
OWASP Top 10

Application Security #2-3
Norbert Langner



“ ”

2

The Open Web Application Security Project 
(OWASP) is an open community dedicated to 
enabling organizations to develop, purchase, 
and maintain applications and APIs that can be 
trusted.

https://owasp.org/Top10/A00-about-owasp/ 

https://owasp.org/Top10/A00-about-owasp/


“ ”

3

The OWASP Top 10 is a standard awareness 
document for developers and web application 
security. It represents a broad consensus 
about the most critical security risks to web 
applications.

https://owasp.org/www-project-top-ten/ 

https://owasp.org/www-project-top-ten/


4

OWASP Top 10 in a nutshell

● Latest release: 2021-09-24, The 7th edition
● Next release is going to be publish in the 1st half of 2025
● First Top 10 published in 2003
● Risk awareness document not an oracle nor easily testable 

issues
● High level description
● Top 1 = most serious security risk



5

Methodology

● Data and survey driven research
– Grouped all CVEs with CVSS scored by CWE (exploitability

and technical impact)
● Provided data covers over 500,000 applications
● 8 categories derived from data, 2 from a survey
● Almost 400 CWEs considered
● Focus on a root cause



6

Factors

CWEs 
Mapped

Max 
Incidence 
Rate

Avg 
Incidence 
Rate

Avg 
Weighted 
Exploit

Avg 
Weighted 
Impact

Max 
Coverage

Avg 
Coverage

Total 
Occurren-
ces

Total 
CVEs



7

Common Vulnerabilities and Exposures

● The mission of the CVE® Program is to identify, define, and 
catalog publicly disclosed cybersecurity vulnerabilities. 
There is one CVE Record for each vulnerability in the 
catalog. [3]

● Operated by The Mitre Corporation
● More info + podcasts: https://www.cve.org/About/Overview
● Example CVE:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-
48454

®

https://www.cve.org/About/Overview
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48454


“ ”

8



9

Common Vulnerability Scoring System

● Open framework for communicating the characteristics and 
severity of software vulnerabilities

● CVSS is owned and managed by FIRST.Org, Inc.
● Score range from 0 to 10
● See: https://www.first.org/cvss/calculator/4.0

https://www.first.org/cvss/calculator/4.0


10

CVSS Metrics



11

Common Weaknesses Enumeration

● Community-developed list of common software and 
hardware weakness types

● The CWE List includes both software and hardware 
weakness types

● Every CWE has its id in CWE-[1-9][0-9]* form
● Example entry: https://cwe.mitre.org/data/definitions/787.h

tml 

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html


12

Example – CWE-787: Out-of-bounds Write



13

Example – CWE-787: Out-of-bounds Write 

int id_sequence[3];

/* Populate the id array. */

id_sequence[0] = 123;

id_sequence[1] = 234;

id_sequence[2] = 345;

id_sequence[3] = 456;



14

Countdown

Server-Side
Request Forgery

#10

Security Logging
and

Monitoring Failures

#9



15

Countdown

Software and Data
Integrity Failures

#8

Identification
and

Authentication
Failures
#7



16

Countdown

Vulnerable
and

Outdated Components

#6

Security
Misconfiguration

#5



17

Countdown

Insecure Design

#4

Injection

🥉



18

Countdown

Cryptographic
Failures

🥈

Broken
Access Control

🥇



19

#10 Server-Side Request Forgery (SSRF)

● Occurs whenever a web application is fetching a remote 
resource without validating the user-supplied URL

● Application can send a crafted request to an unexpected 
target, bypassing firewall, VPN or other ACLs

● CWE-918

https://cwe.mitre.org/data/definitions/918.html


  20
[5]



21

SSRF prevention

Network Layer:
● Segment components in separate networks
● Enforce “deny by default” rule

Application Layer:
● Sanitize and validate user input



22

#9 Security Logging and Monitoring Failures

● Auditable events not logged...
● ...or logged not meaningful events
● Inadequate severities (e.g. errors being warnings)
● Unclear messages
● Logs stored only locally
● Lack of log analysis mechanisms
● CWE-778, CWE-223

https://cwe.mitre.org/data/definitions/778.html
https://cwe.mitre.org/data/definitions/223.html


23

Road to better logging...

● Ensure all security events are logged
● Ensure all high-value transactions are logged
● Use consistent log format across application
● Store logs in a separate system
● Consider using log analytics tools (e.g. ELK Stack)



  24



25

#8 Software and Data Integrity Failures

● Relying on data or components we cannot prove integrity
– e.g. using front-end library by including it with an external link

● When implementing an auto-update feature,
not using digital signatures and/or SHA sum for verification

● Supply-chain attack
● Example: SolarWinds



27

Prevention

● Use valid digital signatures
● Ensure libraries and dependencies are downloaded from a 

trusted source
● Use least possible privilege approach



28

#7 Identification and Authentication Failures

● Permits automated attacks for login actions
– Using list of valid credentials to check permissions
– Brute-force passwords
– Allow to use weak phrases like “Admin1”

