Motivation
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- In several machine learning applications, the label space can be enormous,
containing even millions of different classes.

- Learning problems of this scale are referred to as extreme classification.
- Typical examples include:

-Image and video annotation for multimedia search,

- Tagging of text documents for categorization of Wikipedia articles,
- Recommendation of bid words for online ads,

- Prediction of the next word in a sentence.

- To tackle extreme classification problems in an etficient way, one can orga-
nize labels into a tree as in hierarchical softmax (HSM).

- To adapt HSM to extreme multi-label classification (XMLC), several very
popular tools, such as fastText [1] and Learned Tree [6], apply the pick-
one-label heuristic, which does not lead to a consistent solution.

- Probabilistic label trees are a no-regret generalization of HSM to XMLC.

XMLC under precisionQk

— Multi-label classification:
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—Marginal probability of a label: n;(x) = P(y; = 1) = )_,, _, P(y|x)

— Goal: find a classifier h(x) : X — R™ minimizing the expected loss:
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—The regret of a classifier h with respect to ¢

reg/(h) = Li(h) — Li(h;) = Li(h) — L;
— Precision@Ek is defined as:

pOk(y, . h) = Z[[y; =1],
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where ), is a set of k labels predicted by h for «.

— Conditional risk for precision@*k:
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—The optimal strategy: predict k labels with the highest n,(x).
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HSM [4] is a multi-class classification algorithm based on a label tree.
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Factorize the marginal probabilities of labels using a chain rule.
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— HSM uses logistic loss and a linear model for estimating P(z; | 2/, @),

—For a multi-class distribution: > P(z; =c|z" @) = 1.

Multi-label data: Pick-one-label heuristic

—Tools like fastText [1] or Learned Trees [6], apply a pick-one-label
heuristic to HSM to transform multi-label instances to multi-class ones.

— Randomly picking a positive label transforms the multi-label
distribution to a multi-class distribution:
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—Inconsistent (non-zero regret) for label-wise logistic loss and precision@k
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—~Given conditionally independent labels, P(y | ) = [[._, P(y: | x),
HSM with pick-one-label heuristic is consistent for the precision@# loss.

Probabilistic label trees
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PLTs [3] are a no-regret generalization of HSM to multi-label problems.
—Extended code z = (1, z1, . . ., 2).

—Factorization of the marginal probability
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— Different normalization than in HSM:
Z P(zi=c|z "t x)>1.

—PLTs applied to a multi-class distribution boil down to HSM.

Regret bounds

— Bound for the absolute difference between the true and the estimated
marginal probability for label j
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—Bound for the regret with respect to precision@k
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Implementation (extremeText)

—L2 regularization for all parame-
ters of the model (for embedding
and internal node classifiers).

— Based on fastText.

— Tree structures: random, Huffman
tree or build via top-down hierar-

chical balanced clustering. —Hidden representation obtained

by weighted average of the fea-

ture vectors of proportion to the
— Online training with features em- tf-1df scores of features.

bedding (hidden, dense represen-
tation).

— linear models in the nodes.

—Depth first search prediction for
fast online prediction.

Source code: https://github.com/mwydmuch/extremeText

Neural Information Processing Systems 2018, Montreal, Canada.

Experimental results

Results on WikiLSHTC, Wiki-500K and Amazon-670K

Dataset Metrics | fastText |LearnedTrees extremeText Parabel [5] XML-CNN |[2]
WikiLSHTC P@1 41.13 50.15 58.73 61.53
Nipain = 1778351 | P@3 24.09 31.95 39.24 40.07
Niest = H87084 P@5 17.44 23.59 29.26 29.25
d = 617899 Tirain 207 212m 550m 34m
m = 325050 Tiest/ Niest 1.25ms 4.76ms 0.81ms 0.92msx*
model size | 6.5G 6.5G 3.3G 1.1Gx
Wiki-500K P@1 32.73 37.18 64.48 66.12 59.85
Nipgin = 1813391 | P@3 19.02 21.62 45.84 47.02 39.28
Niegt = 783743 P@5 14.46 16.01 35.46 36.45 29.81
d = 2381304 Tirain 496m @ 531m 1253m 168m 7032mx*
m = 501070 Tiest/ Niest 2.05ms | 6.43ms 1.07ms 4.68msx | 21.06ms*
model size | 11G 11G 5.5G 2.0Gx* 3.7Gx
Amazon-670K | P@] 25.47 27.67 39.90 41.59 35.39
Nipain = 490449 P@3 21.47 20.96 35.36 37.18 33.74
Niest = 153025 P@5 18.61 17.72 32.04 33.85 32.64
d = 135909 Train 162m 182m 241m 8m 3134m=
m = 670091 Tiest/ Niest 7.84ms 5.13ms 1.72ms 0.68ms*x | 16.18msx
model size | 3.2G 3.2G 1.5G 0.7Gx* 1.5Gx*

N —number of samples, 7' — CPU time, m — number of labels, d — number of features, * — result of offline
prediction, x — calculated on GPU, { — cannot be calculated due to lack of a text version of a dataset
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