
ONLINE PROBABILISTIC LABEL TREES (OPLTS)
Kalina Jasinska-Kobus∗,1,3 Marek Wydmuch∗,1 Devanathan Thiruvenkatachari2 Krzysztof Dembczyński1,2

∗Equal contribution 1Poznań University of Technology, Poland 2Yahoo! Research, New York, USA 3ML Research at Allegro.pl, Poland

Motivation
– In modern machine learning applications, the label space can be enormous,

containing even millions of different labels (eXtreme Classification (XC)):
– content annotation for multimedia search,
– different types of recommendation: webpages-to-ads, ads-to-bid-words,

users-to-items, queries-to-items, or items-to-queries.
– In these applications learning algorithms run in rapidly changing environ-

ments. The space of labels and features might grow over time, as new data
points arrive.

– Retraining a XC model every time a new label is observed is expensive.
– There is need for XC algorithms that can efficiently adapt to the growing

label and feature space.

Probabilistic Label Trees (PLTs)
– Multi-label classification:

x = (x1, x2, . . . , xd) ∈ Rd h(x)−−−−→ y = (y1, y2, . . . , ym) ∈ {0, 1}m

– An instance x ∈ X is associated with a subset of labels Lx ⊆ L (positive
labels). Set Lx is identified with the binary vector y = (y1, y2, . . . , ym) ∈ Y ,
in which yj = 1⇔ `j ∈ Lx.

– Probabilistic Label Trees (PLTs) [1] use tree T (with set of nodes VT ), in
which each leaf corresponds to one label, to factorize conditional probabili-
ties of labels:

ηlj(x) = P(yj = 1|x) =
∏

v∈Path(lj)

η(x, v)

– PLTs has been recently implemented in several state-of-the-art algorithms:
PARABEL [2], EXTREMETEXT [3], BONSAI [4], ATTENTIONXML [5].

References

[1] Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson Pfannschmidt, Timo Klerx, and Eyke Hüllermeier. Extreme F-measure maximiza-
tion using sparse probability estimates. In ICML, 2016

[2] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In World Wide Web, 2018

[3] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and Krzysztof Dembczynski. A no-regret generalization of hierarchical soft-
max to extreme multi-label classification. In NeurIPS, 2018

[4] Sujay Khandagale, Han Xiao, and Rohit Babbar. Bonsai - diverse and shallow trees for extreme multi-label classification. 2019

[5] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and Shanfeng Zhu. Attentionxml: Label tree-based attention-aware deep model
for high-performance extreme multi-label text classification. In NeurIPS. 2019

[6] Alina Beygelzimer, John Langford, Yury Lifshits, Gregory B. Sorkin, and Alexander L. Strehl. Conditional probability tree estimation analysis and algo-
rithms. In UAI, 2009

[7] Wen Sun, Alina Beygelzimer, Hal Daumé Iii, John Langford, and Paul Mineiro. Contextual memory trees. In ICML, 2019

Incremental PLTs
– PLT can be trained incrementally (Incremental PLT (IPLT)), on observa-

tions fromD = {(xi,yi)}ni=1, using an incremental learning algorithm Aonline

(e.g. Adagrad) for updating the tree node classifiers η̂.
– IPLT requires the tree structure T to be given in advance.
– In each iteration, ASSIGNTONODES procedure returns the set of positive

and negative nodes for given tree T and set of positive labes Lxi.

Algorithm 1 IPLT.TRAIN(T,Aonline,D)

1: for (xi,Lxi) ∈ D do . For each observation in D
2: (P,N) = ASSIGNTONODES(T,Lxi) . Compute its positive and negative nodes
3: for v ∈ P do Aonline.UPDATE(η̂v, (xi, 1)) . Update classifiers of all positive nodes
4: for v ∈ N do Aonline.UPDATE(η̂v, (xi, 0)) . Update classifiers of all negative nodes

Online Probabilistic Label Trees (OPLTs)
– Online Probabilistic Label Tree (OPLT) is an extension of IPLT that trains

a label tree classifier fully online – the tree is constructed simultane-
ously with the incremental training of node classifiers, without any prior
knowledge of the set of labels or training data.

– OPLT uses auxiliary node classifiers θ̂ that accumulate positive updates
and are used to initialize classifiers in new nodes added to a tree.

– UPDATETREE builds the tree structure. It iterates over all new labels from
Lx and adds them to the tree according to policy Apolicy.

– The tree needs to be extended by one or two nodes for each new label, there
are in general three variants of performing this step:

Tree Tt−1 after t− 1 itera-
tions with label l1 and l2.

Variant 1: A leaf node v′′1
for new label l3 added as
a child of an internal node
v1.

Variant 2: A leaf node v′′1
for new label l3 and an in-
ternal node v′1 (with all chil-
dren of v1 reassigned to it)
added as children of v1.