● Stores passwords in a plain text
● Exposes session identification in URLs
● Improper invalidation of expired sessions
● Example: https://portswigger.net/web-security/jwt 

https://portswigger.net/web-security/jwt


29



30

Avoiding identification and auth failures 

● Implement MFA where possible
● Do not ship default credentials
● Enforce using good passwords
● Limit/throttle failed login attempts
● Store session IDs on a server side



31

#6 Vulnerable and Outdated Components

● No track of used dependencies versions
● Lack of scan of used dependencies
● Using unpatched version of an OS
● Lack of maintenance (especially IoT devices)



  32



33

Prevention

● Remove unused components, keep other up to date
● Continuously scan your dependencies (e.g. GitHub does this 

automatically now)
● Obtain components from official sources (mostly)
● If a component is not maintained by its original author, 

consider creating a custom patch or reimplement feature 
without it



34

#5 Security Misconfiguration

● Improperly configured permissions
● Unnecessary features enabled
● Using default credentials
● Disabled security updates
● Server not sends security headers when possible
● Examples: https://brightsec.com/blog/misconfiguration-att

acks/ 

https://brightsec.com/blog/misconfiguration-attacks/
https://brightsec.com/blog/misconfiguration-attacks/


35

Security Misconfiguration

● Audit used and configured permissions
● Disable/remove unused features
● Always change default credentials
● Keep OS software up to date
● Configure HTTP Security Header for your application



36

#4 Insecure Design

● Most fuzzy category describing all architectural weaknesses 
possible to introduce

● General output: think about application security eagerly 
and through all the development, and maintenance process



37

#3 Injection

● Probably we all know this
● This was on the list back in 2003, 2023 still valid :(
● All kind of introducing data other than expected
● Lack of sanitizing, filtering user inputs



38

Fixing injection is easy?

● General idea: validate user input
● Use well-tested libraries for checking user inputs
● Minimize opportunities to introduce a raw parameter from 

a user into a query



39

#2 Cryptographic Failures

● Is data really encrypted during transfer?
● Use of weak, compromised algorithms
● Lack of certificate validation
● Insecure modes (e.g ECB in AES)
● Use of old hash functions
● Too eager decryption



40

Scenario #1

An application encrypts credit card numbers in a database 
using automatic database encryption. However, this data is 
automatically decrypted when retrieved, allowing a SQL 
injection flaw to retrieve credit card numbers in clear text.



41

Scenario #2

A site doesn't use or enforce TLS for all pages or supports 
weak encryption. An attacker monitors network traffic (e.g., at 
an insecure wireless network), downgrades connections from 
HTTPS to HTTP, intercepts requests, and steals the user's 
session cookie. The attacker then replays this cookie and 
hijacks the user's (authenticated) session, accessing or 
modifying the user's private data. Instead of the above they 
could alter all transported data, e.g., the recipient of a money 
transfer.



42

Scenario #3

● https://github.com/wybory2014/Kalkulator1
● PL ONLY: https://niebezpiecznik.pl/post/caly-swiat-oglada-i-

komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/

https://github.com/wybory2014/Kalkulator1
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/
https://niebezpiecznik.pl/post/caly-swiat-oglada-i-komentuje-kod-zrodlowy-obslugujacy-polskie-wybory/


43

Prevention

● Encrypt all sensitive data at rest
● Enforce TLS and use features making harder to downgrade 

secure session e.g HSTS in HTTPS
● Don’t use insecure protocols like FTP to transfer data
● Always validate certificates validity (validity date, issuer, 

CRLs, etc.)
● Classify data transferred by application



44

#1 Broken Access Control

● Violation of least possible privilege principle / deny by 
default for resources which should be protected

● Bypassing access control check
● Insecure direct object references
● Privilege escalation
● CORS
● Hidden but publicly accessible resources



45

How to prevent BAC?

● Deny by default for non-public resources
● Avoid exposition of specific resources (like .git directory)
● Implement resource ownership for data to avoid editing 

data owned by an other user
● Disable web directory listing
● Log all authentication events, alert admins when needed
● Use tokens (e.g. JWT) properly (short lived / revocation)



46

Summary



47

Sources

[1] OWASP Top 10, https://owasp.org/www-project-top-ten/ (accessed 2023-
10-26)
[2] OWASP Top 10 – 2021, https://owasp.org/Top10/ (accessed 2023-10-26)
[3] CVE, https://www.cve.org/ (accessed 2023-10-27)
[4] CVSS Specification Document, https://www.first.org/cvss/v4.0/specificati
on-document(accessed 2023-10-27)
[5] OWASP Cheat Sheet Series, https://cheatsheetseries.owasp.org/index.ht
ml (accessed 2023-10-28)
[6] PortSwigger - Server-side request forgery (SSRF), https://portswigger.net
/web-security/ssrf (accessed 2023-10-28)

https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/
https://www.cve.org/
https://www.first.org/cvss/v4.0/specification-document
https://www.first.org/cvss/v4.0/specification-document
https://cheatsheetseries.owasp.org/index.html
https://cheatsheetseries.owasp.org/index.html
https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47

