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Abstract

Extreme multi-label classification (XMLC) is a problem of tagging an instance with
a small subset of relevant labels chosen from an extremely large pool of possible
labels. Large label spaces can be efficiently handled by organizing labels as a tree,
like in the hierarchical softmax (HSM) approach commonly used for multi-class
problems. In this paper, we investigate probabilistic label trees (PLTs) that have
been recently devised for tackling XMLC problems. We show that PLTs are a
no-regret multi-label generalization of HSM when precision@#; is used as a model
evaluation metric. Critically, we prove that pick-one-label heuristic—a reduction
technique from multi-label to multi-class that is routinely used along with HSM—is
not consistent in general. We also show that our implementation of PLTs, referred
to as EXTREMETEXT (XT), obtains significantly better results than HSM with the
pick-one-label heuristic and XML-CNN, a deep network specifically designed for
XMLC problems. Moreover, XT is competitive to many state-of-the-art approaches
in terms of statistical performance, model size and prediction time which makes it
amenable to deploy in an online system.

1 Introduction

In several machine learning applications, the label space can be enormous, containing even millions
of different classes. Learning problems of this scale are often referred to as extreme classification.
To name a few examples of such problems, consider image and video annotation for multimedia
search (Deng et al.l 2011), tagging of text documents for categorization of Wikipedia articles (Dekel
& Shamir, |2010), recommendation of bid words for online ads (Prabhu & Varma, [2014), or prediction
of the next word in a sentence (Mikolov et al.,[2013).

To tackle extreme classification problems in an efficient way, one can organize the labels into a
tree. A prominent example of such label tree model is hierarchical softmax (HSM) (Morin &
Bengio, 2003)), often used with neural networks to speed up computations in multi-class classification
with large output spaces. For example, it is commonly applied in natural language processing
problems such as language modeling (Mikolov et al.,|2013)). To adapt HSM to extreme multi-label
classification (XMLC), several very popular tools, such as FASTTEXT (Joulin et al., 2016) and
LEARNED TREE (Jernite et al.,[2017), apply the pick-one-label heuristic. As the name suggests, this
heuristic randomly picks one of the labels from a multi-label training example and treats the example
as a multi-class one.
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In this work, we exhaustively investigate the multi-label extensions of HSM. First, we show that the
pick-one-label strategy does not lead to a proper generalization of HSM for multi-label setting. More
precisely, we prove that using the pick-one-label reduction one cannot expect any multi-class learner
to achieve zero regret in terms of marginal probability estimation and maximization of precision@k.
As a remedy to this issue, we are going to revisit probabilistic label trees (PLTs) (Jasinska et al.,
2016) that have been recently introduced for solving XMLC problems. We show that PLTs are a
theoretically motivated generalization of HSM to multi-label classification, that is, 1) PLTs and
HSM are identical in multi-class case, and 2) a PLT model can get zero regret (i.e., it is consistent)
in terms of marginal probability estimation and precision@¥k in the multi-label setting.

Beside our theoretical findings, we provide an efficient implementation of PLTs, referred to as XT,
that we build upon FASTTEXT. The comprehensive empirical evaluation shows that it gets significantly
better results than the original FASTTEXT, LEARNED TREE, and XML-CNN, a specifically designed
deep network for XMLC problems. XT also achieves competitive results to other state-of-the-art
approaches, being very efficient in model size and prediction time, particularly in the online setting.

This paper is organized as follows. First we discuss the related work and situate our approach in
the context. In Section[3] we formally state the XMLC problem and present some useful theoretical
insights. Next, we briefly introduce the HSM approach, and in Section [5| we show theoretical results
concerning the pick-one-label heuristic. Section [6|formally introduces PLTs and presents the main
theoretical results concerning them and their relation to HSM. Section [7] provides implementation
details of PLTs. The experimental results are presented in Section[§] Finally we make concluding
remarks.

2 Related work

Historically, problems with a large number of labels were usually solved by nearest neighbor or
decision tree methods. Some of today’s algorithms are still based on these classical approaches,
significantly extending them by a number of new tricks. If the label space is of moderate size (like
a few thousands of labels) then an independent model can be trained for each class. This is the
so-called 1-vS-ALL approach. Unfortunately, it scales linearly with the number of labels, which
is too costly for many applications. The extreme classification algorithms try to improve over this
approach by following different paradigms such as sparsity of labels (Yen et al., [2017; |Babbar &
Scholkopt} 2017), low-rank approximation (Mineiro & Karampatziakis, 2015} |Yu et al.l 2014; |Bhatia
et al.,|2015)), tree-based search (Prabhu & Varma, |[2014; |Choromanska & Langford, 2015), or label
filtering (Vijayanarasimhan et al., 2014} [Shrivastava & Li, 2015} [Niculescu-Mizil & Abbasnejad,
2017).

In this paper we focus on tree-based algorithms, therefore we discuss them here in more detail. There
are two distinct types of these algorithms: decision trees and label trees. The former type follows
the idea of classical decision trees. However, the direct use of the classic algorithms can be very
costly (Agrawal et al.|[2013). Therefore, the FASTXML algorithm (Prabhu & Varma, |2014) tackles
the problem in a slightly different way. It uses sparse linear classifiers in internal tree nodes to split
the feature space. Each linear classifier is trained on two classes that are formed in a random way
first and then reshaped by optimizing the normalized discounted cumulative gain. To improve the
overall accuracy FASTXML uses an ensemble of trees. This algorithm, like many other decision tree
methods, works in a batch mode. (Choromanska & Langford|(2015) have succeeded to introduce a
fully online decision tree algorithm that also uses linear classifiers in internal nodes of the tree.

In label trees each label corresponds to one and only one path from the root to a leaf. Besides PLTs
and HSM, there exist several other instances of this approach, for example, filter trees (Beygelzimer|
et al., |2009b; [Li & Linl [2014)) or label embedding trees (Bengio et al., 2010). It is also worth to
underline that algorithms similar to HSM have been introduced independently in many different
research fields, such as nested dichotomies (Fox} 1997) in statistics, conditional probability estimation
trees (Beygelzimer et al.,|2009a) in multi-class classification, multi-stage classifiers (Kurzynskil |1988)
in pattern recognition, and probabilistic classifier chains (Dembczynski et al., [2010) in multi-label
classification under the subset 0/1 loss. All these methods have been jointly analyzed in (Dembczynski
et al.l[2016).

A still open problem in label tree approaches is the tree structure learning. FASTTEXT (Joulin
et al., 2016) uses HSM with a Huffman tree built on the label frequencies. Jernite et al.| (2017)



have introduced a new algorithm, called LEARNED TREE, which combines HSM with a specific
hierarchical clustering that reassigns labels to paths in the tree in a semi-online manner. |Prabhu et al.
(2018) follows another approach in which a model similar to PLTs is trained in a batch mode and a
tree is built by using recursively balanced k-means over the label profiles. In Section[7] we discuss
this approach in more detail.

The HSM model is often used as an output layer in neural networks. The FASTTEXT implementation
can also be viewed as a shallow architecture with one hidden layer that represents instances as
averaged feature (i.e., word) vectors. Another neural network-based model designed for XMLC
has been introduced in (Liu et al., 2017). This model, referred to as XML-CNN, uses a complex
convolutional deep network with a narrow last layer to make it work with large output spaces. As we
show in the experimental part, this quite expensive architecture gets inferior results in comparison to
our PLTs built upon FASTTEXT.

