Application Security #2-3
Norbert Langner

The Open Web Application Security Project
(OWASP) is an open community dedicated to

enabling organizations to develop, purchase,

and maintain applications and APIs that can be
trusted.

https://owasp.org/Top10/A00-about-owasp/

The OWASP Top 10 is a standard awareness
document for developers and web application

security. It represents a broad consensus
about the most critical security risks to web
applications.

https://owasp.org/www-project-top-ten/

OWASP Top 10 in a nutshell

* Latest release: 2021-09-24, The 7t edition
* Next release is going to be publish in the 15t half of 2025
* First Top 10 published in 2003

* Risk awareness document not an oracle nor easily testable
issues

* High level description

* Top 1 = most serious security risk

—

Methodology

* Data and survey driven research

- Grouped all CVEs with CVSS scored by CWE (exploitability
and technical impact)

* Provided data covers over 500,000 applications

* 8 categories derived from data, 2 from a survey

* Focus on a root cause

—

* Almost 400 CWEs considered Q\

CWEs
Mapped

Max
Incidence
Rate

Avg
Incidence
Rate

Avg
Weighted
Exploit

Avg
Weighted
Impact

Max
Coverage

Avg
Coverage

Total
Occurren-
ces

Total
CVEs

Common Vulnerabilities and Exposures

* The mission of the CVE® Program is to identify, define, and
catalog publicly disclosed cybersecurity vulnerabilities.
There is one CVE Record for each vulnerability in the
catalog. [3]

* Operated by The Mitre Corporation

* More info + podcasts: https://www.cve.org/About/Overview

* Example CVE:
https://cve.mitre.org/cgi-bin/cvename.cgizname=CVE-2022-

...

https://www.cve.org/About/Overview
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454

CVE-ID

CVE-2022-48454 Leam more al Mational Vulnerabilily Database (NVD)
= CASS Soverity Fating + Fix Infcrmalion « Vidnarable Soltsmne Versions « SCAP Mappings = CPE Infcemation

Dascriplion
Referencos
Hote: Fsfarances am provided o the corvanienco ol the readar io holp disiinguish beiwesn vairembities. The s is not inlended o be comploin

o RS IDEc W, URSOG COMYaN U secy anncauneeman Dol sl Mipe 1w Lanisod. comian_ uesecyiannauneamaniDetail’ 718615082467 Ffany

= LIFAL hiips s uiisoc. cormden us'secy/announcemanDetailhilps Asnwnvcimnisoc. comienus/secy'announcementDetnil 1 7186157562467 TIRST

Assigning CNA
Unssoc {Shanghai) Technologies Co,, Lid
Date Record l:_.'ﬂntm':l

Disclaimes: The recoed creation date may neflect when the CVE ID was allocabed of reserved, and does nof necessarnly indicate when this vulnerability was discovered, shared with
the affected vender, publicly disclosod, or updated in CVE,

Phase (Legacy) |
Assigned (20230413
Vates (Legocy)

Comments (Legacy)

Proposed {Legacy)
M

This s an record on the CVE List, which peovides commeon identfiors for publicly known cyberseourity vainerabilitios

SEARCH CVE USING KEYWORDS: Subsmit
Wizt Chn aled saarch By ridpiancd using the CVE Felsmnss Maps, .

For More Informallon; CVE Roguesd Web Foirm (select "Other® from dropdown)

Common Vulnerability Scoring System

* Open framework for communicating the characteristics and
severity of software vulnerabilities

* CVSSis owned and managed by FIRST.Org, Inc.
* Score range from 0 to 10

* See: https://www.first.org/cvss/calculator/4.0

—

https://www.first.org/cvss/calculator/4.0

CVSS Metrics

' i ra
Base Threat Environmental
Metric Group Metric Group Metric Group
Exploitability Metrics Iimpact Metrics Modified Base Metrics
ra 7 Y = T
Vulnerable System (. : = Attack Vector Confidentiality
L Alfpek Meclon J [Confidentiality N Exploit Maturity J = Attack Complexity [Requirement j

Integrity

(ﬂttatfl-: Complasity J [vulnerable S?aimnj

Artack Vulnerable System
Requirements Avrailability

Privileges Subsequent Systemn

Required Confidentiality
[User Interaction J hhsequent_ Systemj
Integrity

Subseguent System

Avrailability

Supplemental
Metric Group

Automatable

* Privileges Required

= Attack Requirements
= ser Interaction [

Integrity
Requirement

)

Recowvery

* Vulnerable System Confidentiality
= Yulnerable System Integrity

Availability

Requiremient

!

