
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-021-00751-x

Efficient set-valued prediction in multi-class classification

Thomas Mortier1 ·Marek Wydmuch2 · Krzysztof Dembczyński2,3 ·
Eyke Hüllermeier4 ·Willem Waegeman1

Received: 15 May 2020 / Accepted: 12 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate
classes instead of predicting a single class label with little guarantee. More precisely,
the classifier should strive for an optimal balance between the correctness (the true
class is among the candidates) and the precision (the candidates are not toomany) of its
prediction. We formalize this problem within a general decision-theoretic framework
that unifies most of the existing work in this area. In this framework, uncertainty is
quantified in terms of conditional class probabilities, and the quality of a predicted
set is measured in terms of a utility function. We then address the problem of finding
the Bayes-optimal prediction, i.e., the subset of class labels with the highest expected
utility. For this problem, which is computationally challenging as there are exponen-
tially (in the number of classes) many predictions to choose from, we propose efficient
algorithms that can be applied to a broad family of utility functions. Our theoretical

Responsible editors: Ira Assent, Carlotta Domeniconi, Aristides Gionis.

B Thomas Mortier
thomasf.mortier@ugent.be

Marek Wydmuch
mwydmuch@cs.put.poznan.pl

Krzysztof Dembczyński
kdembczynski@cs.put.poznan.pl

Eyke Hüllermeier
eyke@upb.de

Willem Waegeman
willem.waegeman@ugent.be

1 Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links
653, 9000 Ghent, Belgium

2 Institute of Computing Science, Poznań Unversity of Technology, Piotrowo 2, 60-965 Poznań,
Poland

3 Yahoo! Research, 770 Broadway, New York, NY 10003, USA

4 Institute of Informatics, LMU Munich, Akademiestr. 7, 80799 Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00751-x&domain=pdf
http://orcid.org/0000-0001-9650-9263

T. Mortier et al.

results are complemented by experimental studies, in which we analyze the proposed
algorithms in terms of predictive accuracy and runtime efficiency.

Keywords Set-valued prediction · Multi-class classification · Expected utility
maximization

1 Introduction

In probabilistic multi-class classification, one often encounters situations in which the
classifier is uncertain about the class label for a given instance. In such cases, instead of
predicting a single class, it might be beneficial to return a set of classes as a prediction,
with the idea that the correct class should at least be contained in that set. For example,
in medical diagnosis, when not being sure enough about the true disease of a patient,
it is better to return a set of candidate diseases. Provided this set is sufficiently small
compared to the total number of diagnoses, it can still be of great help for a medical
doctor, because only the remaining candidate diseases need further investigation.

Let us introduce set-valued prediction in a formal way. We assume training exam-
ples {(xi , yi)}Ni=1 from a distribution P(x, y) on X ×Y , with X some instance space
(e.g., images, documents, etc.) and Y = {c1, . . . , cK } a class space consisting of K
classes. In a probabilistic multi-class classification setting, we estimate the condi-
tional class probabilities P(· | x) over Y , with properties ∀c ∈ Y : 0 ≤ P(c | x) ≤
1 ,

∑
c∈Y P(c | x) = 1 . This distribution can be estimated using a wide range of

well-known probabilistic methods (see further below). We will consider a set-valued
prediction Ŷ from the power set of Y , i.e., predictions are (non-empty) subsets of Y ,
or more formally, Ŷ ∈ 2Y \ {∅}.