3 Problem statement

Let X denote an instance space, and let £ = {1,...,m} be a finite set of m class labels. We assume
that an instance & € X’ is associated with a subset of labels £, € 2 (the subset can be empty); this
subset is often called a set of relevant labels, while the complement £\ L, is considered as irrelevant
for . We assume m to be a large number (e.g., > 10°), but the size of the set of relevant labels
L5 is much smaller than m, i.e., |£5| < m. We identify a set £,, of relevant labels with a binary
(sparse) vector y = (Y1, Y2, . ..,Ym), in whichy; =1 j € L. By Y = {0,1}"™ we denote a set
of all possible label vectors. We assume that observations (x, y) are generated independently and
identically according to the probability distribution P(X = x,Y = y) (denoted later by P(z, y))
defined on X x ).

The problem of XMLC can be defined as finding a classifier h(x) = (hi(x), ha(x), ..., hm(x)),
which in general can be defined as a mapping X — R™, that minimizes the expected loss (or risk):

LZ(h) = E(a:,y)NP(m,y) (ﬂ(ya h(SE)) )
where {(y, ) is the (task) loss. The optimal classifier, the so-called Bayes classifier, for a given loss
function ¢ is:
h; = argmin Ly(h).
h
The regret of a classifier h with respect to £ is defined as:
regy(h) = Le(h) — Le(h;) = Le(h) — Ly .

The regret quantifies the suboptimality of h compared to the optimal classifier h*. The goal could be
then defined as finding h with a small regret, ideally equal to zero.

In the following, we aim at estimating the marginal probabilities n; (x) = P(y; = 1| x). As we will
show below, marginal probabilities are a key element to optimally solve extreme classification for
many performance measures, like Hamming loss, macro-F measure, and precision@k. To obtain the
marginal probability estimates one can use the label-wise log loss as a surrogate:

élog y7 Zglog yg, j Z yj 1Og (1 - yj) log(l - hj(w))) .
j=1
Then the expected label-wise log loss for a single x (i.e., the so-called conditional risk) is:
Eylios(y, b Z Eyliog (45, h Z Liog(hy(z) | ).

Therefore, it is easy to see that the pointwise optimal prediction for the j-th label is given by:

hj (@) = arg min Liog (h;(x) | 2) = 1;(x) .

As shown in (Dembczyniski et al., 2010), the Hamming loss is minimized by 2} (z) = [n;(x) > 0.5] .
For the macro F-measure it suffices in turn to find an optimal threshold on marginal probabilities for



each label separately as proven in (Ye et al.| 2012; Narasimhan et al.| 2014; Jasinska et al., 2016}
Dembczynski et al., [2017). In the following, we will show a similar result for precision@# which has
become a standard measure in extreme classification (although it is also often criticized, as it favors
the most frequent labels).

Precision @£ can be formally defined as:

precision@Qk(y, x, h) =7 Z ly; =11, (1)
JED

where )y, is a set of k labels predicted by h for x. To be consistent with the former discussion, let us
define a loss function for precision@k as {,ar, = 1 — precision@k. The conditional risk is thenﬂ

1
Lp@k(h | CE) = Eygp@k(vaa h) =1- g Z nj(w)
JEV
The above result shows that the optimal strategy for precision@k is to predict k labels with the
highest marginal probabilities 7);(x). As the main theoretical result given in this paper is a regret
bound for precision @k, let us define here the conditional regret for this metric:

1
reg,ar(h|x) = % Z ni(x) — % Z n;(z)

1€Vk JEDL
where ), is a set containing the top k labels with respect to the true marginal probabilities.

From the above results, we see that estimation of marginal probabilities is crucial for XMLC problems.
To obtain these probabilities we can use the vanilla 1-vS-ALL approach trained with the label-wise
log loss. Unfortunately, 1-VS-ALL is too costly in the extreme setting. In the following sections, we
discuss an alternative approach based on the label trees that estimates the marginal probabilities with
the competitive accuracy, but in a much more efficient way.

4 Hierarchical softmax approaches

Hierarchical softmax (HSM) is designed for multi-class classification. Using our notation, for multi-
class problems we have Y " | y; = 1, i.e., there is one and only one label assigned to an instance
(z,y). The marginal probabilities n;(x) in this case sum up to 1.

The HSM classifier h(x) takes a form of a label tree. We encode all labels from £ using a prefix
code. Any such code can be given in a form of a tree in which a path from the root to a leaf node
corresponds to a code word. Under the coding, each label y; = 1 is uniquely represented by a code
word z = (21,...,2) € C, where [ is the length of the code word and C is a set of all code words.
For z; € {0, 1}, the code and the label tree are binary. In general, the code alphabet can contain more
than two symbols. Furthermore, z;s can take values from different sets of symbols depending on the
previous values in the code word. In other words, the code can result with nodes of a different arity
even in the same tree, like in (Grave et al.,2017) and (Prabhu et al.| [2018). We will briefly discuss
different tree structures in Section [/l

A tree node can be uniquely identified by the partial code word 2% = (21, ..., 2;). We denote the
root node by 2z, which is an empty vector (without any elements). The probability of a given label is
determined by a sequence of decisions made by node classifiers that predict subsequent values of the
code word. By using the chain rule of probability, we obtain:

l
ni(@) = Ply; = 1]a) = P(= @) = [[P(:] 2. a).

By using logistic loss and a linear model £ (x) in each node 2 for estimating P(z; | 2° =1, x), we
obtain the popular formulation of HSM. Let us notice that since we deal here with a multi-class
distribution, we have that:

ZP(zi:c|zi_1,a:):1. (2)

!The derivation is given in Appendix@



Because of this normalization, we can assume that a multi-class (or binary in the case of binary
trees) classifier is situated in all internal nodes and there are no classifiers in the leaves of the tree.
Alternatively, we can assume that each node, except the root, is associated with a binary classifier that
estimates P(z; = ¢| 2™, x), but then the additional normalization (2) has to be performed. This
alternative formulation is important for the multi-label extension of HSM discussed in Section[6] In
either way, learning of the node classifiers can be performed simultaneously as independent tasks.

Note that estimate 7;(x) of the probability of label j can be easily obtained by traversing the tree
along the path indicated by the code of the label. Unfortunately, the task of predicting top k labels
is more involved as it requires searching over the tree. Popular solutions are beam search (Kumar
et al 2013} [Prabhu et al.| [2018]), uniform-cost search (Joulin et al., [2016)), and its approximate
variant (Dembczynski et al., 2012; |Dembczynski et al., [ 2016)).

S Suboptimality of HSM for multi-label classification

To deal with multi-label problems, some popular tools, such as FASTTEXT (Joulin et al.,[2016) and its
extension LEARNED TREE (Jernite et al.,|2017), apply HSM with the pick-one-label heuristic which
randomly picks one of the positive labels from a given training instance. The resulting instance is then
treated as a multi-class instance. During prediction, the heuristic returns a multi-class distribution and
the k£ most probable labels. We show below that this specific reduction of the multi-label problem to
multi-class classification is not consistent in general.

Since the probability of picking a label j from y is equal to y; / Z?le v, the pick-one-label heuristic
maps the multi-label distribution to a multi-class distribution in the following way:

@) =Py =1lz)=> %P(y | @) 3)
yey &i'=1 Y’

It can be easily checked that the resulting 7, () form a multi-class distribution as the probabilities
sum up to 1. It is obvious that that the heuristic changes the marginal probabilities of labels, unless
the initial distribution is multi-class. Therefore this method cannot lead to consistent classifiers in
terms of estimating 7;(x). As we show below, it is also not consistent for precision@%k in general.