* Yulnerable System Availability
= Subsequent System Confidentiality
* Subsequent System Integrity

L Subsequent System Availability 3

Safety

Value Density

Vulnerability
Response Effort

Y €

¥ WS Rl W e e

Provider Urgency

|

M Common Weaknesses Enumeration

* Community-developed list of common software and
hardware weakness types

* The CWE List includes both software and hardware
weakness types

* Every CWE has its id in CWE-[1-9][0-9]* form

* Example entry: https://cwe.mitre.org/data/definitions/787.h
tml

~

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html

Example - CWE-787: Out-of-bounds Write

CWE-787: Out-of-bounds Write

Weakness 1D: 787
Absfraciion; [Lise
SHIFUCTUR sl

ey cushovmized informmia. Concapiis

* Description

The product writes data past the end, or before the beginning, of the intended buffer,

* Extended Description

Typically, this can result in corruption of data, a crash, or code execution. The product may modify an index or perform pointer arithmetic that references a memary location that is
outside of the boundares of the bufter, A subsequent write operation then produces undefined or unexpected results,

* Alternate Terms

Memaory Corruption:

Often used to describe the consequences of writing to memory oulside the bounds of a buffer, or to memory that is invalid, when the roo cause is

something other than a sequential copy of excessive data from a fixed starting location, This may include issues such as incomect pointer arthmetic,
accessing invalid pointers due to incomplete initialization or memory release, etc.

¥ Relationships
¥ Modes Of Introduction
il Phase Mote
Imiplermentatson

* Applicable Platforms
i) Languages

C ofen Pravatan)

C++ {Oftan Pravadenr)

Class; Assembly [Undetermined Prevalence)
Technologies

Class: ICSOT fOffen Prevakend)

Example - CWE-787: Out-of-bounds Write

int id_sequence[3];

/* Populate the id array. */

id sequence[0] = 123;
id sequence[l] = 234;
id sequence[2] = 345;
id sequence[3] = 456;

ﬂ

Countdown

Security Logging
and
Monitoring Failures

Server-Side

Request Forgery

Countdown

Identification
Software and Data and

Integrity Failures Authentication
Failures

Countdown

Vulnerable

and Security

Misconfiguration

Outdated Components

Countdown

Insecure Design Injection

Countdown

Cryptographic Broken

Failures Access Control

(2 ©

#10 Server-Side Request Forgery (SSRF)

* Occurs whenever a web application is fetching a remote
resource without validating the user-supplied URL

* Application can send a crafted request to an unexpected
target, bypassing firewall, VPN or other ACLs

e CWE-918

ﬂ

https://cwe.mitre.org/data/definitions/918.html

Attacker VulnerableApplication Targeted Application e
—

-
o S
Crafted HTTP request n

Request (HTTP, FTP...)

Y

Y

Use payload induded
into the request to

VulnerableApplication
Il Response
| Response
Incdlude response
from the
TargetedApplication
Attacker VulnerableApplication TargetedApplication

[5] .

SSRF prevention

Network Layer:

* Segment components in separate networks
* Enforce “deny by default” rule

Application Layer:

* Sanitize and validate user input

ﬁ

* Auditable events not logged...

* ...or logged not meaningful events

* Inadequate severities (e.g. errors being warnings)
* Unclear messages

* Logs stored only locally

* Lack of log analysis mechanisms

* CWE-778, CWE-223

ﬁ

https://cwe.mitre.org/data/definitions/778.html
https://cwe.mitre.org/data/definitions/223.html

Road to better logging...

* Ensure all security events are logged

* Ensure all high-value transactions are logged
* Use consistent log format across application
* Store logs in a separate system

* Consider using log analytics tools (e.g. ELK Stack)

ﬂ

—B —

Kibana

Log and System Metrics Management with Elastic Stack

—

#8 Software and Data Integrity Failures

Relying on data or components we cannot prove integrity
- e.qg. using front-end library by including it with an external link

* When implementing an auto-update feature,
not using digital signatures and/or SHA sum for verification

* Supply-chain attack

* Example: SolarWinds

ﬁ

Prevention

* Use valid digital signatures

* Ensure libraries and dependencies are downloaded from a
trusted source

* Use least possible privilege approach

ﬂ

#7 Identification and Authentication Failures

* Permits automated attacks for login actions

~ Using list of valid credentials to check permissions
~ Brute-force passwords
~ Allow to use weak phrases like “Admin1”

Stores passwords in a plain text

Exposes session identification in URLs

Improper invalidation of expired sessions

Example: https://portswigger.net/web-security/jwt

d

https://portswigger.net/web-security/jwt

eyIJhbGociOiJIUzIINIIsTnRcCI6TkpXEVCIY. eyJlec2VyIljoid2]l 1bmVyIliwiaXNBEZGlpbiI6InRydW Ui Q.

