot
avoid phantom operations if crashes occur in the CS model, as we
state formally below:

Theorem 3. For any non-trivial F , in the CS-TNP and CS-PNP models,
it is impossible to implement a highly available system that satisfies
XBEC(F).

Proof. The proof is similar to the one for Theorem 1. Consider a
history H as outlined in the proof of Theorem 1, with the differ-
ence that all replicas are in the same partition (no network splits),
and R1 crashes immediately after sending the response for opu
back to the client c1 (also c1 does not issue the subsequent opr
operations). If R1 has sent any messages to other replicas, we drop
them in accordance with the properties of fair-loss links. We can
now follow the same logic as in the proof of Theorem 1, and show
that in any abstract execution A, the event e0 ∈ E needs to become
visible to infinitely many ei ∈ E , for i ≥ 1, as otherwise visibility
requirements would be violated (in this case e0 would be a phan-
tom operation). This eventually leads to contradiction, because R2
cannot know about the existence of the event e0. We skip the
repetitive steps. �
11
Since BEC and PABEC clearly imply XBEC, it follows from the
Theorem 3 that they also cannot be satisfied by a highly available
system in the face of failures. Hence we cannot rule out all phan-
tom operations, but we could require that there are no phantoms
which are not caused by a replica failure. We formalize this in-
tuition by proposing crash-aware basic eventual consistency (CABEC)
for the TNP model, and the more general failure-aware basic even-
tual consistency (FABEC) for the PNP model. They are based on the
CAEV and FAEV predicates, respectively:

CAEV
def= ∀e ∈ E : (|vis(e)| < ∞ ∨ (crash(e) ∧ (crash−1(false)

∩ vis(e) = ∅)))

FAEV
def= ∀e ∈ E ∀p ∈ E/≈sp : (|p ∩ vis(e)| < ∞

∨ (p ∩ crash−1(false) ∩ (vis(e) ∪ {e}) = ∅))

CAEV implies that, unless an event e was executed on a replica
which subsequently crashed and e was not observed by any other
event on some replica that did not crash, it has to be eventually
visible. FAEV means that for each event e and each network parti-
tion p, either e is eventually visible in that partition, or no event
e′ ∈ p that occurred in that partition on a replica which does not
crash, can observe e (or be e itself). Once e is observed by any
event e′′ that occurred on a replica which does not crash, e has
to become eventually visible in the network partition in which e′′
was executed. Then:

CABEC(F)
def= CAEV ∧ NCC ∧ RVal(F)

FABEC(F)
def= FAEV ∧ NCC ∧ RVal(F)

When all replicas are correct CABEC reduces to BEC, and FABEC

reduces to PABEC.
Note that because of crashes and phantom operations, it is im-

possible to ensure ERYW and EMR for stateless clients (both sticky
and mobile), even when no network splits occur.

Theorem 4. For any non-trivial F , in the CS-TNP and CS-PNP mod-
els, it is impossible to implement a highly available system that ensures
CABEC(F) ∧ ERYW or CABEC(F) ∧ EMR for stateless clients.

6.3. Replica recovery and stable storage

Theorem 3 shows that phantom operations are unavoidable
when a replica crashes after serving an operation submitted by the
client, but before propagating the information about the operation
to at least one correct replica. Naturally, in the CS model phantom
operations cannot be avoided unless we sacrifice high availability
and let the replica synchronize with other replicas before returning
a response. However, in the CR model, where replicas can recover
after crash, we can avoid some of the phantom operations if only
the information about the operations performed can be recovered
after crash. To this end a replica has to perform a synchronous
write to stable storage before returning a response to the client.
Of course, a replica recovery is not possible in case of a fatal fail-
ure (e.g., a failure of the stable storage unit itself or the replica
crashing and recovering infinitely many times). We formalize this
intuition in the following three theorems:

Theorem 5. For any non-trivial F , in the CR-TNP and CR-PNP mod-
els, it is impossible to implement a highly available system that satisfies
XBEC(F).

Proof. The impossibility is due to fatal failures only, because as we
argue later, transient failures can be tolerated. There are two kinds
of fatal failures in the CR model: (1) a crash after which the replica
does not recover, and (2) infinitely many crashes and recoveries of

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
the same replica. In the former case, the same reasoning applies as
in Theorem 3 for the CS model. In the latter case we can choose
the crashes to happen soon after recovery and drop all messages
exchanged with that replica, thus forcing it into an infinite restart
loop, in which it is unable to make any progress. Again, the same
reasoning can be applied. However, note that it is sufficient to con-
sider only the former case to prove the theorem. �
Theorem 6. For any non-trivial F , in the CR-TNP and CR-PNP mod-
els, it is impossible to implement a highly available system that ensures
CABEC(F) ∧ ERYW or CABEC(F) ∧ EMR for stateless clients.

Theorem 7. For any non-trivial F , in the CR-TNP and CR-PNP models,
if the replicas do not issue synchronous writes to stable storage during
the execution of some operations, but before returning the responses to
the clients, it is impossible to implement a highly available system that
satisfies XBEC(F), even when no fatal failures occur.

Proof. Assume that the system either does not issue synchronous
writes to stable storage during the execution of any operation, or
that it does so only after returning the response. Consider the same
scenario as in the proof of Theorem 3 (R1 crashes immediately af-
ter returning the response for opu). We know that R1 did not use
stable storage synchronously during the execution of the event e0,
and if it did asynchronously, we declare all the issued writes to had
not been persisted before the crash. There is no knowledge about
the operation opu issued by client c1, neither in the stable stor-
age of R1, nor in the state of any other replica (no messages from
R1 were successfully transmitted, and the client c1 communicated
only with R1). Now we can add to the execution R1’s recovery. Due
to the lack of any recorded information about opu , the state of R1
after recovery is the same as if opu was never issued by client c1.
Now, we can follow the same logic as in the proof of Theorem 3
to reach a contradiction. �

Note that Theorem 7 does not require the system to issue syn-
chronous writes to stable storage during the execution of all oper-
ations. The set of operations that require persistence depends on
the semantics of F . Still, synchronous writes are unavoidable in
general and thus they constitute the inherent cost of eliminating
phantom operations caused by transient failures.

Persistent storage solutions available in today’s data centers pri-
marily comprise of network storage devices based on magnetic
disks (HDDs) and solid state drives (SSDs) (see, e.g., [6]). The HDD-
based storage devices, which can handle around 7500-15000 ran-
dom input/output operations per second (IOPS), are simply too
slow to enable frequent synchronous writes. However, the SSD-
based storage, which in recent years became much more afford-
able, can achieve 20-40 times the IOPS of HDD-based storage and
a few times higher bandwidth (especially for write operations). It
means that now the cost of performing synchronous writes for
each client operation served is no longer prohibitive (unless a
service running in the replicated environment must guarantee ex-
tremely low latencies in serving client requests). The performance
penalty due to frequent writes to stable storage is likely to fur-
ther drop with the adoption of novel technologies, such as byte-
addressable non-volatile memory (also called persistent memory)
[60] which promises performance that is almost on par with RAM
[56], or upcoming storage class memory devices which are based
on Compute Express Link (CXL) [7,8] .

We make one final observation for a system that uses stable
storage to avoid some phantoms (the proof is available in Ap-
pendix B):

Theorem 8. For any F , it is possible to implement a highly available
system that, if no fatal failures occur, satisfies BEC(F) in the CR-TNP,
12
and PABEC(F) in the CR-PNP model, and if fatal failures occur, satisfies
CABEC(F) in the CR-TNP, and FABEC(F) in the CR-PNP model.

6.4. Summary

In Fig. 4 we summarize the consistency guarantees which are
possible to achieve in highly available systems and the artefacts a
client can observe in various combinations of replica and network
failure models. In terms of the offered guarantees and the types
of artefacts which the clients can encounter, the crash-recovery
(CR) model with only transient failures is akin to the no-crash (NC)
model. When we admit fatal failures in CR model, we achieve the
same guarantees and types of artefacts as in the crash-stop (CS)
model.

Note that the formal framework presented in this article can
be easily extended for a particular class of systems. For example,
one could use our approach to define a whole family of failure-
aware consistency criteria, based on other baseline predicates, such
as causal consistency.

7. Related work

7.1. Formalization of high availability and eventual consistency

(High) availability was first defined as a formal guarantee for
replicated systems by Brewer’s CAP conjecture [22]. It stipulates
that eventually, for every request, a response needs to be pro-
vided. Later, Gilbert and Lynch conducted a formal proof of the
conjecture, rendering CAP a theorem [29]. In the latter work, high
availability was equated to wait-freedom [36]. More recently (see,
e.g., [14,16,24]) high availability was modelled as a design property
in which system replicas are required to respond to client requests
immediately without synchronous communication with peers. We
follow this approach and formally relate our work to the CAP the-
orem in Section 6.1.

As we mentioned earlier, the majority of the existing work on
the correctness of highly available systems either abstract away
from machine failures altogether [14,16,21,31,33,35,46,47,61,71],
admit machine failures or network splits but in the correctness
proofs consider only system runs in which no failures occur
[24,26], or fail to consider infinite executions and liveness prop-
erties [32]. Below we discuss the most relevant bodies of work we
are aware of.

As follows from the CAP theorem, highly available systems can
only guarantee some form of eventual consistency. Early definitions
of eventual consistency [17,70] are rather informal: they stipulate
that in the absence of updates, eventually the read operations on
the same object on all processes will return the same value. Such
a definition makes eventual consistency a pure liveness property,
as it does not impose any restrictions on the possible responses
when updates continue to be performed. In particular, according
to this definition, a read of an object can return a value that was
never written to it, as in case of the target correctness condition
for CRDTs, which we discuss below.