Proposition 1. A classifier h such that hj(z) = n/}(z) for all j € {1,...,m} has in general a
non-zero regret in terms of precision@k.

Proof. We prove the proposition by giving a simple counterexample. Consider the following condi-
tional distribution for some «:

Py=(1,0,0)|x)=0.1, P(y=(1,1,0)]z)=0.5, P(y=(0,0,1)|x)=04.

The optimal top 1 prediction for this example is obviously label 1, since the marginal probabilities are
m(x) = 0.6,n2(x) = 0.5,n3(x) = 0.4. However, the pick-one-label heuristic will transform the
original distribution to the following one: 1} () = 0.35,n5(x) = 0.25,n5(x) = 0.4. The predicted
top label will be then label 3, giving the regret of 0.2 for precision@1. O

The proposition shows that the heuristic is in general inconsistent for precision@#k. Interestingly, the
situation changes when the labels are conditionally independent, i.e., P(y | x) = HT:I P(y; | x) .

Proposition 2. Given conditionally independent labels, a classifier h such that hj(x) = n/;(z) for
all j € {1,...,m} has zero regret in terms of the precision@F; loss.

Proof. We show here only a sketch of the proof. The full proof is given in Appendix [B] To prove
the theorem, it is enough to show that in the case of conditionally independent labels the pick-
one-label heuristic does not change the order of marginal probabilities. Let y; and y; be so that
P(y; = 1|x) > P(y; = 1|x). Then in the summation over all ys in (3), we are interested
in four different subsets of ¥, S}/ = {y € ¥V : y; = uAy; = w}, where u,w € {0,1}.
Remark that during mapping none of y € Sg ,jo plays any role, and for each y € Sil, }1, the value
of ye/ (O 4y yr) x P(y|x), for t € {i,j}, is the same for both y; and y;. Now, lety’ € Sil)"jo

and y"” € S? ’jl be the same on all elements except the i-th and the j-th one. Then, because



of the label independence and the assumption that P(y; = 1|x) > P(y; = 1|x), we have
P(y'|x) > P(y" | x). Therefore, after mapping we obtain n;(x) > 7;(). Thus, for independent
labels, the pick-one-label heuristic is consistent for precision@k. O

6 Probabilistic label trees

The section above has revealed that HSM cannot be properly adapted to multi-label problems by
the pick-one-label heuristic. There is, however, a different way to generalize HSM to obtain no-
regret estimates of marginal probabilities 7;(x). The probabilistic label trees (PLTs) (Jasinska
et al., 2016) can be derived in the following way. Let us encode y; = 1 by a slightly extended
code z = (1, 21,...,2) in comparison to HSM. The new code gets 1 at the zero position what
corresponds to a question whether there exists at least one label assigned to the example. As before,
each node is uniquely identified by a partial code z¢ which says that there is at least one positive
label in a subtree rooted in that node. It can be easily shown by the chain rule of probability that the
marginal probabilities can be expressed in the following way:

ni(x) =P(z|x) = HP 2|27 ). 4)

The difference to HSM is the probability P(zp =1 | x) in the chain and a different normalization,
ie.:

ZP(zi:c|zi_1,a:)Zl. 3

Only for zy we have P( zo = 1|x) + P(z = 0]|x) = 1. Because of (5] . the binary models that
estimate P(z; = c| 2'~1, x) (against P(z; # c¢| 2'~1, x)) are situated in all nodes of the tree (i.e.,
also in the leaves). The models can be trained 1ndependently as before for HSM. Only during
prediction, one can re-calibrate the estimates when (3)) is not satisfied, for example, by normalizing
them to sum up to 1. It can be easily noticed that for a multi-class distribution, the resulting model
of PLTs boils down to HSM, since P(z9 = 1| ) is always equal 1, and in addition, normalization
(5) will take the form of (2). In Appendix [D]we additionally present the pseudocode of training and
predicting with PLTs.

Next, we show that the PLT model obeys strong theoretical guarantees. Let us first revise the result
from (Jasinska et al., [2016) that relates the absolute difference between the true and the estimated
marginal probability of label j, |1, (x) — 7;(x)|, to the surrogate loss £ used to train node classifiers
f~i. It is assumed here that ¢ is a strongly proper composite loss (e.g, logistic, exponential, or squared
loss) characterized by a constant A (e.g. A = 4 for logistic loss)%]

Theorem 1. For any distribution P and internal node classifiers f,:, the following holds:

l
A i—1 2 i—1
@) = i@ < 3Pz Iw)\ﬂ\/regz(fziz @),

i—1

where reg,(f,i | 2=, &) is a binary classification regret for a strongly proper composite loss £ and
A is a constant specific for loss (.

Due to filtering of the distribution imposed by the PLT, the regret reg,(f.: | =%, ) of a classifier
fi exists only for x such that P(z*~! | x) > 0, therefore we condition the regret not only on x, but
also on z°~1. The above result shows that the absolute error of estimating the marginal probability of
label j can be upper bounded by the regret of the node classifiers on the corresponding path from
the root to a leaf. The proof of Theorem [I]is given in Appendix [A] Moreover, for zero-regret (i.e.,
optimal) node classifiers we obtain an optimal multi-label classifier in terms of estimation of marginal
probabilities n; (). This result can be further extended for precision@k.

Theorem 2. For any distribution P and classifier h delivering estimates 1);(x) of the marginal
probabilities of labels, the following holds:

1 .
regyar (b |2) Z ni(@) = 2 D ni(x) < 2max|n(x) — i)
leyk JEVK

?For more detailed introduction to strongly proper composite losses, we refer the reader to (Agarwall [2014).



The proof is based on adding and subtracting the following terms + > icy, Ni(x) and > ey, i (@)
to the regret (a detailed proof is given in Appendix [A)). By getting together both theorems we get an
upper bound of the precision@#k regret expressed in terms of the regret of the node classifiers. Again,
for the zero-regret node classifiers, we get optimal solution in terms of precision@¥k.

7 Implementation details of PLTs

Given the tree structure, the node classifiers of PLTs can be trained as logistic regression either in
online (Jasinska et al.,[2016) or batch mode (Prabhu et al.|[2018)). Both training modes have their pros
and cons, but the online implementation gives a possibility of learning more complex representation
of input instances. The above cited implementations are both based on sparse representation, given
either in a form of a bag-of-words or its TF-IDF variant. We opt here for training a PLT in the online
mode along with the dense representation. We build our implementation upon FASTTEXT and refer
to it as XT which stands for EXTREMETEXTE] In this way, we succeeded to obtain a very powerful
and compressed model. The small dense models are important for fast online prediction as they
do not need too much resources. The sparse models, in turn, can be slow and expensive in terms
of memory usage as they need to decompress the node models to work fast. Remark also that, in
general, PLTs can be used as an output layer of any neural network architecture (also that one used
in XML-CNN (Yen et al.l 2017)) to speed up training and prediction time.

In contrast to the original implementation of FASTTEXT, we use L2 regularization for all parameters
of the model. To obtain representation of input instances we do not compute simple averages of
the feature vectors, but use weights proportional to the TF-IDF scores of features. The competitive
results can be obtained with feature and instance vectors of size 500. If a node classification task
contains only positive instances, we use a constant classifier predicting 1 without any training. The
training of PLT in either mode, online or batch, can be easily parallelized as each node classifier can
be trained in isolation from the other classifiers. In our current implementation, however, we follow
the parallelization on the level of training and test instances as in original FASTTEXT.