In the literature, different methods for set-valued prediction have been proposed
(cf. Sect. 4), essentially following two main directions. The first idea is to construct
a set that covers the true outcome with a predefined (high) probability. A set-valued
prediction of that kind can be seen as a generalization of the notion of confidence
interval in frequentist statistics or credible interval in Bayesian statistics. A well-
known representative of this statistical approach is conformal prediction (Shafer and
Vovk 2008). The second direction is rooted in (Bayesian) decision theory and involves
the notion of a utility function, which evaluates a set-valued prediction in terms of its
usefulness (Del Coz et al. 2009; Corani and Zaffalon 2008, 2009; Zaffalon et al. 2012;
Yang et al. 2017b). Typically, the utility specifies a compromise between two natural
though conflicting criteria: like in the statistical approach, the prediction should be
correct in the sense of covering the true class, but at the same time, it should be precise
and not contain too many options. Given a utility function of that kind, combined with
a probability estimate on the classes, the natural decision-theoretic approach consists
of predicting the set with the highest expected utility. In this paper, we will focus on
this approach, which we refer to as the set-based utility maximization framework.

123

Efficient set-valued prediction in multi-class classification

1.1 Set-based utility maximization

In set-based utility maximization, the quality of the prediction Ŷ can be expressed by
means of a set-based utility function u(c, Ŷ), where c corresponds to the ground-truth
class and Ŷ is the predicted set. Typically, a decision-theoretic framework is consid-
ered, where one estimates a probabilistic model, followed by an inference procedure
at prediction time. At prediction time, the goal is to find the Bayes-optimal solution
Ŷ ∗
u by expected utility maximization:

Ŷ ∗
u (x) = arg max

Ŷ∈2Y\{∅}
EP(c | x)[u(c, Ŷ)] = arg max

Ŷ∈2Y\{∅}

∑

c∈Y
u(c, Ŷ)P(c | x) ,

= arg max
Ŷ∈2Y\{∅}

U (Ŷ , P, u) , (1)

where we introduce the shorthand notation U (Ŷ , P, u) for the expected utility.
Several authors have solved this optimization problem for different utility functions

that are members of a general family u : Y × 2Y \ {∅} → [0, 1], defined as follows:

u(c, Ŷ) =
{
0 if c /∈ Ŷ ,

g(|Ŷ |) if c ∈ Ŷ ,
(2)

where |Ŷ | denotes the cardinality of the predicted set Ŷ . This family is characterized
by a decreasing sequence (g(1), . . . , g(K)) ∈ [0, 1]K that can have different forms.
Del Coz et al. (2009), who use the term nondeterministic classification as a synonym
for set-based utility maximization, concentrate on three scores from the information
retrieval community: precision with gP(s) = 1/s, recall with gR(s) = 1, and the Fβ -
measurewith gFβ(s) = (1+β2)/(β2+s). Other utility functionswith specific choices
for g are also studied in the literature (Corani and Zaffalon 2008, 2009; Zaffalon et al.
2012; Yang et al. 2017b; Nguyen et al. 2018). Those utility functions include:

gδ,γ (s) = δ

s
− γ

s2
, gδ(s) = 1 − exp

(

−δ

s

)

, glog(s) = log

(

1 + 1

s

)

.

Especially gδ,γ (s) is commonly used in the above papers, where δ and γ can only
take certain values to guarantee that the utility is in the interval [0, 1]. Precision (also
called discounted accuracy) corresponds to the case (δ, γ) = (1, 0). However, typical
choices for (δ, γ) are (1.6, 0.6) and (2.2, 1.2) (Nguyen et al. 2018), which overcome
some of the limitations of precision (see below for a discussion). The utility function
gδ is an exponentiated version of precision, where the parameter δ controls the reward
when sets become larger.

1.2 Contributions and outline

In this paper, we will focus on aspects related to optimizing (1). This is a non-trivial
optimization problem, as a brute-force search requires checking all subsets of Y ,

123

T. Mortier et al.

resulting in an exponential time complexity.However,wewill be able to find theBayes-
optimal prediction more efficiently. As our main contribution, we present several
algorithms that solve (1) in an efficient manner. In the literature, the work of Del Coz
et al. (2009) is the closest to our work. We extend their work in two directions: 1) the
algorithms that we introduce are more efficient in multi-class classification settings
where the number of classes is large, such as language modelling and reinforcement
learning, and 2) our algorithms are applicable to a wide range of utility functions,
unlike the algorithm of Del Coz et al. (2009), which concentrates on the Fβ -measure.

