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Yahoo! Research, New York, USA

Motivation

- In several machine learning applications, the label space can be enormous,
containing even millions of different classes.

- Learning problems of this scale are referred to as extreme classification.
- Typical examples include:

- Image and video annotation for multimedia search,
- Tagging of text documents for categorization of Wikipedia articles,
- Recommendation of bid words for online ads,
- Prediction of the next word in a sentence.

- To tackle extreme classification problems in an efficient way, one can orga-
nize labels into a tree as in hierarchical softmax (HSM).

- To adapt HSM to extreme multi-label classification (XMLC), several very
popular tools, such as fastText [1] and Learned Tree [6], apply the pick-
one-label heuristic, which does not lead to a consistent solution.

- Probabilistic label trees are a no-regret generalization of HSM to XMLC.

XMLC under precision@k

– Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

– Marginal probability of a label: ηj(x) = P(yj = 1|x) =
∑

y:yj=1
P(y|x)

– Goal: find a classifier h(x) : X → Rm minimizing the expected loss:

L`(h) = E(x,y)∼P(x,y)(`(y,h(x))

– The regret of a classifier hwith respect to `

reg`(h) = L`(h)− L`(h∗`) = L`(h)− L∗`

– Precision@k is defined as:

p@k(y,x,h) =
1

k

∑
j∈Ŷk

Jyj = 1K,

where Ŷk is a set of k labels predicted by h for x.
– Conditional risk for precision@k:

Lp@k(h |x) = E (`p@k(y,x,h)) = 1− 1

k

∑
j∈Ŷk

ηj(x),

– The optimal strategy: predict k labels with the highest ηj(x).

Hierarchical softmax

HSM [4] is a multi-class classification algorithm based on a label tree.
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1 – Each label y coded by
z = (z1, . . . , zl) ∈ C

– An internal node identified by
a partial code zj = (z1, . . . , zj)

– The code does not have to be
binary.

Factorize the marginal probabilities of labels using a chain rule.

ηj(x) = P(z|x) =
l∏
i=1

P(zi | zi−1,x) .

x

P(z1 = 0 |x) = 0.4

P(z2=0 | z1=0,x)=1.0

P(z=(0, 0) |x)=0.4

P(z2=1 | z1=0,x)=0.0

P(z=(0, 1) |x)=0.0

P(z1 = 1 |x) = 0.6

P(z2=0 | z1=1,x)=0.4

P(z=(1, 0) |x)=0.24

P(z2=1 | z1=1,x)=0.6

P(z=(1, 1) |x)=0.36

– HSM uses logistic loss and a linear model for estimating P(zi | zi−1,x),
– For a multi-class distribution:

∑
cP(zi = c | zi−1,x) = 1.

Multi-label data: Pick-one-label heuristic

– Tools like fastText [1] or Learned Trees [6], apply a pick-one-label
heuristic to HSM to transform multi-label instances to multi-class ones.

– Randomly picking a positive label transforms the multi-label
distribution to a multi-class distribution:

η′j(x) =
∑
y∈Y

yj∑m
j′=1 yj′

P(y |x)

– Inconsistent (non-zero regret) for label-wise logistic loss and precision@k

y P(y |x)
(1, 0, 0) 0.1
(1, 1, 0) 0.5
(0, 0, 1) 0.4

True ηj(x) Estimated η′j(x)

η1(x) = 0.6 η′1(x) = 0.35
η2(x) = 0.5 η′2(x) = 0.25
η3(x) = 0.4 η′3(x) = 0.4

– Given conditionally independent labels, P(y |x) =
∏m

j=1P(yi |x),
HSM with pick-one-label heuristic is consistent for the precision@k loss.

Probabilistic label trees

PLTs [3] are a no-regret generalization of HSM to multi-label problems.

– Extended code z = (1, z1, . . . , zl).
– Factorization of the marginal probability:

ηj(x) = P(z |x) =
l∏
i=0

P(zi | zi−1,x) .

P(z0 = 1 |x) = 1

P(z1 = 0 | z0 = 1,x) = 0.5

P(z2=0 | z0=1, z1=0,x)=1.0

P(z=(1, 0, 0) |x)=0.5

P(z2=1 | z0=1, z1=0,x)=0.1

P(z=(1, 0, 1) |x)=0.05

P(z1 = 1 | z0 = 1,x) = 0.6

P(z2=0 | z0=1, z1=1,x)=0.5

P(z=(1, 1, 0) |x)=0.3

P(z2=1 | z0=1, z1=1,x)=0.7

P(z=(1, 1, 1) |x)=0.42

– Different normalization than in HSM:∑
c

P(zi = c | zi−1,x) ≥ 1 .

– PLTs applied to a multi-class distribution boil down to HSM.

Regret bounds
– Bound for the absolute difference between the true and the estimated

marginal probability for label j

|ηj(x)− η̂j(x)| ≤
l∑
i=0

P(zi−1 |x)
√

2

λ

√
reg`(fzi | zi−1,x) ,

– Bound for the regret with respect to precision@k

regp@k(h |x) =
1

k

∑
i∈Yk

ηi(x)−
1

k

∑
j∈Ŷk

ηj(x) ≤ 2max
l
|ηl(x)− η̂l(x)|

Implementation (extremeText)

– Based on fastText.
– Tree structures: random, Huffman

tree or build via top-down hierar-
chical balanced clustering.

– linear models in the nodes.
– Online training with features em-

bedding (hidden, dense represen-
tation).

– L2 regularization for all parame-
ters of the model (for embedding
and internal node classifiers).

– Hidden representation obtained
by weighted average of the fea-
ture vectors of proportion to the
tf-idf scores of features.

– Depth first search prediction for
fast online prediction.

Source code: https://github.com/mwydmuch/extremeText

Experimental results
Results on WikiLSHTC, Wiki-500K and Amazon-670K

Dataset Metrics fastText LearnedTrees extremeText Parabel [5] XML-CNN [2]

WikiLSHTC
Ntrain = 1778351
Ntest = 587084
d = 617899
m = 325056

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

41.13
24.09
17.44
207
1.25ms
6.5G

50.15
31.95
23.59
212m
4.76ms
6.5G

58.73
39.24
29.26
550m
0.81ms
3.3G

61.53
40.07
29.25
34m
0.92ms∗
1.1G∗

†
†
†
†
†
†

Wiki-500K
Ntrain = 1813391
Ntest = 783743
d = 2381304
m = 501070

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

32.73
19.02
14.46
496m
2.05ms
11G

37.18
21.62
16.01
531m
6.43ms
11G

64.48
45.84
35.46
1253m
1.07ms
5.5G

66.12
47.02
36.45
168m
4.68ms∗
2.0G∗

59.85
39.28
29.81
7032m?
21.06ms?
3.7G?

Amazon-670K
Ntrain = 490449
Ntest = 153025
d = 135909
m = 670091

P@1
P@3
P@5
Ttrain
Ttest/Ntest

model size

25.47
21.47
18.61
162m
7.84ms
3.2G

27.67
20.96
17.72
182m
5.13ms
3.2G

39.90
35.36
32.04
241m
1.72ms
1.5G

41.59
37.18
33.85
8m
0.68ms∗
0.7G∗

35.39
33.74
32.64
3134m?
16.18ms?
1.5G?

N – number of samples, T – CPU time, m – number of labels, d – number of features, ∗ – result of offline
prediction, ? – calculated on GPU, † – cannot be calculated due to lack of a text version of a dataset

Ablation analysis for Amazon-670K
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