Our implementation, because of the additional use of the L2 regularization, has more parameters
than original FASTTEXT. We have found, however, that our model is remarkably robust for the
hyperparameter selection, since it achieves close to optimal performance for a large set of hyperpa-
rameters that is in the vicinity of the optimal one. Moreover, the optimal hyperparameters are close
to each other across all datasets. We report more information about the hyperparameter selection in

Appendix

The tree structure of a PLT is a crucial modeling decision. The vanishing regret for probability
estimates and precision@#% holds regardless of the tree structure (see Theorem [T]and [2), however, this
theory requires the regret of the node classifiers also to vanish. In practice, we can only estimate the
conditional probabilities in the nodes, therefore the tree structure does indeed matter as it affects the
difficulty of the node learning problems. The original PLT paper (Jasinska et al., [2016)) uses simple
complete trees with labels assigned to leaves according to their frequencies. Another option, routinely
used in HSM (Joulin et al.; 2016)), is the Huffman tree built over the label frequencies. Such tree takes
into account the computational complexity by putting the most frequent labels close to the root. This
approach has been further extended to optimize GPU operations in (Grave et al.,2017). Unfortunately,
itignores the statistical properties of the tree structure. Furthermore, for multi-label case the Huffman
tree is no longer optimal even in terms of computational cost as we show it in Appendix [C] There
exist, however, other methods that focus on building a tree with high overall accuracy (Tagamil [2017}
Prabhu et al., [2018). In our work, we follow the later approach, which performs a simple top-down
hierarchical clustering. Each label in this approach is represented by a profile vector being an average
of the training vectors tagged by this label. Then the profile vectors are clustered using balanced
k-means which divides the labels into two or more clusters with approximately the same size. This
procedure is then repeated recursively until the clusters are smaller than a given value (for example,
100). The nodes of the resulting tree are then of different arities. The internal nodes up to the leaves’
parent nodes have k children, but the leaves’ parent nodes are usually of higher arity. Thanks to this
clustering, similar labels are close to each other in the tree. Moreover, the tree is balanced, so its
depth is logarithmic in terms of the number of labels.

3Implementation of XT is available at https://github.com/mwydmuch/extremeText!


https://github.com/mwydmuch/extremeText

8 Empirical results

We carried out three sets of experiments. In the first, we compare exhaustively the performance of
PLTs and HSM on synthetic and benchmark data. Due to lack of space, the results are deferred to
Appendix [E.J]and [E.2] The results on synthetic data confirm our theoretical findings: the models
are the same in the case of multi-class data, the performance of HSM and PLTs is on par using
multi-label data with independent labels, and PLTs significantly outperform HSM on multi-label
data with conditionally dependent labels. The results on the benchmark data clearly indicate the
better performance of PLTs over HSM.

In the second experiment, we compare X T, the variant of PLTs discussed in the previous section, to
the state-of-the-art algorithms on five benchmark datasets taken from XMLC repositoryﬂ and their text
equivalents, by courtesy of [Liu et al.|(2017). We compare the models in terms of precision@{1, 3,5},
model size, training and test time. The competitors for our XT are original FASTTEXT, its vari-
ant LEARNED TREE, a PLT-like batch learning algorithm PARABEL (we use the variant that uses
a single tree instead of an ensemble), a XMLC-designed convolutional deep network XML-CNN,
a decision tree ensemble FASTXML, and two 1-vs-All approaches tailored to XMLC problems,
PPD-SPARSE and DISMEC. The hyperparameters of the models have been tuned using grid search.
The range of the hyperparameters is reported in[E.4]

The results presented in Table [T] demonstrate that XT outperforms the HSM approaches with the
pick-one-label heuristic, namely FASTTEXT and LEARNED TREE, with a large margin. This proves
the superiority of PLTs as the proper generalization of HSM to multi-label setting. In all the above
methods we use vectors of length 500 and we tune the other hyperparameters appropriately for a fair
comparison.

Moreover, XT scales well to extreme datasets achieving performance close to the state-of-the-art,
being at the same time 10000x and 100x faster compared to DISMEC and PPDSPARSE during
prediction. XT always responds below 2ms, what makes it a competitive alternative for an online
setting. XT is also close to PARABEL in terms of performance. However, the reported times and
model sizes of PARABEL are given for the batch prediction. The prediction times seem to be faster,
but PARABEL needs to decompress the model during prediction, what makes it less suitable for online
prediction. It is only efficient when the batches are sufficiently large. Finally, we would like to
underline that XT outperforms XML-CNN, the more complex neural network, in terms of predictive
performance with computational costs that are an order of magnitude smaller. Moreover, XML-CNN
requires pretrained embedding vectors, whereas XT can be used with random initialization.

In the third experiment we perform an ablation analysis in which we compare different components
of the XT algorithm. We analyze the influence of the Huffman tree vs. top-down clustering, the
simple averaging of features vectors vs. the TF-IDF-based weighting, and no regularization vs.
L2 regularization. Figure [T| clearly shows that the components need to be combined together to
obtain the best results. The best combination uses top-down clustering, TF-IDF-based weighting,
and L2 regularization, while top-down clustering alone gets worse results than Huffman trees with
TF-IDF-based weighting and L2 regularization. In Appendix [E.3|we give more detailed results of the
ablation analysis performed on a larger spectrum of benchmark datasets.

9 Conclusions

In this paper we have proven that probabilistic label trees (PLTs) are no-regret generalization of HSM
to the multi-label setting. Our main theoretical contribution is the precision @k regret bound for PLTs.
Moreover, we have shown that the pick-one-label heuristic commonly-used with HSM in multi-label
problems leads to inconsistent results in terms of marginal probability estimation and precision@k.
Our implementation of PLTs referred to as XT, built upon FASTTEXT, gets state-of-the-art results,
being significantly better than the original FASTTEXT, LEARNED TREE, and XML-CNN. The XT
results are also close to the best known ones that are obtained by expensive 1-vs-All approaches, such
as PPDSPARSE and DISMEC, and outperforms the other tree-based methods on many benchmarks.
Our online variant has the advantage of producing very often much smaller models that can be
efficiently used in fast online prediction.

* Additional statistics of these datasets are also included in Appendix@ Address of the XMLC repository:
http://manikvarma.org/downloads/XC/XMLRepository.html


http://manikvarma.org/downloads/XC/XMLRepository.html

Table 1: Precision@k scores with k& = {1,3,5} and statistics of FASTXML, PPDSPARSE, DISMEC,
PARABEL (with 1 tree), FASTTEXT (FT), LEARNED TREE (LT), EXTREMETEXT (XT) and XML-CNN
methods. Notation: N — number of samples, 7" — CPU time, m — number of labels, d — number of features, * —
result of offline prediction, x — calculated on GPU, { — not reported by authors, { — cannot be calculated due to
lack of a text version of a dataset.