In Sect. 2 we present several theoretical results. Those results are essential building
blocks for solving (1), butwe also discuss the impact of these results for different utility
functions. The algorithms that we develop are further materialized in Sect. 3. We first
discuss an exact Bayes-optimal algorithm that makes K queries to the conditional
distribution P(c | x), with K the number of classes. In addition, we also introduce two
approximate algorithms that make less than K calls to P(c | x). Those algorithms are
based on two different paradigms: maximum inner product search and hierarchical
factorization of the conditional distribution. To conclude the theoretical part of this
work, we provide an overview of related work in Sect. 4. In Sect. 5 three different
types of experimental results are discussed. In a first experiment, we use image and text
classification datasets to highlight the usefulness of set-valued prediction in case of
uncertainty. In a second type of experiments, we evaluate the exact algorithm against
some simple baselines for set-valued prediction. In a last experiment, we focus on
the runtime of the exact algorithm, highlighting the additional speedups that can be
obtained by considering approximate algorithms for set-valued prediction.

2 Theoretical results

In this section, we present several theoretical results as building blocks of the algo-
rithms that we consider later on. We start with some general results, followed by a
discussion of considerations for specific utility functions.

2.1 General results

The formulation in (1) seems to suggest that all subsets of Y need to be analyzed to
find the Bayes-optimal solution, but a first result shows that this is not the case.

Theorem 1 The exact solution of (1) can be computed by analyzing only K subsets of
Y .

Proof With P(Ŷ | x) = ∑
c∈Ŷ P(c | x), the expected utility can be written as

U (Ŷ , P, u) =
∑

c∈Y
u(c, Ŷ)P(c | x) =

∑

c∈Ŷ
u(c, Ŷ)P(c | x) +

∑

c′ /∈Ŷ
u(c′, Ŷ)P(c′ | x) ,

=
∑

c∈Ŷ
g(|Ŷ |)P(c | x) = g(|Ŷ |)P(Ŷ | x) , (3)

123

Efficient set-valued prediction in multi-class classification

where the last summation in the second equality cancels out since u(c′, Ŷ) = 0. Let us
decompose (1) into an inner and an outer maximization step. The inner maximization
step then becomes

Ŷ ∗s
u = arg max

|Ŷ |=s

g(s)P(Ŷ | x) = arg max
|Ŷ |=s

P(Ŷ | x) , (4)

for s = {1, . . . , K }, where the last equality trivially holds due to g(s) being constant.
This step can be done very efficiently, by sorting the conditional class probabilities, as
for a given s, only the subset with the highest probability mass needs to be considered.
The outer maximization simply consists of computing

Ŷ ∗
u (x) = arg max

Ŷ∈{Ŷ ∗1
u ,...,Ŷ ∗K

u }
g(|Ŷ |)P(Ŷ | x) , (5)

which only requires the evaluation of K sets. 	

So, one only needs to evaluate Ŷ ∗1

u , . . . , Ŷ ∗K
u to find the Bayes-optimal solution,

which limits the search to K subsets. In fact, we can even do better as it turns out that
by restricting g, we can assure that the sequence U (Ŷ ∗1

u , P, u), . . . ,U (Ŷ ∗K
u , P, u)

will have reached its global maximum when it starts to decrease. This will allow us to
further limit the search, by means of an early stopping criterion, as soon as we reach
that maximum. The restriction required for g is (1/x)-convexity, i.e., convexity after
a (1/x) transformation. This is a somewhat surprising and rather technical result that
is summarized in the following definition and theorem.

Definition 1 A sequence g(1), g(2), . . . , g(K) is (1/x)-convex if

1/g(s + 1) ≤ 1/g(s) + 1/g(s + 2)

2
for all s ∈ {1, . . . , K − 2} . (6)

Theorem 2 Let g(1), g(2), . . . , g(K) be a decreasing (1/x)-convex sequence. Then
the following implication holds for any s ∈ {1, . . . , K − 2}:

U (Ŷ ∗s
u , P, u) > U (Ŷ ∗s+1

u , P, u) �⇒ U (Ŷ ∗s+1
u , P, u) > U (Ŷ ∗s+2

u , P, u) .