As we already briefly discussed in Section 2, highly available
systems often feature Conflict-free Replicated Data Types (CRDTs) for
enhanced semantics. Proposed by Shapiro et al. [62,63], CRDTs
are specialized data structures, which can be implemented solely
in an asynchronous manner and by design ensure eventual con-
vergence of replica states. The authors assume that every step a
CRDT algorithm performs is synchronously logged to stable stor-
age. This is a substantial simplification, which does not reflect the
way CRDTs are usually implemented (as lightweight, in-memory
data structures). Our approach is more comprehensive, since e.g.,
we study when the writes to stable storage are necessary. Shapiro

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707

no-crash crash-stop crash-recovery
only transient all

failures failures

consistency guarantees
temporary network splits BEC CABEC BEC CABEC

permanent network splits PABEC FABEC PABEC FABEC

artefacts that temporary network splits (all clients) � �≤ � �≤
can be encountered

permanent network splits
(all clients) � �≤ � �≤

by the clients (mobile clients) � �≤ � �≤
– phantom operations, � – no ERYW (eventual read my writes) for stateless clients

�≤ – no EMR (eventual monotonic reads) for stateless clients, – split brain syndrome for clients who communicate outside the system

Fig. 4. The consistency guarantees and phenomena observable by the clients in various failure models for a highly available system that implements an arbitrary, non-trivial
replicated data type F .
et al. proposed strong eventual consistency (SEC) [62,63] as a tar-
get correctness criterion for CRDTs. It requires any two replicas
that receive the same set of messages to be in the same state.
While this definition improves somewhat on the earlier approach,
it still does not guarantee that the responses returned by the repli-
cas are explainable by the semantics of the implemented data type
(e.g., a replica of a register which always returns value 0 in every
state is correct according to SEC; e.g., consider Algorithm 1 with
line 10 replaced by return 0). In our approach, we avoid this
problem by utilizing the replicated data type specifications [25]
to bind the allowed responses with the history of previously ex-
ecuted operations. Moreover, unlike in the case of SEC, which is
defined solely on replica states, we consider external clients and
the guarantees provided to them, which is a more sound approach.
Although defining consistency models over internal replica states
seems convenient and easy to follow, it is the externally observ-
able behaviour of the system that really matters.

The use of replicated data type specification also lays at the
core of basic eventual consistency (BEC), which was proposed by
Burckhardt et al. [24,26]. BEC abstracts away from implementation
details such as internal replica states or exchanged messages. We
closely follow this work as we base our family of failure-aware
correctness criteria on BEC. In [24] Burckhardt formally specified
a number of eventually consistent protocols. However, the correct-
ness proofs for these protocols, as well as proofs for other formal
results, only consider system runs in which no failures occur.

Wang et al. [71] try to improve upon BEC with a framework
that replaces replicated data type specifications with (abstract-
state-based) sequential specifications. This comes, however, at a
cost of label rewriting in the history for types that cannot be
normally explained by sequential semantics. This rewriting, which
needs to be done manually, amounts to exposing implementation
details concerning the metadata needed to implement the repli-
cated data type given, e.g., an OR-set which we discuss in Sec-
tion 5.1.

Early eventually consistent systems, which had clients colocated
with replicas, featured additional client side guarantees called ses-
sion guarantees [64], such as read-your-writes (RYW) or monotonic
reads (MR). When clients are external to replicas, session guaran-
tees can be trivially implemented by requiring clients to always
communicate with a quorum of replicas, albeit this approach is not
highly available. On the other hand, some (but not all of) session
guarantees can be provided when the clients cache their writes
and reads [19]. In turn, significant use of client-side resources is
necessary, and thus this approach is typically avoided. The popu-
lar NoSQL systems often feature tunable consistency levels, which
means they can be configured to operate either in the highly avail-
able mode, with no session guarantees, or utilizing a quorum of
replicas to achieve stronger consistency at the cost of high avail-
ability. In our work we show that enforcing classic session guaran-
tees can be actually counterproductive for certain replicated data
types. Hence, we provide a novel substitute called context preser-
vation. We also define eventual session guarantees, which can be
obtained with stateless clients in certain failure modes without
13
compromising on high availability. The four classic session guaran-
tees combined with eventual consistency form causal consistency
[23,24].

Mahajan et al. [50,51] discuss the properties of highly avail-
able systems that satisfy a form of causal consistency called natural
causal consistency, in which the causal order of operations needs to
respect additional real-time constraints. In their work they employ
the crash-stop and Byzantine failure models, however, machine
recovery after crash is not considered. They introduced liveness
property of convergence, which is state-based and relies on explicit
message exchanges, and so is similar to SEC. Mahajan et al. also do
not consider external clients.

Bailis et al. [18] focus on high availability in the context of
transaction processing systems. In terms of system failures, they
consider network splits, however, they largely abstract away from
server crashes. They do note that certain replication schemes may
become unavailable due to crashes, e.g., when a transaction coor-
dinator fails, or that certain fault-tolerance requirements are in-
compatible with high availability, but do not explore the topic
further. On the other hand, the protocol for handling session guar-
antees they provide is inherently blocking and does not guarantee
progress in spite of crashes, which seems ill-suited as a solu-
tion aimed at fault-tolerant highly available systems that strive to
gracefully tolerate failures.

7.2. Mechanized proof techniques

Gomes et al. [32] apply mechanized proofs based on Isabelle
[72] to study the correctness of CRDTs. As the authors note, mech-
anized proofs can fail (and did so in the past), when the assump-
tions about the environment are wrong. We concur with them,
and in our work we put strong emphasis on modelling the net-
worked environment of CRDTs realistically and correctly. Compared
to Gomes et al., our work is more fundamental: instead of prov-
ing correctness of individual CRDTs, we are more interested in
general possibility/impossibility results and axiomatic definition of
correctness guarantees. Moreover, Gomes et al. consider only finite
histories, and thus their analysis do not include liveness proper-
ties. As a result, their correctness proofs cannot detect anomalies
discussed in Section 2, similarly to the proofs by Burckhardt which
do not account for failures at all. Additionally, Gomes et al. do not
consider recovery after crash, and assume causal broadcast as the
weakest group communication primitive, which is too strong of a
requirement for many systems.

Liu et al. [49] target semi-automatic verification (using SMT
solving) of CRDTs. They utilize Liquid Haskell [59,68], and focus
on proving strong convergence of CRDTs, which is a safety prop-
erty. They ignore liveness properties such as eventual delivery, and
abstract away from crashes and network failures altogether. How-
ever, they improve upon the work of Gomes et al. in some regard
by dropping the unnecessary assumption of causal broadcast as the
base communication primitive.

Imine et al. [38] propose using SPIKE, an automated theorem
prover, to assist development of transformation functions for Op-

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
erational Transformation (OT) solutions (centralized precursors to
CRDTs). They do not consider machine and network failures. No-
tably, the mechanized proofs by Imine et al. were later proved to
be incorrect by Oster et al. [54]. The proofs failed due to false as-
sumptions about the execution environments as noted by Gomes
et al. in [32].

7.3. Highly available system implementations

Relaxed consistency models in database management systems
emerged with the rapid evolution of the Internet and, in conse-
quence, the demand for scalable and highly available services. In
this regard the design of Amazon Dynamo [28] has been partic-
ularly influential, as it has popularized techniques, such as the
sole reliance on gossip protocols for (asynchronous) inter-replica
communication, consistent hashing for dataset partitioning, the use
of version vectors to enable handling of concurrent writes to the
same data items and the use of hinted-handoff, sloppy quorum and
anti-entropy algorithms to recover from failures. In effect, Amazon
Dynamo, and the plethora of systems influenced by it (see, e.g.,
Apache Cassandra [41], Scylla [4], Riak [3], Voldemort [5], Netflix’s
Dynomite [53]) are massively scalable, can gracefully tolerate ma-
chine and network failures and still provide low latency responses.
The latter trait stems from the fact that in these systems typically
communication with only a single service replica (that stores a
copy of a dataset pertaining to the client’s request) is sufficient to
complete the request. It means that a replica is able to respond
without synchronous communication with other replicas. In the
context of the PACELC framework [9], these systems choose low-
latency over consistency even when no network splits occur. We
base our analysis on this very assumption.

Some of the systems mentioned above always synchronously
write each update to disk before responding to the client, while
other ones operate in-memory, with only asynchronous writes
to stable storage. Since we consider both crash-stop and crash-
recovery failure models, and stable storage plays a role only when
recovery is possible, our analysis encompasses both kinds of sys-
tems.

8. Conclusions

In this paper we discussed various aspects of correctness of
real-life highly available, eventually consistent replicated systems,
that work in an environment in which machine failures and net-
work splits are likely to occur. As we have shown, not taking
failures into account may lead to misconceptions regarding even
the basic requirements of highly available systems, such as replica
state convergence (within each network partition). Moreover, to
prove correctness of systems that feature more complex seman-
tics (e.g., systems that utilize MVRs or OR-sets), formal reasoning
about the state maintained by external clients is necessary. We be-
lieve that our work remedies some long overlooked aspects of the
theory of eventually consistent systems and thus may be of value
especially to researchers interested in reasoning about correctness
of eventually consistent systems.