Dataset | Metrics | FASTXML | PPDSPARSE | DISMEC || FT | LT | XT || PARABEL || XML-CNN
Wiki-30K P@1 82.03 73.80 85.20 80.78 80.85 85.23 83.77 82.78
Nirain = 14146 P@3 67.47 60.90 74.60 50.46 50.59 73.18 71.96 66.34
Niest = 6616 P@5 57.76 50.40 65.90 36.79 37.68 63.39 62.44 56.23
d =101938 Tirain 16m i t 10m 12m 18m Sm 88mx
m = 30938 Tiest/Niest 3.00ms T T 1.88ms 10.09ms 0.83ms 1.63msx* 1.39msx

model size 354M T T 513M 513M 259M 109Mx *
Delicious-200K P@1 42.81 45.05 44.71 4222 42.71 47.85 43.32 1
Nirain = 196606 P@3 38.76 38.34 38.08 37.90 36.27 42.08 38.49 i
Niest = 100095 P@s5 36.34 34.90 34.7 35.05 3343 39.13 35.83 1
d = 782585 Tirain 458m 4781m 1080h 271m 563m 502m 105m 1
m = 205443 Tiest/Niest 4.86ms 275ms Sm 1.97ms 1.98ms 1.41ms 1.31msx* I
model size 154G 9.4G 18.0G 9.0G 9.0G 1.9G 1.8Gx* i
WikiLSHTC P@l1 49.35 64.08 64.94 41.13 50.15 58.73 61.53 1
Nirain = 1778351 P@3 32.69 41.26 42.71 24.09 31.95 39.24 40.07 1
Niest = 587084 P@5 24.03 30.12 315 17.44 23.59 29.26 29.25 1
d = 617899 Tirain 724m 236m 750h 207 212m 550m 34m by
m = 325056 Thest/Niest 2.17ms 37.76ms 43m 1.25ms 4.76ms 0.81ms 0.92msx* 1
model size 9.3G 5.2G 3.8G 6.5G 6.5G 3.3G 1.1Gx* 1
Wiki-500K P@l1 54.10 70.16 70.20 32.73 37.18 64.48 66.12 59.85
Nirain = 1813391 P@3 2945 50.57 50.60 19.02 21.62 45.84 47.02 39.28
Niest = 783743 P@s5 21.21 39.66 39.70 14.46 16.01 35.46 36.45 29.81
d = 2381304 Tirain 3214m 1771m 7495h 496m 531m 1253m 168m 7032mx*
m = 501070 Tiest/Niest 8.03ms 113.70ms 155m 2.05ms 6.43ms 1.07ms 4.68ms* 21.06msx
model size 63G 3.4G 14.7G 11G 11G 5.5G 2.0G* 3.7Gx
Amazon-670K P@l1 34.24 45.32 45.37 25.47 27.67 39.90 41.59 35.39
Nirain = 490449 P@3 29.30 40.37 40.40 21.47 20.96 35.36 37.18 33.74
Niest = 153025 P@5 26.12 36.92 36.96 18.61 17.72 32.04 33.85 32.64
d = 135909 Tirain 422m 102m 373h 162m 182m 241m Sm 3134mx
m = 670091 Thest/Niest 3.39ms 66.09ms 23m 7.84ms 5.13ms 1.72ms 0.68msx* 16.18msx
model size 10G 6.0G 3.8G 3.2G 3.2G 1.5G 0.7G: 1.5Gx
| | | | | |
60 |- 18 WikiLSHTC BB Wiki-500K B8 Amazon-670K
~—
€ 40|
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Figure 1: The ablation analysis of different variants of XT on WIKILSHTC, WIK1-500K, and
AMAZON-670K.
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A Regret for precision@fk

Precision@¥k is formally defined as:

1
precision@k(y, z, h) = z Z ly; = 1],
JEDk

where ), is a set of k labels predicted by h for «. The loss function for precision@#k can be defined
as {par = 1 — precision@k. The conditional risk is then:

Lp@k’(h | .’1}) = Eyép@k (yv Z, h)
1
= 1-> Plylx); > [vi=1]
yey €DK
1
= 1-22 D Pylo)ly=1]
JEVL YEY
1
= 1- Z Z ni(x).
jEJ}k

The above result shows that the optimal strategy for precision@k is to predict £ labels with the
highest marginal probabilities 7; ().

We show now that PLTs obey strong theoretical guarantees. We first recall the result from (Jasinskal
et al.,[2016)) that relates the absolute difference between the true and the estimated marginal probability
of label j, |n;(x) — 7;(2)|, to the surrogate loss ¢ used to train node classifiers f,:. It is assumed
here that ¢ is a strongly proper composite loss (e.g, logistic, exponential, or squared-error loss)
characterized by a constant A (e.g. A = 4 for logistic loss)

Theorem 1. For any distribution P and internal node classifiers f,:, the following holds:

l
~ i—1 2 i—1
3(2) = iy(=) < PGz o)y 2 Ve 7 2.

where reg,(f.i | 271, x) is a binary classification regret for a strongly proper composite loss { and
A\ is a constant specific for loss £.

Proof. From Equation (4 we have:

l l
nj(@) =P(z|z) = [[P(zi |2 &) =P(" ' o) [[ P(zi] 2 1 @),

=0 i=n

forany 1 < n < [. A similar equation holds for the estimates 7;(x), P(z |z !, x), and
P(z"!|x).

By expressing 7);(x) and 7); () in the aforementioned way we get:

nj(x) — 0 ()

I
—
g
0
.
I
L)
|
—-
o)
B
N
i
\.P—*
&

) — P(z!7! |2)P(z | 271 x)

I
s
NN
L
&
s}
T
s
|

>For more detailed introduction to strongly proper composite losses, we refer the reader to (Agarwall 2014)
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By adding and subtracting P(z | 2!~ !, )P (z!~! | &) and using the fact that |a—b| < |a—c|+|b—c],
and that probability values are in [0, 1], we can write:

nj(x) —i;(z)| = |P(2'|z) - P(z'|2)
= [P 2)P(z |2 @) — P(4 (
= P(zl_1 | 2)P (2 |zl_17w) — 1?’(zl_1 \a:)f’(zl | zl_l, x)

+ Pla|2 L @)P( ! @) - Pla| 2 2)P(= ! o)

IN
9
N&\-
L
8
e
o
Ol
L
L)
|
il
5
OE
8
st
NN
L
&

— P! |m)‘P(zl 12171, ) — P(x \zH,x)\

+ Pz )P @) - P )
< P a)|Pa] ) - Plal 2 o)

n ]P(zH |2) — P(z! |m)’

We notice that rightmost term corresponds to the absolute value of the difference of probabilities
corresponding to one-element shorter code z!~!. Therefore we can use recursion and write:

l
nj() — ()] < P @) [Plails @) — Plala L w)| ©
1=0

Next, we express the above bound in terms of the regret of the strongly proper composite losses. The
(x, z;) pairs are generated i.i.d. according to P(z, z; | 2'~1). Assume that a node classifier has a form
of a real-valued function f:. Moreover, there exists a strictly increasing (and therefore invertible)
link function 1 : [0, 1] — R such that f,:(x) = ¥(P(z; | 271, x)). Recall that the regret of f: in
terms of a loss function ¢ at point x is defined as:
reg@(fzi | Ziilv :l?) = L@(.fz* | ziilv :D) - LZ(ziila :E) )
where L,(f,: | 2871, x) is the expected loss at point x:
L@(fzi zi_17 SE) = P(Zz | zi_la ZE)E(L fzi (ZB)) + (1 - P(Zl | zi_la w))g(_lv le(w» )

and L} (x) is the minimum expected loss at point .