{ vulnerable-website.com/admin
"alg™: slelabE",
"typ": "JWT"
' User management
{
"user": "wiener",
"isAdmin": “M"
'

Avoiding identification and auth failures

* Implement MFA where possible

* Do not ship default credentials

* Enforce using good passwords

* Limit/throttle failed login attempts

 Store session IDs on a server side

ﬂ

#6 Vulnerable and Outdated Components

No track of used dependencies versions

Lack of scan of used dependencies

* Using unpatched version of an OS

Lack of maintenance (especially IoT devices)

ﬂ

Prevention

* Remove unused components, keep other up to date

* Continuously scan your dependencies (e.g. GitHub does this
automatically now)

* Obtain components from official sources (mostly)

* If a component is not maintained by its original author,
consider creating a custom patch or reimplement feature

without it

ﬂ

#5 Security Misconfiguration

* Improperly configured permissions

* Unnecessary features enabled

* Using default credentials

* Disabled security updates

* Server not sends security headers when possible

* Examples: https://brightsec.com/blog/misconfiguration-att
acks/

ﬂ

https://brightsec.com/blog/misconfiguration-attacks/
https://brightsec.com/blog/misconfiguration-attacks/

Security Misconfiguration

* Audit used and configured permissions

* Disable/remove unused features

* Always change default credentials

* Keep OS software up to date

* Configure HTTP Security Header for your application

ﬂ

#4 Insecure Design

* Most fuzzy category describing all architectural weaknesses
possible to introduce

* General output: think about application security eagerly
and through all the development, and maintenance process

ﬂ

#3 Injection

* Probably we all know this
* This was on the list back in 2003, 2023 still valid :(
All kind of introducing data other than expected

Lack of sanitizing, filtering user inputs

ﬂ

Fixing injection is easy?

* General idea: validate user input
* Use well-tested libraries for checking user inputs

* Minimize opportunities to introduce a raw parameter from
a user into a query

ﬂ

#2 Cryptographic Failures

* Is data really encrypted during transfer?
* Use of weak, compromised algorithms

* Lack of certificate validation

* Insecure modes (e.g ECB in AES)

* Use of old hash functions

* Too eager decryption

ﬂ

Scenario #1

An application encrypts credit card numbers in a database
using automatic database encryption. However, this data is

automatically decrypted when retrieved, allowing a SQL
injection flaw to retrieve credit card numbers in clear text.

Scenario #2

A site doesn't use or enforce TLS for all pages or supports
weak encryption. An attacker monitors network traffic (e.g., at
an insecure wireless network), downgrades connections from
HTTPS to HTTP, intercepts requests, and steals the user's
session cookie. The attacker then replays this cookie and
hijacks the user's (authenticated) session, accessing or
modifying the user's private data. Instead of the above they
could alter all transported data, e.g., the recipient of a money
transfer.

ﬁ

Scenario #3

* https://github.com/wybory2014/Kalkulator1

* PL ONLY: https://niebezpiecznik.pl/post/caly-swiat-oglada-i-
komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/

https://github.com/wybory2014/Kalkulator1
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/

Prevention

* Encrypt all sensitive data at rest

* Enforce TLS and use features making harder to downgrade
secure session e.g HSTS in HTTPS

* Don’t use insecure protocols like FTP to transfer data

* Always validate certificates validity (validity date, issuer,
CRLs, etc.)

* Classify data transferred by application

ﬂ

#1 Broken Access Control

* Violation of least possible privilege principle / deny by
default for resources which should be protected

* Bypassing access control check

* Insecure direct object references
* Privilege escalation

* CORS

* Hidden but publicly accessible resources

ﬂ

How to prevent BAC?

* Deny by default for non-public resources
* Avoid exposition of specific resources (like .git directory)

 Implement resource ownership for data to avoid editing
data owned by an other user

* Disable web directory listing
* Log all authentication events, alert admins when needed

* Use tokens (e.g. JWT) properly (short lived / revocation)

ﬂ

Summary

[1] OWASP Top 10, https://owasp.org/www-project-top-ten/ (accessed 2023-
10-26)

[2] OWASP Top 10 - 2021, https://owasp.org/Top10/ (accessed 2023-10-26)
[3] CVE, https://www.cve.org/ (accessed 2023-10-27)

[4] CVSS Specification Document, https://www.first.org/cvss/v4.0/specificati
on-document(accessed 2023-10-27)

[5] OWASP Cheat Sheet Series, https://cheatsheetseries.owasp.org/index.ht
ml (accessed 2023-10-28)

[6] PortSwigger - Server-side request forgery (SSRF), https://portswigger.net
/web-security/ssrf (accessed 2023-10-28)

ﬂ

https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/
https://www.cve.org/
https://www.first.org/cvss/v4.0/specification-document
https://www.first.org/cvss/v4.0/specification-document
https://cheatsheetseries.owasp.org/index.html
https://cheatsheetseries.owasp.org/index.html
https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47