CRediT authorship contribution statement

M. Kokociński: Conception and design of study, Drafting the
manuscript, Revising the manuscript critically for important intel-
lectual content, Approval of the version of the manuscript to be
published. T. Kobus: Conception and design of study, Drafting the
manuscript, Revising the manuscript critically for important intel-
lectual content, Approval of the version of the manuscript to be
published. P.T. Wojciechowski: Conception and design of study, Re-
vising the manuscript critically for important intellectual content,
Approval of the version of the manuscript to be published.
14
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors would like to thank the reviewers for their valuable
comments which helped to improve the manuscript.

This work was supported by the Foundation for Polish Sci-
ence, within the TEAM programme co-financed by the European
Union under the European Regional Development Fund (grant No.
POIR.04.04.00-00-5C5B/17-00).

Appendix A. Extension to partial replication

Let us discuss a possible extension of the system model from
Section 3 to accommodate partial replication. If only certain repli-
cas hold the necessary data to serve a specific request, then load
balancing needs to take this fact into account. This can be achieved
statelessly by utilizing consistent hashing [28,39]. However, care
needs to be taken with partial replication, because in each en-
semble Gi at least a single replica must hold the relevant data for
each request. Moreover, since the single replica could crash, mul-
tiple replicas are required. Even then, the system is less resilient
than a fully replicated one (which can tolerate up to n − 1 faulty
replicas and remain available) and requires additional assumptions
about failure patterns and the maximum number of faulty replicas
allowed.

Appendix B. Additional proofs

Theorem 2. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP
models, it is impossible to implement a highly available system that
ensures PABEC(F) ∧ ERYW or PABEC(F) ∧ EMR for stateless mobile
clients.

Proof. The proof is similar to the one for Theorem 1. Consider a
history H as outlined in the proof of Theorem 1, with the differ-
ence that all operations are issued by the same client (c1 = c2).
Note that the client alternately issues operations to R1 and R2,
even though they are in two different network partitions. This is
naturally allowed, as we explicitly consider mobile clients. For all
ei, e j ∈ E , i < j ⇔ ei

so−→ e j . Note that so(e0) = E \ {e0}. If the sys-
tem satisfies PABEC(F) with either of the two session guarantees,
then there exists an abstract execution A = (H, vis, ar), that satis-
fies PABEC(F) with the respective session guarantee.

Because of PAEV, there exists some k′ ≥ 1, such that for each
i′ ≥ k′ ∧ i′ ≡ 0 (mod 2), e0

vis−→ ei′ (ei′ was executed on R1).
If A |= ERYW, then there exists some k ≥ 1, such that for each

i ≥ k, e0
vis−→ ei (e0 has to be eventually visible, as the set so(e0) ∩

vis
−1

(e0) has to be finite, and all operations are issued within the
same session).

If A |= EMR, then there exists some k ≥ k′ , such that for each
i ≥ k, e0

vis−→ ei (since e0 is observed by some ei′ , where i′ ≥ k′ ∧ i′ ≡

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
0 (mod 2), e0 can be not observed only by a finite number of
events ei ∈ so(ei′)).

Now, we can conclude (similarly to the way we did in the proof
of Theorem 1) that there is infinitely many events e j , such that

e0
vis−→ e j , and that their return value v ′ is different than v (the

return value for ei such that e0 � vis−→ ei).
When we consider an alternative history H ′ , where opu has not

been invoked, we can see that it is indistinguishable from H for
R2: the stateless client issues the same operations, passing exactly
the same information, and no messages from other replica are de-
livered. Thus, the return values for operations executed on R2 are
the same in H and H ′ , and infinitely many of them are v ′ . How-
ever, according to PABEC(F), and more specifically RVal(F), the
only allowed response is v �= v ′ . A contradiction. �
Theorem 4. For any non-trivial F , in the CS-TNP and CS-PNP mod-
els, it is impossible to implement a highly available system that ensures
CABEC(F) ∧ ERYW or CABEC(F) ∧ EMR for stateless clients.

Proof. The proof is based on the same principles as the proofs for
Theorems 1, 2 and 3, but is more complex. We consider a history
H as in the proof of Theorem 1, but with c1 = c2, and R1 crashing
after serving the response for opu . However, contrary to the proof
of Theorem 3, we do not crash R1 immediately after executing
opu . Instead, we allow it to serve multiple opr operations, all the
time keeping R1 and R2 in two (temporary) network partitions,
dropping all messages exchanged between them. We proceed to
show that from some point on the operations opr executed on R1
start returning v ′ �= v . To understand why this is the case we need
to consider a couple alternative histories.

First, let us consider a history H ′ = (E ′, op′, rval′, rb′, so′, sp′,
crash′), in which R2 crashes immediately without executing any
event, while R1 executes e0 and infinitely many ei , for i ≡
0 (mod 2) as in H from the proof of Theorem 1. Note that R1
does not crash in H ′ , so e0 cannot be a phantom operation. Since
crash(ei) = false for all ei ∈ E ′ (there are no events executed on
the crashed R2), and because CABEC reduces to BEC in such cases,
H ′ |= BEC(F). Then, following the logic from the proof of Theo-
rem 1, we can show that from some point on all opr operations
will return v ′ . Let us denote by ek the first such event. Now, we
create another alternative history H ′′ from H ′ , by crashing R1 im-
mediately after ek . Both R1 and R2 crash in H ′′ , and thus it is a
finite history.

Now we construct our target history H from H ′′ (which in-
cludes only events executed on R1), by revoking the crash of R2
and adding infinitely many executions of opr on R2 in the events
ei , for i ≡ 1 (mod 2). H is indistinguishable from H ′′ for R1, be-
cause in both histories the stateless client issues the same oper-
ations to R1, and no messages are exchanged between replicas.
Thus in H , (1) R1 executes a finite number of events with the last
ek being an opr returning v ′ , and then crashes; (2) for the entire
duration R1 and R2 are separated by a (temporary) network split,
and all messages between them are dropped; and (3) R2 executes
infinitely many events.

By the same logic as in the proof of Theorem 2, we can show
that the ERYW and EMR session guarantees require e0 to be even-
tually visible (through the event ek in case of EMR), forcing all ei
from some point on to return v ′ . Then, we can show as in the
proof of Theorem 1, that the only possible response for each ei , for
i ≡ 1 (mod 2) is v �= v ′ , which concludes the proof with a contra-
diction. �
Theorem 6. For any non-trivial F , in the CR-TNP and CR-PNP mod-
els, it is impossible to implement a highly available system that ensures
CABEC(F) ∧ ERYW or CABEC(F) ∧ EMR for stateless clients.
15
Algorithm 2 Protocol implementing replicated data type F , for
replica Ri identified by rid.

1: struct OpRec(clk : integer, rid : integer, op : ops(F))
2: operator <(o : OpRec, o′ : OpRec)
3: return (o.clk < o′.clk) ∨ (o.clk = o′.clk ∧ o.rid < o′.rid)

4: function opFun(o : OpRec)
5: return o.op

6: function makeContext(operations : set〈OpRec〉, vis : set〈OpRec × OpRec〉)
7: var ar = {(o, o′)|o, o′ ∈ operations ∧ o < o′}
8: return (operations, opFun, vis, ar)

9: var operations : set〈OpRec〉
10: var visible : set〈OpRec × OpRec〉
11: operation Perform(op : ops(F))
12: var rval = F(op, makeContext(operations, visible))

13: var o = OpRec(max(operations).clk + 1, rid, op)

14: visible = visible ∪ (operations × {o})
15: operations = operations ∪ {o}
16: write operations and visible synchronously to stable storage
17: BE-cast(UPDATE, operations, visible)

18: return rval
19: upon BE-deliver(UPDATE, recOperations : set〈OpRec〉, recVisible : set〈OpRec ×

OpRec〉)
20: if recOperations \ operations �= ∅ then
21: operations = operations ∪ recOperations
22: visible = visible ∪ recVisible
23: write operations and visible synchronously to stable storage
24: BE-cast (UPDATE, recOperations, recVisible)

25: upon recovery()
26: initialize operations and visible from stable storage
27: BE-cast (RECOVERY, operations, visible)

28: upon BE-deliver(RECOVERY, recOperations : set〈OpRec〉, recVisible : set〈OpRec×
OpRec〉)

29: if operations \ recOperations �= ∅ then
30: BE-cast (UPDATE, operations, visible)

31: if recOperations \ operations �= ∅ then
32: operations = operations ∪ recOperations
33: visible = visible ∪ recVisible
34: write operations and visible synchronously to stable storage

Proof. Just as in Theorem 5 the impossibility is due to fatal
crashes, and we can apply the same reasoning as before. For a fa-
tal crash where the replica does not recover, we follow the proof
of Theorem 4 for the CS model. �
Theorem 8. For any F , it is possible to implement a highly available
system that, if no fatal failures occur, satisfies BEC(F) in the CR-TNP,
and PABEC(F) in the CR-PNP model, and if fatal failures occur, satisfies
CABEC(F) in the CR-TNP, and FABEC(F) in the CR-PNP model.

Proof. In order to prove the above, we need to show that we
can propose an implementation that satisfies FABEC for a generic
type F . As an illustration, consider Algorithm 2, which shows a
pseudocode of a generic protocol for an arbitrary F . Note that Al-
gorithm 2 is overly simplistic and not optimized for performance
(e.g., it does not distinguish between read-only and updating op-
erations, and does not minimize the size of exchanged messages,
nor the amount of data kept in stable storage).