If a node classifier is trained by a learning algorithm that minimizes a strongly proper composite loss,
then the bound (6) can be expressed in terms of the regret of this loss function (Agarwall 2014):

< \/E\/regé(fzi

l
<3 Pz |2) ’P(zi |21 2) — P | zi_l,m)’
=0

l
=Y P"a) [Pz @) — ¢ (f)
=0

l
<Y P a2 Vem T T )
=0

P(zi] 2"~ ) =07 (fa)

By putting the above inequality into (6), we get

zi-lx).

|77(:B7j) - ﬁ(m,j)
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The above result shows that the absolute error of estimating the marginal probability of label j can
be upperbounded by the regret of the node classifiers on the corresponding path from the root to
a leaf. Moreover, for zero-regret (i.e., optimal) node classifiers we obtain an optimal multi-label
classifier in terms of estimation of marginal probabilities 7;(x). This result can be further extended
for precision@k.

Let us denote a set of the top k labels with respect to the true marginals by ), and a set of the top k
labels with respect to predicted marginals by ). The conditional regret for precision@¥k is given

then by:
1
reg,ay(h|x) = % Z ni(x) — % Z n; ()
1€V, JEDK

Theorem 2. For any distribution P and classifier h delivering estimates 7);(x) of the marginal
probabilities of labels, the following holds:

1 .
reg,ak(h | ) Z mi(x) — ¢ > mile) < 2max|im(z) — ()]
leyk FEVK

Proof. Let us add and subtract the following two terms, . 3=y, 7i(z) and 1 3° .5, 7;(), to the
regret and reorganize the expression in the following way:

1 .
regar (b | ) Z ni(x % Z 7li(x)
7f€yk 1€V
S% Zieyk [7: () =7 ()|
1 . 1
+o > ijla) — Z > i)
J€Vk JEDK
$E 3w, | (@)= ()]

M CORED S

1€Vk JEDK

<0

Because of the relations given under the braces, we finally get:
regpar(h @) < 2max |ni(2) — ()] -

O

By getting together both theorems we get an upper bound of the precision@Fk regret expressed in
terms of the regret of the node classifiers. Again, for the zero-regret node classifiers, we get optimal
solution in terms of precision@#k.

B Hierarchical softmax with the pick-one-label heuristic

Proposition 2. Given conditionally independent labels, a classifier h such that hj(x) = n/;(z) for
all j € {1,...,m} has zero regret in terms of the precision@F; loss.

Proof. To proof the proposition it suffices to show that for conditionally independent labels the order
of labels induced by the marginal probabilities 7);(x) is the same as the order induced by the values
of () obtained by the pick-one-label heuristic (3)

mj(x) =P'(y; = 1|z) = ZZ P(y|x).

yey

In other words, for any two labels i, j € {1,...,m}, i # j, ni(x) > n;(x) < ni(x) > nj(z).
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Let n;(x) > n;(x). The summation over all y in (3) can be written in the following way:
Z y;N(y)P(y|z),
yey

where N (y) = (3°1", y;) ' is a value that depends only on the number of positive labels in y. In
this summation we consider four subsets of )/, creating a partition of this set:

S ={yeY yi=uiy; =w}, uwe{0,1}.

The subset S, 99 does not play any role because y; = y; = 0 and therefore do not contribute to the
final sum. Then (@) can be written in the following way for the i-th and j-th label:

m(x) = Y N@Pyl)+ > N(yPylz) (7)
u:S; yes))!

W@ = > NP+ > N(yPylx) )
S yes))!

The contribution of elements from Sil) ’jl is equal for both 7;(x) and 7} (x). It is so because the value

of N(y)P(y|x) is the same for all y € 82{31: the conditional joint probabilities P (y|x) are fixed and
they are multiplied by the same factors N (y).

Consider now the contributions of S; ; "0 and Si 91 to the relevant sums. By the definition of ), Sz1 JO,

and Sg ’jl, there exists bijection b; ; S 1 o 870 jl, such that for each y’ € SZ1 ’f there exists y” € Sg jl

equal to ¢’ except on the i-th and the j th position.

Notice that because of the conditional independence assumption the joint probabilities of elements

in Sl 0 and 80 ! are related to each other. Let y” = b ('), where ¢y € S and y” € Sg’jl. The
JOlnt probabihties are:

P(y'|z) = ni(x)(1—ni(x)) [] m@)”Q-mn(z)
le\{i,j}
and
Py'|z) = (L—m(@)ni(@) [ m@)* @ —m=)' .
leL\{i,j}
One can easily notice the relation between these probabilities:

P(y'|x) = ni(x)(1 — nj(x))qgi; and P(y"|z) = (1 —ni(x))n;(z)g

where ¢;; = i\ iy m(@)* (1 — m(z))~¥ > 0. Consider now the difference of these two
probabilities:

P(y'|lz) - P(y"|z) = m(@)(1—n;(@))gi; — (1 —ni())n;(@)qi s

G, (mi(®) (1 = n;()) — (1 = mi(2));(2))

i, (mi(x) = nj(@)).

From the above we see that n;(x) > n;(x) = P(y'|z) > P(y"|x). Due to the properties of the
bijection b;_;, the number of positive labels in y’ and y” is the same and N (y’) = N(y”), therefore

we also get7;(x) > 1;(x) = -, 510 N(y)P(ylx) = >, 501 N(y)P(y|z), which by (7) and
i,J i,7

gives us finally n;(x) > 1;(z) = ni(z) > n}(z).

The implication in the other side, i.e., ;(x) > n;(x) < P(y'|x) > P(y"|x) holds obviously for

¢;; > 0. For ¢; ; = 0, we can notice, however, that P(y’|z) and P(y”|z) do not contribute to

the appropriate sums as they are zero, and therefore we can follow a similar reasoning as above,
concluding that n;(x) > n;(x) < nj(x) > nj(x).

Thus for conditionally independent labels, the order of labels induced by marginal probabilities 7; (x)
is equal to the order induced by 7)3» (x). As the precision@F is optimized by k labels with the highest

marginal probabilities, we have that prediction consisted of %k labels with highest 772- (x) has zero
regret for precision@k.
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C Huffman codes for PLTs

In this section we analyze computational cost of PLTs in binary case, i.e. every inner node has
two children. We define the cost of a tree as the total expected fraction of instances which are used
in the inner nodes and show that for the multi-class case minimization of this cost coincides with
minimization of Huffman criteria. However, in the multi-label case, this does no longer hold.

We shall use prefix codes, as it is introduced in Section 4] to identify a path from the root to the
leaf. Accordingly, a prefix code z = (z1,...,2¢) € C determines a path with length |z| = £.
The probability to observe a (possibly partial) prefix code is p,: = P(2") with respect to the data
distribution. If we are given a data that consists of n instances, then the expected number of positive
instances that is used to train the node classifier in node 2z is np,:. Note that in the training process
of PLT, only the positive instances shows up in the training data of a child node of z?, thus one can
define the expected computational cost of a PLT with fixed structure, thus with fixed set of prefix
code C, as

|z]
Zzpzifl- 9

zeC i=1

The next proposition defines the relation of (9) and Huffman coding. Huffman coding can be naturally
defined in the multi-class case using P(y; = 1) as weights.

Proposition 3. Huffiman code minimizes the expected computational cost that is given in (9) among
binary codes if the data is multi-class.

Proof. Recall that the Huffman code minimizes the following criterion:
D palzl
zeC

In multi-class setting score p,: of each inner node z* equals to the sum of scores of its children, and
the objective function given in (9) can be rewritten as

|| |z|
Z szi—l =1+ sz Zdeg(zi)7

zeC i=1 zeC i=1

where deg(z) = #{c: 211 = ¢,2" = £°, 2 € C} is the number of children of the node z". In the
case of binary codes deg(z") = 2 and

2]

1+ sz Zdeg(zi) =1 +22pz|z|

zeC i=1 zeC

which completes the proof. O

Note that (Grave et al.| (2017) considered similar notion of computational cost and optimized in
a restricted setup, assuming that the tree depth is at most two. Of course, in practice, the p,:
values are not known, but are estimated based on observations from the data distribution. Let
us denote an estimate p,: of p,i. An interesting question to address is that to what extent the

empirical computational cost ) . Zlfz‘l pi—1 concentrates around its expected values, and on
what parameter of the code/tree structure does depend on.

