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Extreme Multi-Label Classification (XMLC)

Problem setting

x ∈ X h(x)−−−−→ y ∈ Y := {0, 1}m

– Number of labels m is large (≥ 105).
– Each example has only few relevant labels, ∥y∥1 ≪ m.
– Most labels are relevant only to few instances ⇒ tail labels.
– Obtaining labels is challenging ⇒ missing labels.
– Applications: tagging, recommendation, ranking.

Long-tailed label distribution
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Missing labels
Categories (55 assigned): Alan Turing, 1912 births, 1954
deaths, 1954 suicides, 20th-century mathematicians, 20th-
century atheists, 20th-century British scientists, 20th-
century English philosophers, Academics of the University
of Manchester, [...], Computer designers, English atheists,
English computer scientists, English inventors, English lo-
gicians, English male long-distance runners, English math-
ematicians, English people of Irish descent, English people
of Scottish descent, [...], Recipients of British royal pardons,
Suicides by cyanide poisoning, Suicides in England, Theo-
retical computer scientists, Deaths by poisoning

Alan Turing Missing (e.g.): 20th-century English scientists,
(over 8000 revisions) Enigma machine, Suicides by poisoning

Missing labels and propensity models

Missing labels
–Y — ground-truth labels,
– Ỹ — observed labels.

e.g.:
y1 y2 . . . ym

y = 1 1 . . . 0
ỹ = 1 0 . . . 0

– In general, we have:

P
[
Ỹ ⪯ Y |X

]
= 1, P

[
Ỹ ⪯̸ Y |X

]
= 0,

where:
– Ỹ ⪯ Y means Ỹj ≤ Yj for all j ∈ [m],
– Ỹ ⪯̸ Y means that there is at least one label for which Ỹj > Yj.

General propensity model
– Propensities defined over entire label vectors:

pỹ(y, x) := P
[
Ỹ = ỹ |Y = y, X = x

]
– Reconstruction of the ground truth distribution from the observed one

requires an exponential number of parameters.

Label-wise propensity model
– Assumes the propensities to be defined label-wise:

pj(X) := P
[
Ỹj = 1 |Yj = 1, X

]
.

– Define observed and ground-truth conditional probabilities:

η̃j(x) := P
[
Ỹj = 1 |X = x

]
, ηj(x) := P[Yj = 1 |X = x] .

– The relation between them is given by:

η̃j(x) = pj(x)ηj(x) , ηj(x) = η̃j(x)/pj(x) .

Unbiased losses
– Task risk of classifier h : X −→ Rm (x 7→ h(x) =: ŷ):

Riskℓtask[h;X,Y ] := E[ℓtask(Y , h(X))] ,

where ℓtask : Y ×Rm −→ R≥0 is the (task) loss.
– If propensities are known, then they can be used to construct an unbiased

loss ℓ̃ s.t. ∀h : Riskℓ[h;X,Y ] = Riskℓ̃[h;X, Ỹ ] .

Recipes to follow

Bias-controlled test sets, alternative propensity models, and
different estimation approaches
Estimates based on a bias-controlled test set for Yahoo R3 data with different
propensity models fitted to the data:

ϕP(π̃j; β, γ) := (βπ̃j)
γ

ϕR(π̃j; c, . . . , h) := c+
d− c

(e + f exp(−gπ̃j))
1/h

ϕPEJL - Propensity Estimation via Joint
Learning [1, 2] estimates pjs jointly with
training a classifier on a biased train set.

Bias-controlled test set allows to evaluate
propensity models:
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pj = ϕJPV ϕJPV (fit.) ϕP (fit.) ϕR (fit.) ϕPEJL pj

P@1 (%) 66.03 48.58 63.53 71.23 68.09 73.72

Alternative task losses for long-tails

Fmacro
β ({yi, ŷi}n1) = 1

m

∑
j
(1+β2)

∑
i yijŷij

β2
∑

i yij+
∑

i ŷij

Abandonment@k(y, ŷ)[3] = 1[∀j ∈ topk(ŷ) : yj ̸= 1]

Coverage ({yi, ŷi}n1) = m−1 |{j ∈ [m] : ∃i ∈ [n] s.t. yij = ŷij = 1}|

Current state-of-the-art and its shortcomings

– A seminal paper by Jain et al. [3] has introduced propensities into XMLC to
deal with missing and long-tail labels.

– Results from this paper have been followed in many other papers.

Propensity-scored losses (measures)

Measure definition Unbiased estimate

P@k(y, ŷ) = k−1
∑

j∈topk(ŷ) yj PSP@k(y, ŷ) = k−1
∑

j∈topk(ŷ) ỹj/pj

nDCG@k(y, ŷ)=

∑
j∈topk(ŷ)

yj
log(rj(ŷ)+1)∑k

j=1
1

log(j+1)

PSnDCG@k(y, ŷ)=

∑
j∈topk(ŷ)

ỹj
pj log(rj(ŷ)+1)∑k

j=1
1

log(j+1)

(topk maps a vector to the indices of its top-k components; rj(ŷ) gives the rank of the j-th element in the vector.)

The JPV propensity model

pj = ϕJPV(π̃j;n, a, b)

:=
1

1 + (log n− 1)(b + 1)ae−a log(nπ̃j+b)
,
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where π̃j := P
[
Ỹj = 1

]
, n is the number of training instances, and a and b are

dataset-dependent parameters. It is assumed that pjs are constant values
without dependence on x.

Shortcomings and pitfalls

– Unclear missing-labels assumptions

Jain et al. [3] prove E[ℓ(Y , ŷ)] = E
[
ℓ̃(Ỹ , ŷ)

]
for any fixed prediction ŷ

without a clear dependence on X , which further implies the assumptions
behind propensities to be unclear.

– Estimation of parameters, reproducibility, and propensities as a function
of frequency

In order to determine values for a and
b, Jain et al. 2016 [3] investigated two
datasets (Wikipedia and Amazon) in
which auxiliary information could be
used to identify some missing labels.

Replicated propensity estimates for the
Wikipedia dataset and the ϕJPV model:
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– Sensitivity to the number of instances
Propensities obtained by the JPV model converge to 1 in the limit:

lim
n→∞

ϕJPV(π̃j, n) =
1

1 + (b + 1)a limn→∞(log n− 1)e−a log(π̃jn+b)
= 1.

– Implausible results and hidden normalization

PSP@k usually reported as:

NormPSP@k =

∑n
i=1PSP@k(ỹi, ŷi)∑n

i=1maxzPSP@k(ỹi, z)
.

Effect on the results of PfastreXML [3]
on Amazon-670K:

PSP(%) @1 @3 @5
Unnormalized 326.47 282.28 250.57
Normalized 29.93 31.26 32.80

– Mismatched usage for missing and tail labels
Missing labels are an orthogonal problem to tail labels.
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