Proof Let us first observe the following equivalence:

1/g(s + 1) ≤ 1/g(s) + 1/g(s + 2)

2

⇔ 2 ≤ g(s + 1)

g(s)
+ g(s + 1)

g(s + 2)
⇔ g(s)g(s + 1) + g(s + 2)g(s + 1) ≥ 2g(s)g(s + 2)

⇔ g(s)[g(s + 1) − g(s + 2)] ≥ g(s + 2)[g(s) − g(s + 1)]
⇔ g(s)

g(s) − g(s + 1)
≥ g(s + 2)

g(s + 1) − g(s + 2)

⇔ g(s + 1)

g(s) − g(s + 1)
+ 1 ≥ g(s + 2)

g(s + 1) − g(s + 2)
. (7)

123

T. Mortier et al.

Assume that for a given s it holds that U (Ŷ ∗s
u , P, u) > U (Ŷ ∗s+1

u , P, u). Let pi =
P(ci | x) and observe that the following equivalences holds:

U (Ŷ ∗s
u , P, u) > U (Ŷ ∗s+1

u , P, u) ⇔ g(s)
s∑

i=1

pi > g(s + 1)
s+1∑

i=1

pi

⇔ [g(s) − g(s + 1)]
s∑

i=1

pi > g(s + 1)ps+1

⇔
s∑

i=1

pi >
g(s + 1)

g(s) − g(s + 1)
ps+1 . (8)

Observe that from (7) and (8) it follows that:

s+1∑

i=1

pi >
g(s + 1)

g(s) − g(s + 1)
ps+1 + ps+1 ⇔

s+1∑

i=1

pi >

(
g(s + 1)

g(s) − g(s + 1)
+ 1

)

ps+1

⇒
s+1∑

i=1

pi >
g(s + 2)

g(s + 1) − g(s + 2)
ps+2

⇔ U (Ŷ ∗s+1
u , P, u) > U (Ŷ ∗s+2

u , P, u) .

This is what we needed to prove. 	

Thus, what Theorem 2 tells us is that, for (1/x)-convex sequences, we have found

a stopping criterion so that even less than K sets need to be analyzed when optimizing
(1). More specifically, we can stop as soon as the sequence

U (Ŷ ∗1
u , P, u),U (Ŷ ∗2

u , P, u) . . . ,U (Ŷ ∗K
u , P, u)

starts to decrease. The stopping criterion is U (Ŷ ∗s
u , P, u) > U (Ŷ ∗s+1

u , P, u) for a
given s ∈ {1, . . . , K − 1}.

Theorems1 and2provide guarantees to optimize (1) in a classical decision-theoretic
context. In the appendix, we present a short theoretical analysis that relates the Bayes-
optimal solution for the set-based utility functions to the solution obtained on the
conditional class probabilities given by a trainedmodel. The goal is to upper bound the
regret of the set-basedutility functions by the L1 error of the class probability estimates.
Similarly, as in decision-theoretic utility maximization, the analysis is performed on
the level of a single x.

2.2 Considerations w.r.t. specific utility functions

Let us discuss the implications of the above theorems for the utility functions that
were mentioned in the introduction (see also Table 1 and the left panel of Fig. 1 for
an overview). Is (1/x)-convexity satisfied for those utility functions? For the ones

123

Efficient set-valued prediction in multi-class classification

that are most commonly used in the literature the answer turns out to be positive:
precision, recall, the Fβ -measure, as well as the gδ,γ family for recommended values
of δ and γ , are all utilities with associated (1/x)-convex sequences. Let us remark that
(1/x)-convexity cannot easily be assessed by plotting the graph of a specific sequence
g(s). In practice one needs to check this formally using (6) for all s.