For multi-label case score of an inner node cannot be represented by a sum of children scores, and
this result does not hold.

D Pseudocode of PLTs

The pseudocode below presents the training and prediction procedures of PLTs in detail. PLTs
can be trained either in the online or batch mode. Algorithm |I|follows the former mode used, for
example, in XT, the state-of-the-art variant of PLTs described in Section Note that learning of
feature embeddings used in XT is not included in the pseudocode.
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In Algorithm 2] we present an inference algorithm, which uses the uniform-cost search for finding
the top k labels. The algorithm searches the tree by starting from the root node 2°. It uses a priority
queue @ to store pairs of the node z* and its probability estimate 7j,:. The algorithm pops the element
with the highest probability estimate from the queue. If the element is a leaf we add the corresponding
label to the final prediction. Otherwise, the algorithm estimates probabilities of the children nodes
and adds them into the queue. Once we found the k-th label or we run out of the pairs in the queue,
we stop the search procedure.

Algorithm 1 Incremental learning of a PLT:
Input:
T': alabel tree with £ nodes
Aonline: an incremental learning algorithm
Dy aset of training examples (x, y)

Output:
Fi = {f»i }!: asetof t node (binary) classifiers
1: -Ft = @ )
2: for each node z* € T' do > Initialization of binary classifiers
3: Fi + FiU new classifier f,:
4: for each training example (z,y) € Dy do
5: if Zj“:l y; = 0 then > Select nodes for the positive and negative update
6: Zpositive —0
7. 2’7ﬂposilive 20
8: else
9: foreachy; = 1,5 € {1,...,m} do
10: z < encode j
Lo
11 Zpositive — Zpositive ) { U 2! }
i=0
12: for each 2 € Zsiive doO
13: Z—\positive — Z—\positive U { U(zi—l’ Zz)} \ Zpositive
z;
14: for each node z* € Zpositive 4O > Update node classifiers
15: fzi — A(m]ine(fzi, T, 1)
16:  for each node 2’ € Z_giive do
17 fzi — Aonline(fzi7wa0)

18: return F;.

E Additional experimental results

E.1 Comparison of PLTs and HSM on synthetic data

In this section we validate our theoretical results presented in Section [5} which show that HSM
is not amenable to model the marginal probabilities in general for multi-label problems. In this
case, HSM with pick-one-label heuristic should be outperformed in terms of precision@#k by PLTs
which are consistent for this performance measure. To validate this claim empirically, we compare
the performance of PLTs and HSM on synthetic datasets of three types: multi-label data with
independent labels, multi-label data with conditionally dependent labels and multi-class data.

All synthetic models are based on linear models parametrized by a weight vector w of size d. The
values of the vector are sampled uniformly from a d-dimensional sphere of radius 1. Each instance x,
in turn, is represented as a vector sampled from a d-dimensional disc of the same radius.
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Algorithm 2 Top-k prediction with a PLT:
Input:
T': alabel tree with ¢ nodes
Fi = {f.i }!: asetof t node (binary) classifiers
x: atest example
k: a size of prediction

Output:
y: a vector with top k labels for the test example

1. g« {0}
2: @ < PRIORITYQUEUE() > Initialization of priority queue
3: add(Q, (1,2%))
4: while Q # () and Z;nzl g; < kdo > Check if k labels not found
(121, 2") < pop(Q)
if i € C then _ > Check if leaf node reached
J < decode z*
gj —1
9: else
10: for each z;; 1 do > For each node’s children
11: 2t (28 z)
12: add(Qv ('f}z7 ' szi (Zi-‘rl | ziﬂ $), zi+1))
13: return y.

Multi-class distribution. We associate a weigh vector w, with each label j € {1,...,m}. The
model assigns probabilities to labels at point « based on the softmax schema
exp(cw;w)

() = = 10
(@) >y exp(ew,x) (19)
and draws the positive label according to this probability distribution over labels. Scaling factor c is
added to control noise in the model. Higher values of ¢ give less noisy model.

Multi-label distribution with conditionally independent labels. The model is similar to the
previous one used for the multi-class distribution. The difference lays is normalization as the marginal
probabilities do not have to sum up to 1. To get a probability of the j-th label, we use the logistic
transformation:

exp(w;r x)

n;(x)

Then, we assign a label to an instance based on:

T 17 exp(w] )

y; = [r <m;(z)],

where the random value r is sampled uniformly and independently from range [0, 1] for each instance
@ and label j € {1,...,m}.

Multi-label distribution with conditionally dependent labels. To model conditionally dependent
labels we use the mixing matrix model based on latent scoring functions generated by W =
(wi,...,wy). The m x m mixing matrix M introduces dependencies between noise €, which
stands for the source of randomness in the model. The models w; are sampled from a sphere of radius
1, as in previous cases. The values in the mixing matrix M are sampled uniformly and independently
from [—1, 1]. The random noise vector € is sampled from N (0,0.25). The label vector y is then
obtained by element-wise evaluation of the following expression:

y=[MW'Tz+e) > 0]

Notice that if M was an identity matrix the model would generate independent labels.
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Table 2: Means and standard deviations of 50 runs of each experiment. The p-values on the right
indicate the significance of the observed differences. The results of HSM and PLTs on multi-class
data were always equal.

HSM PLT p-values
mean stdev | mean stdev | t-test sign Wilcoxon
multi-class 2190 274 | 2190 274
multi-label independent | 32.57  0.34 | 32.58  0.33 0.4367 0.3222 0.5980
multi-label dependent 70.68 573 | 71.68  5.65 | 9.80E-14 3.71E-11  3.90E-09

Experimental setting. PLTs and HSM are usually implemented as online learning algorithms, i.e.,
the node classifiers are updated in an incremental way, example by example. To minimize the impact
of the hyperparameter tuning of online algorithms, we have decided to implement batch versions
of both algorithms using the LIBLINEAR-based (Fan et al.| 2008 logistic regression. The sets of
training instances for each node classifier are appropriately constructed by taking the corresponding
conditioning of the probabilistic models into account. In the case of HSM with the pick-one-label
heuristic, we first transform each multi-label example to s multi-class copies of it, one copy for each
its label. Each such copy gets then a weight of 1/s. Such transformation should be concordant with
the theoretical model (3).

In the experiments we used the following parameters of the synthetic models: d = 3 (i.e., the number
of features), n = 100000 instances (split 1 : 1 for training and test subsets), and m = 32 labels or
classes. In the case of the multi-class model we report results with the scaling factor ¢ = 10. The
choice of ¢ does not change the interpretation of the results. To train logistic regression we use a fixed
value of the regularization parameter, standing for a very weak regularization. For all experiments we
report the results in terms of precision@1.

Observations. Table 2] presents the average results of all experiments besides with the standard
deviation of obtained values. As expected the performance of PLTs and HSM on the multi-class data
are exactly the same. For the other models, we additionally include the p-values of statistical tests
run to verify, whether there is a significant difference in performance between PLTs and HSM with
the pick-one-label heuristic. In the case of the multi-label data with conditionally independent labels
the test shows that there is no evidence to reject the hypothesis that the performance of PLTs and
HSM is the same. In the case of multi-label data with conditionally dependent labels, the statistical
tests show that PLTs are significantly better than HSM with the pick-one-label heuristic.