An OpRec represents a quanta of information concerning the
invocation of a single operation (line 1). An OpRec is a tuple which
consists of the operation op invoked, the identifier rid of the replica
that executes op, and clk (the value of a logical clock maintained by
the replica at the time of the invocation of op). OpRec structures
can be totally ordered using the clk values and replica rids (line 2).

Each replica maintains two data structures: operations and
visible (lines 9-10). They are used upon operation invocation to cre-
ate the operation context, as required by the function F (line 6).
The operations set stores information about the operation invoca-
tions the replica is aware of. On the other hand, the visible set is
used by the replica to maintain information about the relative visi-
bility of such events. A pair (o, o′) belongs to visible, iff o′ observes
o.

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
Upon invocation of operation op, we calculate the return value
rval using F and the appropriately created operation context
(line 12). Then the replica needs to update its state and notify
other replicas about the execution of op. To this end, a new OpRec
o is created (line 13). The value of o.clk is chosen so that it is
larger than the clk field of any other OpRec in the operations
set. Next, we extend the visible set so that o observes all the o′
in the operations set (line 14). Then we add o to the operations
set (line 15). Next we write both operations and visible to stable
storage (line 16). Finally, both the operations and visible sets are
broadcast to all replicas using best-effort broadcast in an UPDATE
message (line 17).

Upon receipt of an UPDATE message (line 19), when necessary,
the replica updates its operations and visible sets by merging them
with the incoming ones, writes both operations and visible to stable
storage and finally broadcasts a message with the new state. The
last two steps are necessary to ensure FAEV.

Upon recovery (line 25) the replica initializes its operations and
visible sets from the stable storage and broadcasts a RECOVERY
message. A RECOVERY message from a replica Ri has a double pur-
pose:

• Ri ensures that other replicas will also receive the operations
Ri performed and saved to its stable storage (but perhaps
failed to disseminate), and

• upon receipt of a RECOVERY message (line 28), other replicas
R j will resend to Ri all operations that Ri might be missing.

For each fair execution (corresponding to some history H =
(E, op, rval, rb, so, sp, crash)) of a system that implements Algo-
rithm 2, we need to show that there exists an abstract execution
A = (H, vis, ar), such that A |= FABEC(F). It is because if there are
no fatal failures, FABEC reduces to BEC in the TNP model, and
to PABEC in the PNP model. If there are fatal failures, FABEC re-
duces to CABEC. Instead of considering all isomorphic histories, we
consider only histories for which E contains elements of OpRec
type, which were constructed according to the pseudocode of Al-
gorithm 2 in the actual execution.

For simplicity we assume, that whenever a message is BE-cast
in the pseudocode, it is scheduled for sending, but it is actually
sent only after the entire code block in which BE-cast occurs fin-
ishes execution.

First, let us introduce some auxiliary definitions. For an event
e ∈ E , we denote by pre(e) and post(e) the volatile state of the
replica, respectively, just before the execution of e, and just after
the execution of e. Similarly, by sspre(e) and sspost(e) we denote
the contents of stable storage of the replica executing e, before and
after the execution of e. Note that pre(e) = sspre(e), but not al-
ways post(e) = sspost(e) (e.g., when the replica executing e crashes
before completing the execution). Moreover, sspre(e).operations ⊆
sspost(e).operations and sspre(e).visible ⊆ sspost(e).visible. Simi-
larly, for any two events e, e′ ∈ E executed on the same replica
in that order, sspre(e′).operations ⊆ sspost(e).operations and
sspre(e′).visible ⊆ sspost(e).visible.

To construct A, for any a, b ∈ E , we let a ar−→ b ⇔ a < b and a vis−→
b ⇔ a ∈ pre(b).operations. Now we need to show that A satisfies
FAEV, NCC and RVal(F).

Let us make an observation. For an event e executed on some
replica Ri , if rval(e) �= ∇ it means that e ∈ sspost(e).operations.
Similarly, if vis(e) �= ∅, and thus there exists e′ ∈ E , such that
e vis−→ e′ , it means that e must have been broadcast and delivered
by some other replica R j , or e′ is some subsequent event executed
on Ri . In either case e ∈ sspost(e).operations.

When e is recorded in stable storage of some correct replica,
eventually it will be recorded in stable storage of each correct
16
replica in the same partition. A replica Ri saves e to stable stor-
age in two cases: either it executed op(e) locally or it received e in
some UPDATE or RECOVERY message. In either case, Ri will broad-
cast e as part of its operations set. Since Ri is correct and it uses
best-effort broadcast, every correct replica R j , which belongs to
the same network partition as Ri , will eventually deliver the mes-
sage, and if R j does not already have e in its operations set (which
is persisted on stable storage), R j will add e to its operations set
and write it to stable storage.

For any partition p ∈ E/≈sp , any e, e′ ∈ E , such that e′ ∈ p ∧ e ∈
pre(e′).operations ∧ ¬crash(e′), it holds that, there is only a finite
number of events e′′ ∈ p, such that e /∈ pre(e′′).operations. There-
fore, |p ∩ vis(e)| < ∞. On the other hand, for an event e ∈ E ,
for which there does not exist such an event e′ ∈ p, naturally
p ∩ crash−1(false) ∩ (vis(e) ∪ {e}) = ∅, since p ∩ crash−1(false) = ∅.
Thus, A |= FAEV.

Now let us focus on no-circular-causality (NCC). Observe that,
for any two events a, b ∈ E executed on the same replica in that
order, a rb−→ b. Moreover, the same holds also for any two events
a, b ∈ E , such that a was executed on Ri , b was executed on R j ,
Ri �= R j , and a ∈ pre(b).operations. This is so, because for a to be
included in the state of R j , a must have been BE-cast by Ri in
an appropriate message already after the execution of a has fin-
ished. Thus, vis ⊆ rb. Additionally, so ⊆ rb, by well-formedness of
a history. Therefore, hb = (so ∪ vis)+ ⊆ rb, and since rb is a partial
order, hb is acyclic, and A |= NCC.

Finally, we turn our attention to RVal(F). The return value for
each not pending event e ∈ E is computed using the function F
itself. We need to show that the output C ′ = (E ′, op′, vis′, ar′) of
the makeContext function is isomorphic with C ′′ = context(A, e) =
(E ′′, op, vis, ar). Firstly, by definition vis−1(e) = pre(e).operations,
thus E ′ = E ′′ . Secondly, for each e′ ∈ E ′ , opFun(e′) = e′.op, and
e′.op = op(e′). Thus, for each e′ ∈ E ′ , op′(e) = op(e). Thirdly,
for any three events a, b, c ∈ E , if a ∈ pre(b).operations ∧ a, b ∈
pre(c).operations, then (a, b) ∈ pre(c).visible, because the sets opera-
tions and visible are always modified, persisted and disseminated
together atomically. Thus, for any two a, b ∈ E ′ , such that a vis−→ b,
(a, b) ∈ pre(e).visible, which means that vis′ = vis|E ′ . Fourthly,
(a, b) ∈ ar′ ⇔ a, b ∈ E ′ ∧ a < b, and (a, b) ∈ ar ⇔ a, b ∈ E ∧ a < b.
Thus, ar′ = ar|E ′ . Finally, since E ′ = E ′′ , while op′ , vis′ and ar′ are
restrictions of op, vis and ar to E ′ , we have that C ′ and C ′′ are
isomorphic, and so A |= RVal(F).

To conclude, since A |= FAEV, A |= NCC and A |= RVal(F), A |=
FABEC(F). �
References

[1] Apache Cassandra documentation, Apache cassandra, https://cassandra .apache .
org/.

[2] Redis documentation, Redis, https://redis .io/.
[3] Basho documentation, Riak key-value store, http://basho .com /products /riak-

overview/.
[4] ScyllaDB documentation, Scylla, https://www.scylladb .com/.
[5] Project Voldemort, Voldemort key-value store, https://www.project -voldemort .

com/.
[6] Google documentation, Google cloud – storage options, https://cloud .google .

com /compute /docs /disks/.
[7] tom’s Hardware, Intel Kills Optane Memory Business, Pays $559 Million

Inventory Write-Off, https://www.tomshardware .com /news /intel -kills -optane -
memory-business -for-good, 2022.

[8] Business Wire, Kioxia Launches Second Generation of High-Performance,
Cost-Effective XL-FLASH Storage Class Memory Solution, https://
www.businesswire .com /news /home /20220801005862 /en /Kioxia -Launches -
Second -Generation -of -High -Performance -Cost -Effective -XL-FLASH %E2 %84 %A2 -
Storage -Class -Memory-Solution/, 2022.

[9] D. Abadi, Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story, Computer 45 (2) (Feb. 2012).

