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The Open Web Application Security Project
(OWASP) is an open community dedicated to

enabling organizations to develop, purchase,

and maintain applications and APIs that can be
trusted.



https://owasp.org/Top10/A00-about-owasp/

The OWASP Top 10 is a standard awareness
document for developers and web application

security. It represents a broad consensus
about the most critical security risks to web
applications.



https://owasp.org/www-project-top-ten/

OWASP Top 10 in a nutshell

* Latest release: 2021-09-24, The 7t edition
* Next release is going to be publish in the 15t half of 2025
* First Top 10 published in 2003

* Risk awareness document not an oracle nor easily testable
issues

* High level description

* Top 1 = most serious security risk
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Methodology

* Data and survey driven research

- Grouped all CVEs with CVSS scored by CWE (exploitability
and technical impact)

* Provided data covers over 500,000 applications

* 8 categories derived from data, 2 from a survey

* Focus on a root cause

—

* Almost 400 CWEs considered Q\
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Common Vulnerabilities and Exposures

* The mission of the CVE® Program is to identify, define, and
catalog publicly disclosed cybersecurity vulnerabilities.
There is one CVE Record for each vulnerability in the
catalog. [3]

* Operated by The Mitre Corporation

* More info + podcasts: https://www.cve.org/About/Overview

* Example CVE:
https://cve.mitre.org/cgi-bin/cvename.cgizname=CVE-2022-

...


https://www.cve.org/About/Overview
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454

CVE-ID

CVE-2022-48454 Leam more al Mational Vulnerabilily Database (NVD)
= CASS Soverity Fating + Fix Infcrmalion « Vidnarable Soltsmne Versions « SCAP Mappings = CPE Infcemation

Dascriplion
Referencos
Hote: Fsfarances am provided o the corvanienco ol the readar io holp disiinguish beiwesn vairembities. The s is not inlended o be comploin

o RS IDEc W, URSOG COMYaN U secy anncauneeman Dol sl Mipe 1w Lanisod. comian_ uesecyiannauneamaniDetail’ 718615082467 Ffany

= LIFAL hiips s uiisoc. cormden  us'secy/announcemanDetailhilps Asnwnvcimnisoc. comienus/secy'announcementDetnil 1 7186157562467 TIRST

Assigning CNA
Unssoc {Shanghai) Technologies Co,, Lid
Date Record l:_.'ﬂntm':l

Disclaimes: The recoed creation date may neflect when the CVE ID was allocabed of reserved, and does nof necessarnly indicate when this vulnerability was discovered, shared with
the affected vender, publicly disclosod, or updated in CVE,

Phase (Legacy) |
Assigned (20230413
Vates (Legocy)

Comments (Legacy)

Proposed {Legacy)
M

This s an record on the CVE List, which peovides commeon identfiors for publicly known cyberseourity vainerabilitios

SEARCH CVE USING KEYWORDS: Subsmit
Wizt Chn aled saarch By ridpiancd using the CVE Felsmnss Maps, .

For More Informallon; CVE Roguesd Web Foirm (select "Other® from dropdown)




Common Vulnerability Scoring System

* Open framework for communicating the characteristics and
severity of software vulnerabilities

* CVSSis owned and managed by FIRST.Org, Inc.
* Score range from 0 to 10

* See: https://www.first.org/cvss/calculator/4.0
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https://www.first.org/cvss/calculator/4.0
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M Common Weaknesses Enumeration

* Community-developed list of common software and
hardware weakness types

* The CWE List includes both software and hardware
weakness types

* Every CWE has its id in CWE-[1-9][0-9]* form

* Example entry: https://cwe.mitre.org/data/definitions/787.h
tml

~


https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html

Example - CWE-787: Out-of-bounds Write

CWE-787: Out-of-bounds Write

Weakness 1D: 787
Absfraciion; [Lise
SHIFUCTUR sl

ey cushovmized informmia. Concapiis

* Description

The product writes data past the end, or before the beginning, of the intended buffer,

* Extended Description

Typically, this can result in corruption of data, a crash, or code execution. The product may modify an index or perform pointer arithmetic that references a memary location that is
outside of the boundares of the bufter, A subsequent write operation then produces undefined or unexpected results,

* Alternate Terms

Memaory Corruption:

Often used to describe the consequences of writing to memory oulside the bounds of a buffer, or to memory that is invalid, when the roo cause is

something other than a sequential copy of excessive data from a fixed starting location, This may include issues such as incomect pointer arthmetic,
accessing invalid pointers due to incomplete initialization or memory release, etc.
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Example - CWE-787: Out-of-bounds Write

int id_sequence[3];

/* Populate the id array. */

id sequence[0] = 123;
id sequence[l] = 234;
id sequence[2] = 345;
id sequence[3] = 456;
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#10 Server-Side Request Forgery (SSRF)

* Occurs whenever a web application is fetching a remote
resource without validating the user-supplied URL

* Application can send a crafted request to an unexpected
target, bypassing firewall, VPN or other ACLs

e CWE-918

ﬂ


https://cwe.mitre.org/data/definitions/918.html
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SSRF prevention

Network Layer:

* Segment components in separate networks
* Enforce “deny by default” rule

Application Layer:

* Sanitize and validate user input

ﬁ



* Auditable events not logged...