E.2 Comparison of PLTs and HSM on benchmark data

In Table[3| we present similar results, but obtained on the benchmark datasets. We use two models.
The first one follows the sparse representation and uses an implementation of PLTs and HSM in
VowPAL WABBIT (Langford et al., 2007). The second one is based on FASTTEXT and produces
the dense representation. In all models we use Huffman trees. The results clearly indicate the better
performance of PLTs over HSM.

Table 3: Precision@k with k = {1,3,5} of a simple HSM and a simple PLT implementaions.

VOWPAL WABBIT ‘ FASTTEXT VOWPAL WABBIT FASTTEXT
Dataset HSM | PLT HSM | PLT Dataset HSM | PLT HSM | PLT
56.98 74.55 66.39 73.19 86.69 91.46 90.18 92.98
EUR-Lex 46.99 60.60 54.05 5779 | AmazonCat-13K |  72.00 76.00 72.53 75.75
39.09 50.05 44.73 46.98 57.97 61.40 56.20 59.53
70.20 84.34 83.02 85.11 41.58 45.27 42.17 46.98
Wiki-30K 60.11 72.34 69.66 73.12 | Delicious-200K 33.24 38.95 37.94 40.99
53.17 62.72 59.50 62.67 28.04 35.59 35.77 38.04
36.90 41.63 41.28 41.78 33.64 36.85 25.04 26.18
WikiLSHTC-325K | 22.30 26.78 24.68 24.96 | Amazon-670K 28.58 3248 21.06 22.76
16.60 20.39 18.08 18.53 25.01 29.15 18.28 20.29
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E.3 The ablation analysis on benchmark datasets

Table [ contains results of the ablation analysis in which we compare different components of the XT
algorithm. We analyze the influence of the Huffman tree vs. top-down clustering, the simple averaging
of features vectors vs. the TF-IDF-based weighting, and no regularization vs. L2 regularization.
For every configuration, we conducted a grid search of hyperparameters from ranges reported in
Appendix [E.4] The results clearly show that the components need to combined together to obtain the
best results. The best combination is usually the one that uses top-down clustering, TF-IDF-based
weighting, and L2 regularization. It is worth to notice that top-down clustering alone gets worse
results than Huffman trees with TF-IDF-based weighting and L2 regularization.

Table 4: Precision@¥k scores with k = {1, 3,5} of different variants of PLT in FASTTEXT (EXTREMETEXT)

. . Huff. + . Huff. + L2 Clus. + Clus. + L2
Dataset ‘ Metrics Huff. ‘ TE-IDF ‘ Huff. + L2 ‘ + TE-IDF H Clus. H TF-IDF ‘ Clus. +L2 ‘ + TE-IDF
P@l 63.39 71.20 62.79 74.60 68.31 75.05 65.05 77.68
Eurlex P@3 50.48 57.26 48.99 60.36 54.62 61.65 50.87 63.37
P@5s 41.19 46.93 40.16 49.72 4523 50.99 41.71 52.85
P@l 90.10 89.19 90.84 91.08 72.95 77.13 91.73 92.43
AmazonCat-13K P@3 72.67 72.81 73.10 75.27 61.66 65.76 75.07 77.65
P@5 57.69 58.30 57.69 60.34 48.38 52.72 59.63 62.74
pP@l 78.04 78.14 82.28 85.23 78.40 78.69 82.13 85.21
Wiki-30K P@3 63.31 67.47 68.75 73.52 65.62 66.40 69.22 73.18
P@s 52.65 56.00 58.33 63.71 55.61 56.77 58.69 63.39
P@l 45.71 4724 46.48 47.85 44.58 45.13 46.55 47.31
Delicious-200K P@3 40.69 40.88 41.38 42.08 40.42 40.63 41.08 41.63
P@s 38.02 37.74 38.78 39.13 38.15 38.23 38.25 38.88
P@l 36.23 38.28 41.10 42.83 34.39 39.66 54.95 58.73
WikiLSHTC-325K P@3 20.60 22.43 25.62 26.33 21.17 24.79 36.42 39.24
P@s 14.70 16.33 19.10 19.45 15.09 18.28 27.25 29.26
P@l 41.01 40.62 41.55 49.80 46.63 49.20 56.04 64.48
‘Wiki-500K P@3 24.79 25.68 25.94 32.39 31.59 34.52 38.87 45.84
pP@s 18.64 19.74 19.79 24.62 24.30 26.83 30.46 35.46
P@1 23.19 29.70 21.64 32.11 28.54 36.24 28.95 39.90
Amazon-670K P@3 19.80 25.84 18.11 27.77 25.52 32.15 25.74 35.36
P@s 17.48 22.96 15.83 24.64 23.30 29.19 23.22 32.04

E.4 Tuning of hyperparameters

The PLT has only one global hyperparameter which is the degree of the tree denoted by b. The other
hyperparameters are associated with the node classifiers. The HSM and PLT in Vowpal Wabbit was
tuned with the stochastic gradient descent with a step size 7 calculated separately for each node
according to n; = 1 X (1/t)P where ¢ is number of node updates and 7 and p are hyperparameters.
In FASTTEXT-based methods, HSM, LEARNED TREE and XT, 7, decreased linearly during training
from 7 to 0.0. In the XT the optimization methods has been extended by L2 regularization, so it has
one additional parameter. Balanced k-means clustering used to build a tree in XT has also a stopping
parameter € set by default to 0.001.

Table 5: The hyperparameters of the HSM and PLT methods and their ranges used in hyperparameter
optimization. Notation: b — tree arity, 1) — learning rate

Hyperparameter Range

{2,...,32}
n [0.0001 — 1.0]

number of epochs | {20, 30,40}

F Information about the benchmark datasets

Table 8] contains the basic statistics of the benchmark datasets used in the experiments taken from the
Extreme Classification Repository: http://manikvarma.org/downloads/XC/XMLRepository,
html.
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Table 6: The hyperparameters of the FASTTEXT and LEARNED TREE methods and their ranges used
in hyperparameter optimization. Notation: b — tree arity, ) — learning rate

Hyperparameter Range
12,....32]
" [0.0001 — 1.0]
number of epochs | {20, 30,40}
dim {500}

Table 7: The hyperparameters of the XT method and their ranges used in hyperparameter optimization.
Notation: b — tree arity (number of centroids used in k-means clustering), € — stoping condition of
k-means clustering, 1 — learning rate

Hyperparameter Range
b {2}
¢ {0.001}
n {0.05,0.1,0.2,0.3,0.4,0.5}
L2 regularization {0.001, 0.002,0.003}
number of epochs {20, 30,40}
dim {500}
max leaves {100}

Table 8: Statistics of the benchmark datasets.

Number of Number of Number of Number of Avg. points  Avg. labels
Dataset

features labels train points  test points per label per point
EURLex-4K 5000 3993 15539 3809 25.73 5.31
AmazonCat-13K 203882 13330 1186239 306782 448.57 5.04
Wikil0-31K 101938 30938 14146 6616 8.52 18.64
Delicious-200K 782585 205443 196606 100095 72.29 75.54
WikiLSHTC-325K 1617899 325056 1778351 587084 17.46 3.19
Wikipedia-500K 2381304 501070 1813391 783743 24.75 477
Amazon-670K 135909 670091 490449 153025 3.99 5.45
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