[10] M. Alfatafta, An analysis of partial network partitioning failures in modern dis-
tributed systems, Master’s thesis, University of Waterloo, 2020.

https://cassandra.apache.org/
https://cassandra.apache.org/
https://redis.io/
http://basho.com/products/riak-overview/
http://basho.com/products/riak-overview/
https://www.scylladb.com/
https://www.project-voldemort.com/
https://www.project-voldemort.com/
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.businesswire.com/news/home/20220801005862/en/Kioxia-Launches-Second-Generation-of-High-Performance-Cost-Effective-XL-FLASH%E2%84%A2-Storage-Class-Memory-Solution/
https://www.businesswire.com/news/home/20220801005862/en/Kioxia-Launches-Second-Generation-of-High-Performance-Cost-Effective-XL-FLASH%E2%84%A2-Storage-Class-Memory-Solution/
https://www.businesswire.com/news/home/20220801005862/en/Kioxia-Launches-Second-Generation-of-High-Performance-Cost-Effective-XL-FLASH%E2%84%A2-Storage-Class-Memory-Solution/
https://www.businesswire.com/news/home/20220801005862/en/Kioxia-Launches-Second-Generation-of-High-Performance-Cost-Effective-XL-FLASH%E2%84%A2-Storage-Class-Memory-Solution/
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0B92B8B2602C011D1831C6C27EF74B76s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0B92B8B2602C011D1831C6C27EF74B76s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibAE80AE2C7480651E65F11EC1F29D6EDEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibAE80AE2C7480651E65F11EC1F29D6EDEs1

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
[11] P.S. Almeida, C. Baquero, R. Gonçalves, N. Preguiça, V. Fonte, Scalable and ac-
curate causality tracking for eventually consistent stores, in: Proc. of DAIS ‘14,
2014.

[12] B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distrib. Comput. 2 (3)
(1987) 117–126.

[13] A. Alquraan, H. Takruri, M. Alfatafta, S. Al-Kiswany, An analysis of network-
partitioning failures in cloud systems, in: Proc. of OSDI ‘18, 2018.

[14] H. Attiya, F. Ellen, A. Morrison, Limitations of highly-available eventually-
consistent data stores, in: Proc. of PODC ‘15, 2015.

[15] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, M. Zawirski, Specifi-
cation and complexity of collaborative text editing, in: Proc. of PODC ‘16, 2016,
pp. 259–268.

[16] H. Attiya, F. Ellen, A. Morrison, Limitations of highly-available eventually-
consistent data stores, IEEE Trans. Parallel Distrib. Syst. 28 (1) (2017) 141–155.

[17] P. Bailis, A. Ghodsi, Eventual consistency today: limitations, extensions, and be-
yond, Queue 11 (3) (2013) 20–32.

[18] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J.M. Hellerstein, I. Stoica, Highly
available transactions: virtues and limitations, Proc. VLDB Endow. 7 (3) (2013)
181–192.

[19] P.A. Bernstein, S. Das, Rethinking eventual consistency, in: Proc. of SIGMOD ‘13,
2013.

[20] J. Bonér, Scalability, availability & stability patterns, https://www.slideshare .net /
jboner /scalability-availability-stability-patterns/, 2010.

[21] A. Bouajjani, C. Enea, J. Hamza, Verifying eventual consistency of optimistic
replication systems, in: Proc. of POPL ‘14, 2014.

[22] E.A. Brewer, Towards robust distributed systems (abstract), in: Proc. of PODC
‘00, 2000.

[23] J. Brzezinski, C. Sobaniec, D. Wawrzyniak, From session causality to causal
consistency, in: Proc. of PDP ‘04: the 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, 2004, pp. 152–158.

[24] S. Burckhardt, Principles of eventual consistency, Found. Trends Program. Lang.
1 (1–2) (2014) 1–150.

[25] S. Burckhardt, A. Gotsman, H. Yang, M. Zawirski, Replicated data types: specifi-
cation, verification, optimality, in: Proc. of POPL ‘14, 2014.

[26] S. Burckhardt, A. Gotsman, H. Yang, Understanding eventual consistency, Tech.
Rep. MSR-TR-2013-39, Microsoft Research, Mar. 2013.

[27] C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to Reliable and Secure Dis-
tributed Programming, Springer, 2011.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon’s highly available
key-value store, Oper. Syst. Rev. 41 (6) (2007) 205–220.

[29] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services, SIGACT News 33 (2) (2002) 51–59.

[30] P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers:
measurement, analysis, and implications, in: Proc. of the SIGCOMM ‘11, 2011,
pp. 350–361.

[31] A. Girault, G. Gößler, R. Guerraoui, J. Hamza, D. Seredinschi, Monotonic prefix
consistency in distributed systems, in: Proc. of FORTE ‘18, 2018.

[32] V.B. Gomes, M. Kleppmann, D.P. Mulligan, A.R. Beresford, Verifying strong even-
tual consistency in distributed systems, in: Proc. of OOPSLA ‘17 1 (2017) 1–28.

[33] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, M. Shapiro, ‘Cause I’m strong
enough: reasoning about consistency choices in distributed systems, in: Proc.
of POPL ‘16, 2016.

[34] T.L. Greenough, Representation and enumeration of interval orders, Ph.D., Dart-
mouth College, 1976.

[35] R. Guerraoui, E. Ruppert, A paradox of eventual linearizability in shared mem-
ory, in: Proc. of PODC ‘14, 2014.

[36] M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst. 13 (1)
(1991) 124–149.

[37] M.P. Herlihy, J.M. Wing, Linearizability: a correctness condition for concurrent
objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[38] A. Imine, P. Molli, G. Oster, M. Rusinowitch, Proving correctness of transforma-
tion functions in real-time groupware, in: Proc. of ECSCW ‘03, Springer, 2003,
pp. 277–293.

[39] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, D. Lewin, Consistent
hashing and random trees: distributed caching protocols for relieving hot spots
on the world wide web, in: Proc. of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, 1997, pp. 654–663.

[40] M. Kokociński, T. Kobus, P.T. Wojciechowski, On mixing eventual and strong
consistency: acute cloud types, IEEE Trans. Parallel Distrib. Syst. 33 (6) (2022)
1338–1356.

[41] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system,
Oper. Syst. Rev. 44 (2) (2010) 35–40.

[42] L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans.
Softw. Eng. SE-3 (2) (1977) 125–143.

[43] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998).
[44] L. Lamport, Time, clocks, and the ordering of events in a distributed system,

Commun. ACM 21 (7) (Jul. 1978).
17
[45] L. Lamport, How to make a multiprocessor computer that correctly executes
multiprocess programs, IEEE Trans. Comput. C-28 (9) (Sep. 1979).

[46] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, R. Rodrigues, Making geo-
replicated systems fast as possible, consistent when necessary, in: Proc. of OSDI
‘12, 2012.

[47] C. Li, N. Preguiça, R. Rodrigues, Fine-Grained Consistency for Geo-Replicated
Systems, Proc. of USENIX ATC, vol. ‘18, 2018.

[48] S. Liu, M. Rahman, S. Skeirik, I. Gupta, J. Meseguer, Formal modeling and anal-
ysis of Cassandra in Maude, in: Formal Methods and Software Engineering, in:
LNCS, vol. 8829, 2014, pp. 332–347.

[49] Y. Liu, J. Parker, P. Redmond, L. Kuper, M. Hicks, N. Vazou, Verifying replicated
data types with typeclass refinements in liquid Haskell, in: Proc. of OOPSLA ‘20
4 (2020) 1–30.

[50] P. Mahajan, Highly available storage with minimal trust, Ph.D., University of
Texas at Austin, USA, May 2012.

[51] P. Mahajan, L. Alvisi, M. Dahlin, Consistency, availability, and convergence, Tech-
nical Report TR-11-22, University of Texas at Austin, USA, May 2011.

[52] J. Meza, T. Xu, K. Veeraraghavan, O. Mutlu, A large scale study of data center
network reliability, in: Proc. of IMC ‘18, 2018.

[53] Netflix, Netflix dynomite distributed dynamo layer, https://github .com /Netflix /
dynomite.

[54] G. Oster, P. Urso, P. Molli, A. Imine, Proving correctness of transformation func-
tions in collaborative editing systems, Tech. rep., INRIA, 2005.

[55] C.H. Papadimitriou, The serializability of concurrent database updates, J. ACM
26 (4) (1979).

[56] I.B. Peng, M.B. Gokhale, E.W. Green, System evaluation of the Intel Optane byte-
addressable NVM, in: Proc. of MEMSYS ‘19, 2019, pp. 304–315.

[57] N.M. Preguiça, C. Baquero, P.S. Almeida, V. Fonte, R. Gonçalves, Dotted version
vectors: logical clocks for optimistic replication, CoRR, arXiv:1011.5808, 2010.

[58] H.-G. Roh, M. Jeon, J.-S. Kim, J. Lee, Replicated abstract data types: building
blocks for collaborative applications, J. Parallel Distrib. Comput. 71 (3) (2011)
354–368.

[59] P.M. Rondon, M. Kawaguci, R. Jhala, Liquid types, in: Proc. of PLDI ‘08, 2008,
pp. 159–169.

[60] A. Rudoff, Persistent memory programming, Login 42 (2) (2017).
[61] M. Serafini, D. Dobre, M. Majuntke, P. Bokor, N. Suri, Eventually linearizable

shared objects, in: Proc. of PODC ‘10, 2010.
[62] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, Conflict-free replicated data

types, in: Proc. of SSS ‘11, 2011.
[63] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, A comprehensive study of

convergent and commutative replicated data types, Tech. Rep. 7506, Inria–
Centre Paris-Rocquencourt; INRIA, 2011.

[64] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, C. Hauser, Managing
update conflicts in Bayou, a weakly connected replicated storage system, in:
Proc. of SOSP ‘95, 1995.

[65] D.B. Terry, A.J. Demers, K. Petersen, M. Spreitzer, M. Theimer, B.W. Welch, Ses-
sion guarantees for weakly consistent replicated data, in: Proc. of PDIS ‘94,
1994.

[66] R.H. Thomas, A majority consensus approach to concurrency control for multi-
ple copy databases, ACM Trans. Database Syst. 4 (2) (1979) 180–209.