Precision, with gP(s) = 1/s, in fact defines “how convex” a sequence is allowed
to be, because (6) is satisfied as an equality in that boundary case. As shown in the
left panel of Fig. 1, most utility functions from the literature behave very similar to
precision; they decrease very quickly, and their curvature is similar to precision, but
they are somewhat less convex (remark that for functions the degree of convexity is
determined by the slope of the first derivative). From that perspective, it is obvious
that concave sequences will be (1/x)-convex. The following proposition states this
formally.

Definition 2 A sequence g(1), g(2), ..., g(K) is concave if

g(s + 1) ≥ g(s) + g(s + 2)

2
for all s ∈ {1, ..., K − 2}

Proposition 1 Let g(1), g(2), ..., g(K) be a decreasing, concave sequence. Then
g(1), g(2), ..., g(K) is also (1/x)-convex.

Proof As shown above, the following equivalence holds:

1/g(s + 1) ≤ 1/g(s) + 1/g(s + 2)

2
⇔ g(s)[g(s + 1) − g(s + 2)] ≥ g(s + 2)[g(s) − g(s + 1)] (9)

Due to the fact that g(1), g(2), ..., g(K) is a decreasing, concave sequence we know
that g(s) ≥ g(s + 2) and g(s + 1) − g(s + 2) ≥ g(s) − g(s + 1) . Combining the two
inequalities lets us conclude that the sequence must be (1/x)-convex. 	

Apart from (1/x)-convexity, there is another property that an interesting utility
function should obey: g(s) should be lower bounded by precision, i.e. gP . Precision
and recall are frequently used in binary classification, but one may argue that they are
both not very useful utility functions for assessing set-valued predictions. For recall
this is rather obvious, as this measure does not have any penalty for the size of the
set. Moreover, for precision the problem is that its utility maximiser will always be
a set of cardinality one. For example, consider a multi-class problem with hundred
classes, and assume that for a given instance the conditional class probabilities are
0.1 for ten of these hundred classes. Clearly, in this case, the best prediction is to
return a set consisting of the ten classes, resulting in an expected utility of 0.1. If
g(10) = 1/10, a singleton set that contains only one of the ten classes also yields
an expected utility of 0.1. Both are Bayes-optimal predictions in view of (1). Thus,
the problem with precision is that it is not risk-averse. In the face of uncertainty, a
risk-averse utility function will prefer a set with many classes over a singleton set
that contains one of those classes (Zaffalon et al. 2012). That is why we highlight

123

T. Mortier et al.

g(s) ≥ 1/s as an absolute requirement. Utility functions violating this requirement
are practically pointless, because the solution to (1) is always a set of cardinality one
in that case. The next proposition formalizes this claim, which has been reported by
Zaffalon et al. (2012) from a different perspective and using a different notation.

Proposition 2 Let g be a sequence such that g(1) = 1, then for any distribution P the
following statements hold.

– When g(s) < 1/s for some s > 1, then Ŷ ∗s
u is not a solution of (1),

– When g(s) < 1/s for all s > 1, then the unique solution of (1) is Ŷ ∗1
u ,

– When g(s) = 1/s for all s, then Ŷ ∗1
u is a solution of (1).

Proof Let us start by proving the first statement. When g(s) < 1/s it follows that:

U (Ŷ ∗s
u , P, u) <

P(Ŷ ∗s
u | x)

s
≤ P(Ŷ ∗1

u | x) = U (Ŷ ∗1
u , P, u) ,

where the second inequality holds because Ŷ ∗1
u must correspond to the mode of P ,

and the last equality holds because we assume g(1) = 1. So, we have shown that,
when g(s) < 1/s for some s, it holds that U (Ŷ ∗s

u , P, u) < U (Ŷ ∗1
u , P, u) for any

distribution P . This reasoning can be applied to any s > 1, which also proves the
second statement. Using g(s) = 1/s in the above reasoning, the inequalities become
equalities. This proves the third statement. 	