Variant 3: A leaf node v′′2
for new label j and a leaf
node v′2 (with a reassigned
label of v2) added as chil-
dren of v2.

Algorithm 2 OPLT.TRAIN(T,Aonline, Apolicy,D)

1: for (xi,Lxi) ∈ D do . For each observation in D
2: if Lxt \ Lt−1 6= ∅ then . If the observation contains new labels,
3: T = UPDATETREE(xi,Lxi, T, Apolicy) . add them to the tree.

4: (P,N) = ASSIGNTONODES(T,Lxi) . Compute its positive and negative nodes
5: for v ∈ P do . For all positive nodes
6: if θ̂(v) ∈ Θ then . If auxiliary classifier exists,
7: Aonline.UPDATE(θ̂v, (x, 1)) . update it with a positive update with xi.
8: Aonline.UPDATE(η̂v, (x, 1)) . Update node classifier with a positive update
9: for v ∈ N do Aonline.UPDATE(η̂v, (x, 0)) . Update classifiers of all negative nodes

Two properties of OPLT
– Two properties of OPLT in relation to IPLT, which we formalize and

prove:
– properness: the model trained by OPLT is equivalent to an IPLT model

trained with the tree structure obtained by OPLT.
– efficiency: space and time complexity of OPLT is in a constant factor of

the complexity of IPLT.

OPLT IPLT
Initial state:

Update: (x1, {`1}),
`1 assigned to root
node v1

Update: (x2, {`2}),
v1 extended with
variant 3

Update: (x3, {`3}),
v1 extended with
variant 2

Update: (x4, {`4}),
v5 extended with
variant 3

Implementation
– Two policies Apolicy for OPLT, both traverse a tree from top to bottom, until

they reach a pre-leaf node (a parent of a leaf node):
– RANDOM policy (OPLTR) – randomly selects child node.
– BEST-GREEDY policy (OPLTB) – selects a child node using a trade-off

between the balancedness of the tree and fit of x. Similar to the tree
building algorithm of Conditional Probability Tree (CPT) [6].

– Similar to PARABEL [2] and EXTREMETEXT [3], pre-leaf nodes can be of
much higher arity than other internal nodes.

Results
– Contextual Memory Tree (CMT) [7] is currently the only algorithm that

addresses the problem of fully online learning in the extreme setting.
– OPLT can also be used with an initial tree structure. We call such ap-

proach OPLT with warm-start (OPLT-W). Here, we use a sample of 10%
of training examples to construct the initial tree.

Table 1: Standard and propensity scored precision at {1, 5} and train CPU time of PARABEL,
PLT, CMT, OPLT for extreme multi-label classification tasks.

AmazonCat-13K Wiki10-31K
Algorithm P@1 P@5 PP@1 PP@5 Ttrain P@1 P@5 PP@1 PP@5 Ttrain

PARABEL 92.64 63.81 50.89 71.27 10.8m 84.17 63.30 11.67 13.77 4.2m
IPLT 93.11 63.98 49.97 70.77 34.2m 84.87 65.31 12.26 14.80 18.3m

CMT 89.43 54.23 47.48 56.03 168.2m 80.59 55.25 9.68 9.67 35.1m
OPLTR 92.66 62.52 48.98 67.51 99.5m 84.87 65.31 11.64 14.12 30.3m
OPLTB 92.74 62.91 49.30 68.64 84.1m 84.87 65.31 11.59 14.26 27.7m
OPLT-W 93.14 63.92 49.86 70.44 43.7m 84.87 65.31 11.69 14.43 28.2m

WikiLSHTC-320K Amazon-670K
Algorithm P@1 P@5 PP@1 PP@5 Ttrain P@1 P@5 PP@1 PP@5 Ttrain

PARABEL 62.78 30.27 25.91 34.77 14.4m 43.13 34.00 25.39 31.21 7.2m
IPLT 60.80 29.24 24.16 32.29 175.1m 43.55 35.20 25.25 32.12 79.4m

OPLTR 47.76 23.37 16.12 22.68 330.1m 38.42 31.32 20.28 27.35 134.2m
OPLTB 54.69 26.31 20.69 28.14 300.0m 41.09 33.42 23.41 30.49 111.9m
OPLT-W 59.23 28.38 22.56 30.23 205.7m 42.21 34.25 23.65 30.95 98.3m

Figure 1: Online progressive performance of CMT and OPLT with respect to the number of
samples on few-shot multi-class classification tasks.

0.2 0.4 0.6 0.8 1

·105

4

6

8

10

Number of examplesEn
tr

op
y

re
du

ct
io

n
(b

it
s)

ALOI

CMT
OPLTR

OPLTB

1 1.5 2 2.5 3

·104

4

6

8

10

Number of examples

Wikipara-3

1 1.5 2 2.5 3 3.5 4 4.5 5

·104

4

6

8

10

Number of examples

Wikipara-5

Source code: https://github.com/mwydmuch/napkinXC

The 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021.