[67] D. Turner, K. Levchenko, J.C. Mogul, S. Savage, A.C. Snoeren, On failure in man-
aged enterprise networks, HP Labs HPL-2012-101, 2012.

[68] N. Vazou, E.L. Seidel, R. Jhala, D. Vytiniotis, S. Peyton-Jones, Refinement types
for Haskell, in: Proc. of ICFP ‘14, 2014, pp. 269–282.

[69] P. Viotti, M. Vukolić, Consistency in non-transactional distributed storage sys-
tems, ACM Comput. Surv. 49 (1) (2016) 19.

[70] W. Vogels, Eventually consistent, Commun. ACM 52 (1) (Jan. 2009).
[71] C. Wang, C. Enea, S.O. Mutluergil, G. Petri, Replication-aware linearizability, in:

Proc. of PLDI ‘19, 2019.
[72] M. Wenzel, L.C. Paulson, T. Nipkow, The Isabelle framework, in: Proc. of TPHOLs

‘08, Springer, 2008, pp. 33–38.
[73] P.T. Wojciechowski, T. Kobus, M. Kokociński, State-machine and deferred-

update replication: analysis and comparison, IEEE Trans. Parallel Distrib. Syst.
28 (3) (2017) 891–904.

Maciej Kokociński received a Ph.D. degree in
computer science from Poznan University of Tech-
nology, Poland. His research interests include fault-
tolerant distributed systems, concurrent data struc-
tures and persistent memory. Currently, he works as
a principal engineer with Huawei Warsaw Research
Center. He is also an assistant professor at the In-
stitute of Computing Science at Poznan University of
Technology.

http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1F71B1B21A488D823DBEBA948A10B462s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1F71B1B21A488D823DBEBA948A10B462s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1F71B1B21A488D823DBEBA948A10B462s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib58FCD8FC5FD92E63E0A2457846FDB039s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib58FCD8FC5FD92E63E0A2457846FDB039s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCAB72C67DA5729BE7F88ECC2B5FFCB6Bs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCAB72C67DA5729BE7F88ECC2B5FFCB6Bs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib62A1874FCE47A4B3E2BBC13F839C5651s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib62A1874FCE47A4B3E2BBC13F839C5651s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib9464883074DF620F4287460A24B3AB46s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib9464883074DF620F4287460A24B3AB46s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib9464883074DF620F4287460A24B3AB46s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib35CADE67C3EDE38C13F6555C92D4BDD9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib35CADE67C3EDE38C13F6555C92D4BDD9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib75B56DDEF7B6511B6B6D49A7FEB09BE2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib75B56DDEF7B6511B6B6D49A7FEB09BE2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib4BC7CD350F0DD6BF7EE740DC60FFC56Cs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib4BC7CD350F0DD6BF7EE740DC60FFC56Cs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib4BC7CD350F0DD6BF7EE740DC60FFC56Cs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF51B7D7D934B0317344CEA6EECDF25EAs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF51B7D7D934B0317344CEA6EECDF25EAs1
https://www.slideshare.net/jboner/scalability-availability-stability-patterns/
https://www.slideshare.net/jboner/scalability-availability-stability-patterns/
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib12A243B05133D71C758E3AB22C90E8A2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib12A243B05133D71C758E3AB22C90E8A2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib36511ED86711CE6CBFB807C681485A79s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib36511ED86711CE6CBFB807C681485A79s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib134FDF3D0F8B55E9FCCBEDC34C5D7AB2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib134FDF3D0F8B55E9FCCBEDC34C5D7AB2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib134FDF3D0F8B55E9FCCBEDC34C5D7AB2s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib530DFC676C50E010122F21449913816Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib530DFC676C50E010122F21449913816Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib69BC5C741064FD41A591E1EBB963D63Es1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib69BC5C741064FD41A591E1EBB963D63Es1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF0788D58341AD6505D91C358CD63C3FDs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF0788D58341AD6505D91C358CD63C3FDs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0DAC206D2B33B24DC1E83539FE01D5A4s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0DAC206D2B33B24DC1E83539FE01D5A4s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib20E250C8A4EE8CCC4F59703C77FE7684s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib20E250C8A4EE8CCC4F59703C77FE7684s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib20E250C8A4EE8CCC4F59703C77FE7684s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD68F7B53A7DBA06839F892E23ECD73FFs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD68F7B53A7DBA06839F892E23ECD73FFs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib817BF44C0D85184E07CEC9D4F5200B1As1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib817BF44C0D85184E07CEC9D4F5200B1As1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib817BF44C0D85184E07CEC9D4F5200B1As1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibFB413E038508B5356560ACB8731D7EF5s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibFB413E038508B5356560ACB8731D7EF5s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibFC845485BE501BBC3F6E2A1C6577E7ACs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibFC845485BE501BBC3F6E2A1C6577E7ACs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37717989CC720C5B39A612D193B91BD1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37717989CC720C5B39A612D193B91BD1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37717989CC720C5B39A612D193B91BD1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA46CE37DA51477A1AF33A8810E0ED04Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA46CE37DA51477A1AF33A8810E0ED04Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD70F698DF571B84F05E4386833A5B472s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD70F698DF571B84F05E4386833A5B472s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0ECBEDC31E3AC6A27A3517335BCEB997s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0ECBEDC31E3AC6A27A3517335BCEB997s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCB0D8B0309DF15C080D9FE978C0014B1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCB0D8B0309DF15C080D9FE978C0014B1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37CFA3745A45E86AAF1E4330E29337AEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37CFA3745A45E86AAF1E4330E29337AEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib37CFA3745A45E86AAF1E4330E29337AEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD4F17FF463CA9001A3DD59EFC8D08AB0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD4F17FF463CA9001A3DD59EFC8D08AB0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD4F17FF463CA9001A3DD59EFC8D08AB0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibD4F17FF463CA9001A3DD59EFC8D08AB0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibC594F32A8C243B09B79E7FCDF3D076D7s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibC594F32A8C243B09B79E7FCDF3D076D7s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibC594F32A8C243B09B79E7FCDF3D076D7s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibC351B0BD4045EB6567D35C0954BFEE0Es1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibC351B0BD4045EB6567D35C0954BFEE0Es1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF982DAC8045EB903F14842E1B38FB7D3s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF982DAC8045EB903F14842E1B38FB7D3s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8835B43FFF0ED0BB878CBAED797A7AC4s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib114602D531569FABC349E5242620B6BCs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib114602D531569FABC349E5242620B6BCs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8963A6178314866F22F870E84026D429s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8963A6178314866F22F870E84026D429s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF8CC3F56F63B32619BAB9794D198889Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF8CC3F56F63B32619BAB9794D198889Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibF8CC3F56F63B32619BAB9794D198889Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibDF19B9D7E36EBFBA60D620CC0DA040E5s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibDF19B9D7E36EBFBA60D620CC0DA040E5s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8A36CB9839ED6C8B9AADEA15257EFDB9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8A36CB9839ED6C8B9AADEA15257EFDB9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8A36CB9839ED6C8B9AADEA15257EFDB9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib7FE11FACCA089667F7169CF7F2C3D0C1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib7FE11FACCA089667F7169CF7F2C3D0C1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib7FE11FACCA089667F7169CF7F2C3D0C1s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibE9B2FF641DA23037ADEC56684FB7552Bs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibE9B2FF641DA23037ADEC56684FB7552Bs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib4B9258AEB54D67B153ADE49A1E57C2BBs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib4B9258AEB54D67B153ADE49A1E57C2BBs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCE3A9FC6F54A5130003B9718A8237A0Bs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCE3A9FC6F54A5130003B9718A8237A0Bs1
https://github.com/Netflix/dynomite
https://github.com/Netflix/dynomite
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib927CB8EEC03507DD30EA72E7704B7C94s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib927CB8EEC03507DD30EA72E7704B7C94s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib662F72FB5634A67B640463E9723F5A95s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib662F72FB5634A67B640463E9723F5A95s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1CF1DA34EB9581A497C47AC1CDC78C1Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1CF1DA34EB9581A497C47AC1CDC78C1Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib5DCAAF1595210A1E5A2FBC027E64D98Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib5DCAAF1595210A1E5A2FBC027E64D98Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib31E8B6BAC80B3B046CEDDF9E20C5B3D0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib31E8B6BAC80B3B046CEDDF9E20C5B3D0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib31E8B6BAC80B3B046CEDDF9E20C5B3D0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCF262C95B216CEB0E5BA834527838105s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibCF262C95B216CEB0E5BA834527838105s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib1F7B1B966346D187B4E0BC9CC5845FE7s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib6CD9F23855869783C5879070746CE834s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib6CD9F23855869783C5879070746CE834s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib778804728667120E85DE02F891CD526Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib778804728667120E85DE02F891CD526Ds1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib78DC393FA0B71DCB6341CCF284A8D4F0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib78DC393FA0B71DCB6341CCF284A8D4F0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib78DC393FA0B71DCB6341CCF284A8D4F0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibBCC5AD8B42D5C2562DDDD66E3580AEAEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibBCC5AD8B42D5C2562DDDD66E3580AEAEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibBCC5AD8B42D5C2562DDDD66E3580AEAEs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8D03470D699FE438403144F7792AC0EDs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8D03470D699FE438403144F7792AC0EDs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8D03470D699FE438403144F7792AC0EDs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibAE85AA877A1FCC9AFAF54CC1A321E4B0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibAE85AA877A1FCC9AFAF54CC1A321E4B0s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibB9C4329CCB4DE7ED7CDFC3EFBE78A070s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibB9C4329CCB4DE7ED7CDFC3EFBE78A070s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8DBA83B9DCB82FA14227305D6BFEC62Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib8DBA83B9DCB82FA14227305D6BFEC62Fs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA6F8DD92AEA2D94AA6756B1C18A92017s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA6F8DD92AEA2D94AA6756B1C18A92017s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib5AA4BD81163A75BBBDEADB5517E43D0As1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0C65CEC72F32C96C2C58B7233DF218D9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib0C65CEC72F32C96C2C58B7233DF218D9s1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib7C670308C7032FDC8D73F512B85935EFs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bib7C670308C7032FDC8D73F512B85935EFs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA3C97A7212A85F98D7B047C3A233355Cs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA3C97A7212A85F98D7B047C3A233355Cs1
http://refhub.elsevier.com/S0743-7315(23)00070-9/bibA3C97A7212A85F98D7B047C3A233355Cs1