* ...or logged not meaningful events

* Inadequate severities (e.g. errors being warnings)
* Unclear messages

* Logs stored only locally

* Lack of log analysis mechanisms

* CWE-778, CWE-223

ﬁ


https://cwe.mitre.org/data/definitions/778.html
https://cwe.mitre.org/data/definitions/223.html

Road to better logging...

* Ensure all security events are logged

* Ensure all high-value transactions are logged
* Use consistent log format across application
* Store logs in a separate system

* Consider using log analytics tools (e.g. ELK Stack)

ﬂ
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Kibana

Log and System Metrics Management with Elastic Stack

—



#8 Software and Data Integrity Failures

Relying on data or components we cannot prove integrity
- e.qg. using front-end library by including it with an external link

* When implementing an auto-update feature,
not using digital signatures and/or SHA sum for verification

* Supply-chain attack

* Example: SolarWinds

ﬁ



Prevention

* Use valid digital signatures

* Ensure libraries and dependencies are downloaded from a
trusted source

* Use least possible privilege approach

ﬂ



#7 Identification and Authentication Failures

* Permits automated attacks for login actions

~ Using list of valid credentials to check permissions
~ Brute-force passwords
~ Allow to use weak phrases like “Admin1”

Stores passwords in a plain text

Exposes session identification in URLs

Improper invalidation of expired sessions

Example: https://portswigger.net/web-security/jwt

d


https://portswigger.net/web-security/jwt

eyIJhbGociOiJIUzIINIIsTnRcCI6TkpXEVCIY. eyJlec2VyIljoid2]l 1bmVyIliwiaXNBEZGlpbiI6InRydW Ui Q.

{ vulnerable-website.com/admin
"alg™: slelabE",
"typ": "JWT"
' User management
{
"user": "wiener",
"isAdmin": “M"
'




Avoiding identification and auth failures

* Implement MFA where possible

* Do not ship default credentials

* Enforce using good passwords

* Limit/throttle failed login attempts

 Store session IDs on a server side

ﬂ



#6 Vulnerable and Outdated Components

No track of used dependencies versions

Lack of scan of used dependencies

* Using unpatched version of an OS

Lack of maintenance (especially IoT devices)

ﬂ






Prevention

* Remove unused components, keep other up to date

* Continuously scan your dependencies (e.g. GitHub does this
automatically now)

* Obtain components from official sources (mostly)

* If a component is not maintained by its original author,
consider creating a custom patch or reimplement feature

without it

ﬂ



#5 Security Misconfiguration

* Improperly configured permissions

* Unnecessary features enabled

* Using default credentials

* Disabled security updates

* Server not sends security headers when possible

* Examples: https://brightsec.com/blog/misconfiguration-att
acks/

ﬂ


https://brightsec.com/blog/misconfiguration-attacks/
https://brightsec.com/blog/misconfiguration-attacks/

Security Misconfiguration

* Audit used and configured permissions

* Disable/remove unused features

* Always change default credentials

* Keep OS software up to date

* Configure HTTP Security Header for your application

ﬂ



#4 Insecure Design

* Most fuzzy category describing all architectural weaknesses
possible to introduce

* General output: think about application security eagerly
and through all the development, and maintenance process

ﬂ



#3 Injection

* Probably we all know this
* This was on the list back in 2003, 2023 still valid :(
All kind of introducing data other than expected

Lack of sanitizing, filtering user inputs

ﬂ



Fixing injection is easy?

* General idea: validate user input
* Use well-tested libraries for checking user inputs

* Minimize opportunities to introduce a raw parameter from
a user into a query

ﬂ



#2 Cryptographic Failures

* Is data really encrypted during transfer?
* Use of weak, compromised algorithms

* Lack of certificate validation

* Insecure modes (e.g ECB in AES)

* Use of old hash functions

* Too eager decryption

ﬂ



Scenario #1

An application encrypts credit card numbers in a database
using automatic database encryption. However, this data is

automatically decrypted when retrieved, allowing a SQL
injection flaw to retrieve credit card numbers in clear text.




Scenario #2

A site doesn't use or enforce TLS for all pages or supports
weak encryption. An attacker monitors network traffic (e.g., at
an insecure wireless network), downgrades connections from
HTTPS to HTTP, intercepts requests, and steals the user's
session cookie. The attacker then replays this cookie and
hijacks the user's (authenticated) session, accessing or
modifying the user's private data. Instead of the above they
could alter all transported data, e.g., the recipient of a money
transfer.

ﬁ



Scenario #3

* https://github.com/wybory2014/Kalkulator1

* PL ONLY: https://niebezpiecznik.pl/post/caly-swiat-oglada-i-
komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/



https://github.com/wybory2014/Kalkulator1
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/

Prevention

* Encrypt all sensitive data at rest

* Enforce TLS and use features making harder to downgrade
secure session e.g HSTS in HTTPS

* Don’t use insecure protocols like FTP to transfer data

* Always validate certificates validity (validity date, issuer,
CRLs, etc.)

* Classify data transferred by application

ﬂ



#1 Broken Access Control

* Violation of least possible privilege principle / deny by
default for resources which should be protected

* Bypassing access control check

* Insecure direct object references
* Privilege escalation

* CORS

* Hidden but publicly accessible resources

ﬂ



How to prevent BAC?

* Deny by default for non-public resources
* Avoid exposition of specific resources (like .git directory)

 Implement resource ownership for data to avoid editing
data owned by an other user

* Disable web directory listing
* Log all authentication events, alert admins when needed

* Use tokens (e.g. JWT) properly (short lived / revocation)

ﬂ



Summary
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