M. Kokociński, T. Kobus and P.T. Wojciechowski Journal of Parallel and Distributed Computing 180 (2023) 104707
Tadeusz Kobus received a Ph.D. degree in com-
puter science from Poznan University of Technology.
He conducts research in the areas of fault-tolerant
distributed systems, heterogeneous memory systems,
and concurrent data structures. Currently, he works as
a principal engineer with Huawei Warsaw Research
Center. He is also an assistant professor at the In-
stitute of Computing Science at Poznan University of
Technology.

Paweł T. Wojciechowski received the Habilitation
degree from Poznan University of Technology, Poland,
in 2008, and the Ph.D. degree in computer science
from the University of Cambridge, in 2000. He was
a postdoctoral researcher with the School of Com-
puter and Communication Sciences, École Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland, from
2001 to 2005, and with the University of Cambridge,
in 2001. He is currently an Associate Professor with

the Institute of Computing Science, Poznan University of Technology. His
research interests span topics in concurrency, distributed computing, and
programming languages.
18

Appendix A. Extension to partial replication

Let us discuss a possible extension of the system model from Section 3 to

accommodate partial replication. If only certain replicas hold the necessary

data to serve a specific request, then load balancing needs to take this fact

into account. This can be achieved statelessly by utilizing consistent hashing

[73, 1]. However, care needs to be taken with partial replication, because in each

ensemble Gi at least a single replica must hold the relevant data for each request.

Moreover, since the single replica could crash, multiple replicas are required.

Even then, the system is less resilient than a fully replicated one (which can

tolerate up to n−1 faulty replicas and remain available) and requires additional

assumptions about failure patterns and the maximum number of faulty replicas

allowed.

Appendix B. Additional proofs

Theorem 2. For any non-trivial F , in the NC-PNP, CS-PNP and CR-PNP

models, it is impossible to implement a highly available system that ensures

PABEC(F) ∧ERYW or PABEC(F) ∧EMR for stateless mobile clients.

Proof. The proof is similar to the one for Theorem 1. Consider a history H

as outlined in the proof of Theorem 1, with the difference that all operations

are issued by the same client (c1 = c2). Note that, the client alternately issues

operations to R1 and R2, even though they are in two different network parti-

tions. This is naturally allowed, as we explicitly consider mobile clients. For all

ei, ej ∈ E, i < j ⇔ ei
so−→ ej . Note that so(e0) = E \{e0}. If the system satisfies

PABEC(F) with either of the two session guarantees, then there exists an ab-

stract execution A = (H, vis, ar), that satisfies PABEC(F) with the respective

session guarantee.

Because of PAEV, there exists some k′ ≥ 1, such that for each i′ ≥ k′ ∧ i′ ≡

0 (mod 2), e0
vis−→ ei′ (ei′ was executed on R1).

53

If A |= ERYW, then there exists some k ≥ 1, such that for each i ≥ k,

e0
vis−→ ei (e0 has to be eventually visible, as the set so(e0) ∩ vis

−1
(e0) has to be

finite, and all operations are issued within the same session).

If A |= EMR, then there exists some k ≥ k′, such that for each i ≥ k,

e0
vis−→ ei (since e0 is observed by some ei′ , where i′ ≥ k′ ∧ i′ ≡ 0 (mod 2), e0

can be not observed only by a finite number of events ei ∈ so(ei′)).

Now, we can conclude (similarly to the way we did in the proof of Theorem 1)

that there is infinitely many events ej , such that e0
vis−→ ej , and that their return

value v′ is different than v (the return value for ei such that e0 6
vis−→ ei).

When we consider an alternative historyH ′, where opu has not been invoked,

we can see it is indistinguishable from H for R2: the stateless client issues the

same operations, passing exactly the same information, and no messages from

other replica are delivered. Thus, the return values for operations executed on

R2 are the same in H and H ′, and infinitely many of them are v′. However,

according to PABEC(F), and more specifically RVal(F), the only allowed

response is v 6= v′. A contradiction.

Theorem 4. For any non-trivial F , in the CS-TNP and CS-PNP models, it is

impossible to implement a highly available system that ensures CABEC(F) ∧

ERYW or CABEC(F) ∧EMR for stateless clients.

Proof. The proof is based on the same principles as the proofs for Theorem 1,

Theorem 2 and Theorem 3, but is more complex. We consider a history H as

in the proof of Theorem 1, but with c1 = c2, and R1 crashing after serving the

response for opu. However, contrary to the proof of Theorem 3, we do not crash

R1 immediately after executing opu. Instead, we allow it to serve multiple

opr operations, all the time keeping R1 and R2 in two (temporary) network

partitions, dropping all messages exchanged between them. We proceed to show

that from some point on the opr operations executed on R1 start returning

v′ 6= v. To understand why this is the case we need to consider a couple

alternative histories.

First, let us consider a history H ′ = (E′, op′, rval′, rb′, so′, sp′, crash′), in

54

which R2 crashes immediately without executing any event, while R1 executes

e0 and infinitely many ei, for i ≡ 0 (mod 2) as in H from the proof of Theorem 1.

Note that R1 does not crash in H ′, so e0 cannot be a phantom operation. Since

crash(ei) = false for all ei ∈ E′ (there are no events executed on the crashed R2),

and because CABEC reduces to BEC in such cases, H ′ |= BEC(F). Then,

following the logic from the proof of Theorem 1, we can show that from some

point on all opr operations will return v′. Let us denote by ek the first such

event. Now, we create another alternative history H ′′ from H ′, by crashing

R1 immediately after ek. Both R1 and R2 crash in H ′′, and thus it is a finite

history.

Now we construct our target history H from H ′′ (which includes only events

executed on R1), by revoking the crash of R2 and adding infinitely many exe-

cutions of opr on R2 in the events ei, for i ≡ 1 (mod 2). H is indistinguishable

from H ′′ for R1, because in both histories the stateless client issues the same

operations to R1, and no messages are exchanged between replicas. Thus in H,

(1) R1 executes a finite number of events with the last ek being an opr returning

v′, and then crashes; (2) for the entire duration R1 and R2 are separated by

(temporary) network split, and all messages between them are dropped; and (3)

R2 executes infinitely many events.

By the same logic as in the proof of Theorem 2, we can show that the ERYW

and EMR session guarantees require e0 to be eventually visible (through the

event ek in case of EMR), forcing all ei from some point on to return v′. Then,

we can show as in the proof of Theorem 1, that the only possible response

for each ei, for i ≡ 1 (mod 2) is v 6= v′. Which concludes the proof with a

contradiction.

Theorem 6. For any non-trivial F , in the CR-TNP and CR-PNP models, it

is impossible to implement a highly available system that ensures CABEC(F)∧

ERYW or CABEC(F) ∧EMR for stateless clients.

Proof. Just as in Theorem 5 the impossibility is due to fatal crashes, and we

can apply the same reasoning as before. For a fatal crash where the replica does

55

not recover, we follow the proof of Theorem 4 for the CS model.

Theorem 8. For any F , it is possible to implement a highly available sys-

tem that, if no fatal failures occur, satisfies BEC(F) in the CR-TNP, and

PABEC(F) in the CR-PNP model, and if fatal failures occur, satisfies CABEC(F)

in the CR-TNP, and FABEC(F) in the CR-PNP model.

Proof. In order to prove the above, we need to show that we can propose an

implementation that satisfies FABEC for a generic type F . As an illustration,

consider Algorithm 2, which shows a pseudocode of a generic protocol for an

arbitrary F . Note that, Algorithm 2 is overly simplistic and not optimized

for performance (e.g., it does not distinguish between read-only and updating

operations, and does not minimize the size of exchanged messages, nor the

amount of data kept in stable storage).

An OpRec represents the quanta of information about invocation of a single

operation (line 1). An OpRec is a tuple which consists of the operation op

invoked, the identifier rid of the replica that executes op, and clk (the value of

the a logical clock maintained by the replica at the time of the invocation of

op). OpRec structures can be totally ordered using the clk values and replica

rids (line 2).

Each replica maintains two data structures: operations and visible (lines 9-

10). They are used upon operation invocation to create the operation context,

as required by the function F (line 6). The operations set stores information

about the operation invocations the replica is aware of. On the other hand,

the visible set is used by the replica to maintain information about the relative

visibility of such events. A pair (o, o′) belongs to visible, iff o′ observes o.

Upon invocation of operation op, we calculate the return value rval using

F and the appropriately created operation context (line 12). Then the replica

needs to update its state and notify other replicas about the execution of op.

To this end, a new OpRec o is created (line 13). The value of o.clk is chosen

so that it is larger than the clk field of any other OpRec in the operations set.

56

Next, we extend the visible set so that o observes all the o′ in the operations set

(line 14). Then we add o to the operations set (line 15). Next we write both

operations and visible to stable storage (line 16). Finally, both the operations

and visible sets are broadcast to all replicas using best-effort broadcast in an

UPDATE message (line 17).

Upon receipt of an UPDATE message (line 19), when necessary, the replica

updates its operations and visible sets by merging them with the incoming ones,

writes both operations and visible to stable storage and finally broadcasts a

message with the new state. The last two steps are necessary to ensure FAEV.

Upon recovery (line 25) the replica initializes its operations and visible sets

from the stable storage and broadcasts a RECOVERY message. A RECOVERY

message from a replica Ri has a double purpose:

• Ri ensures that other replicas will also receive the operations Ri performed

and saved to its stable storage (but perhaps failed to disseminate), and

• upon receipt of a RECOVERY message (line 28), other replicas Rj will

resend to Ri all operations that Ri might be missing.

For each fair execution (corresponding to some historyH = (E, op, rval, rb, so,

sp, crash)) of a system that implements Algorithm 2, we need to show that there

exists an abstract execution A = (H, vis, ar), such that A |= FABEC(F). It is

because if there are no fatal failures, FABEC reduces to BEC in the TNP model

and PABEC in the PNP model. If there are fatal failures, FABEC reduces to

CABEC. Instead of considering all isomorphic histories, we consider only his-

tories for which E contains elements of OpRec type, which were constructed

according to the pseudocode of Algorithm 2 in the actual execution.

For simplicity we assume, that whenever a message is BE-cast in the pseu-

docode, it is scheduled for sending, but it is actually sent only after the entire

code block in which BE-cast occurs finishes execution.

First, let us introduce some auxiliary definitions. For an event e ∈ E, we

denote by pre(e) and post(e) the volatile state of the replica, respectively, just

before the execution of e, and just after the execution of e. Similarly, by sspre(e)

57

and sspost(e) we denote the contents of stable storage of the replica executing

e, before and after the execution of e. Note that pre(e) = sspre(e), but not

always post(e) = sspost(e) (e.g., when the replica executing e crashes before

completing the execution). Moreover, sspre(e).operations ⊆ sspost(e).operations

and sspre(e).visible ⊆ sspost(e).visible. Similarly, for any two events e, e′ ∈ E exe-

cuted on the same replica in that order, sspre(e′).operations ⊆ sspost(e).operations

and sspre(e′).visible ⊆ sspost(e).visible.

To construct A, for any a, b ∈ E, we let a
ar−→ b ⇔ a < b and a

vis−→ b ⇔

a ∈ pre(b).operations. Now we need to show that A satisfies FAEV, NCC and

RVal(F).

Let us make an observation. For an event e executed on some replica Ri, if

rval(e) 6= ∇ it means that e ∈ sspost(e).operations. Similarly, if vis(e) 6= ∅, and

thus there exists e′ ∈ E, such that e
vis−→ e′, it means that e must have been

broadcast and delivered by some other replica Rj , or e′ is some subsequent event

executed on Ri. In either case e ∈ sspost(e).operations.

When e is recorded in stable storage of some correct replica, eventually it

will be recorded in stable storage of each correct replica in the same partition. A

replica Ri saves e to stable storage in two cases: either it executed op(e) locally

or received e in some UPDATE or RECOVERY message. In either case, Ri will

broadcast e as part of its operations set. Since Ri is correct and it uses best-

effort broadcast, every correct replica Rj , which belongs to the same network

partition as Ri, will eventually deliver the message, and if Rj does not already

have e in its operations set (which is persisted on stable storage), Rj will add e

to its operations set and write it to stable storage.

For any partition p ∈ E/ ≈sp, any e, e′ ∈ E, such that e′ ∈ p ∧ e ∈

pre(e′).operations ∧ ¬crash(e′), it holds that, there is only a finite number of

events e′′ ∈ p, such that e /∈ pre(e′′).operations. Therefore, |p ∩ vis(e)| < ∞.

On the other hand, for an event e ∈ E, for which there does not exist such

an event e′ ∈ p, naturally
(
p ∩ crash−1(false) ∩ (vis(e) ∪ {e}) = ∅

)
, since(

p ∩ crash−1(false) = ∅
)
. Thus, A |= FAEV.

Now let us focus on no-circular-causality (NCC). Observe that, for any two

58

events a, b ∈ E executed on the same replica in that order, a
rb−→ b. Moreover,

the same holds also for any two events a, b ∈ E, such that a was executed on

Ri, b was executed on Rj , Ri 6= Rj , and a ∈ pre(b).operations. This is so,

because for a to be included in the state of Rj , a must have been BE-cast

by Ri in an appropriate message already after the execution of a has finished.

Thus, vis ⊆ rb. Additionally, so ⊆ rb, by well-formedness of a history. Therefore,

hb = (so∪vis)+ ⊆ rb, and since rb is a partial order, hb is acyclic, and A |= NCC.

Finally, we turn our attention to RVal(F). The return value for each not

pending event e ∈ E is computed using the function F itself. We need to show

that the output C ′ = (E′, op′, vis′, ar′) of the function makeContext is isomorphic

with C ′′ = context(A, e) = (E′′, op, vis, ar). Firstly, by definition vis−1(e) =

pre(e).operations, thus E′ = E′′. Secondly, for each e′ ∈ E′, opFun(e′) = e′.op,

and e′.op = op(e′). Thus, for each e′ ∈ E′, op′(e) = op(e). Thirdly, for any

three events a, b, c ∈ E, if a ∈ pre(b).operations ∧ a, b ∈ pre(c).operations, then

(a, b) ∈ pre(c).visible, because the sets operations and visible are always modified,

persisted and disseminated together atomically. Thus, for any two a, b ∈ E′,

such that a
vis−→ b, (a, b) ∈ pre(e).visible, which means that vis′ = vis|E′ . Fourthly,

(a, b) ∈ ar′ ⇔ a, b ∈ E′ ∧ a < b, and (a, b) ∈ ar ⇔ a, b ∈ E ∧ a < b. Thus,

ar′ = ar|E′ . Finally, since E′ = E′′, while op′, vis′ and ar′ are restrictions of op,

vis and ar to E′, C ′ and C ′′ are isomorphic, and A |= RVal(F).

To conclude, since A |= FAEV, A |= NCC and A |= RVal(F), A |=

FABEC(F).

59

Algorithm 2 Protocol implementing replicated data type F , for replica Ri

identified by rid
1: struct OpRec(clk : integer, rid : integer, op : ops(F))

2: operator <(o : OpRec, o′ : OpRec)

3: return (o.clk < o′.clk) ∨ (o.clk = o′.clk ∧ o.rid < o′.rid)

4: function opFun(o : OpRec)

5: return o.op

6: function makeContext(operations : set〈OpRec〉, vis : set〈OpRec× OpRec〉)

7: var ar = {(o, o′)|o, o′ ∈ operations ∧ o < o′}

8: return (operations, opFun, vis, ar)

9: var operations : set〈OpRec〉

10: var visible : set〈OpRec× OpRec〉

11: operation Perform(op : ops(F))

12: var rval = F(op,makeContext(operations, visible))

13: var o = OpRec(max(operations).clk + 1, rid, op)

14: visible = visible ∪ (operations× {o})

15: operations = operations ∪ {o}

16: write operations and visible synchronously to stable storage

17: BE-cast(UPDATE, operations, visible)

18: return rval

19: upon BE-deliver(UPDATE, recOperations : set〈OpRec〉, recVisible : set〈OpRec× OpRec〉)

20: if recOperations \ operations 6= ∅ then

21: operations = operations ∪ recOperations

22: visible = visible ∪ recVisible

23: write operations and visible synchronously to stable storage

24: BE-cast (UPDATE, recOperations, recVisible)

25: upon recovery

26: initialize operations and visible from stable storage

27: BE-cast (RECOVERY, operations, visible)

28: upon BE-deliver(RECOVERY, recOperations : set〈OpRec〉, recVisible : set〈OpRec× OpRec〉)

29: if operations \ recOperations 6= ∅ then

30: BE-cast (UPDATE, operations, visible)

31: if recOperations \ operations 6= ∅ then

32: operations = operations ∪ recOperations

33: visible = visible ∪ recVisible

34: write operations and visible synchronously to stable storage

60

	On the correctness of highly available systems in the presence of failures
	1 Introduction
	1.1 Contributions
	1.2 Article structure

	2 Motivation
	3 System model and failure models
	3.1 Replicas
	3.2 Clients
	3.3 Interactions between clients and replicas
	3.4 Network properties
	3.5 Summary

	4 Formal framework
	4.1 Preliminaries
	4.2 Histories
	4.3 Abstract executions
	4.4 Correctness predicates
	4.5 Replicated data type
	4.6 Basic eventual consistency

	5 Client-side guarantees
	5.1 Context preservation

	6 Correctness in the face of failures
	6.1 Network splits and state convergence
	6.2 Replica crashes and phantom operations
	6.3 Replica recovery and stable storage
	6.4 Summary

	7 Related work
	7.1 Formalization of high availability and eventual consistency
	7.2 Mechanized proof techniques
	7.3 Highly available system implementations

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Extension to partial replication
	Appendix B Additional proofs
	References