The proposition lets us conclude that it is pointless to use any utility for which
g(s) < 1/s for all s, because Ŷ ∗1

u is then the unique solution of (1). It is also pointless
to use gP as utility function: Ŷ ∗1

u will then be one of the solutions of (1), but there
might be other solutions as well. When g(s) < 1/s for some but not all s, only sets
of specific cardinalities can be the solution of (1). This is probably also unwanted in
practice.

So, what about the other utility functions from the literature? In Fig. 1, one can
see that utility functions gF1 and gδ=1.6,γ=0.6 behave similarly as gP , but they are
lower bounded by gP , so with those utility functions it will be possible to predict non-
singleton sets. In general, the faster those functions decrease, the smaller the predicted
sets will be. For gFβ the parameter β controls the degree of convexity, as shown in
the right panel of Fig. 1. As such, this parameter will in a way also control the size of
the sets that are predicted. Note that Proposition 2 cannot be applied for glog and gδ ,
because g(1) �= 1 in those cases. One would need to rescale those utility functions
first, before applying the proposition.

As a summary of the above discussion, we define four properties that a meaningful
utility function g should have:

– g should be strictly decreasing. Smaller sets should have a higher utility than bigger
sets.

– g(1) = 1. Normalization facilitates the comparison between different utility func-
tions. A function violating this property should be rescaled, if possible.

123

Efficient set-valued prediction in multi-class classification

– g(s) > 1/s for all s. The spectrum of utility maximizers will be limited to sets of
particular cardinalities when g(s) < 1/s for some s. If g(s) < 1/s for all s, the
utility function becomes completely useless.

– g should be (1/x)-convex. This guarentees that the utility maximizer can be found
efficiently.

There is a close link between the third and fourth property: if g(s) < 1/s for some
s, then g cannot be (1/x)-convex. However, the converse is not true. To give such
an example, let us introduce a novel family of utility functions that generalizes a
utility function that is often used in the literature on multi-class classification with
reject option, see e.g. (Ramaswamy et al. 2015). When a reject option is allowed, the
prediction can only be a singleton or the full set Y containing K classes. The first case
typically gets a reward of one, while the second case should receive a lower reward,
e.g. 1 − α. This second case corresponds to abstaining, i.e., not predicting any class
label, and the (user-defined) parameter α specifies a penalty for doing so, with the
requirement 0 < α < 1− 1/K to be risk-averse. To include sets of any cardinality s,
the utility could be generalized as follows:

gα,β(s) = 1 − α

(
s − 1

K − 1

)β

, (10)

which we call the generalized reject option utility. Here, we have the same interpreta-
tion for α, whereas β ∈ (0,∞) defines whether g(s) is convex or concave, as shown in
the bottom panel of Fig. 1.While convexity (like in most of the above utility functions)
appears natural in most applications, a concave utility might be useful when predicting
a large set is tolerable. In the limit, when β → 0, we obtain the simple utility function
for classification with reject option.

The gα,β family is quite intuitive from an application perspective, and it has a lot of
flexibility. This makes this family interesting, but for certain parameterizations it is not
lower bounded by precision. It is important to choose α ≤ K−1

K and β ≥ log 1
K−1

K
2 +1

to guarantee that gα,β(s) ≥ 1/s for all s (see appendix for derivations). For example, as
shown in the figure in the appendix, for α = 1, gα,β(s) is dominated by gP(s) for large
s. We also observed that gα,β(s) is for some α and β not (1/x)-convex. In contrast,
the gFβ family and gδ,γ for recommended values of δ and γ deliver utility functions
that satisfy all the four properties that are listed above. This makes them interesting
from an application perspective, and they will be our focus in the experiments.

3 Algorithmic solutions

The above theoretical results (in particular Theorems 1 and 2) suggest that problem (1)
can be efficiently solved for (1/x)-convex set-based utility functions. In this section,
we present three algorithmic solutions for this problem, which are all based on the
same generic framework. The first algorithm returns the Bayes-optimal solution to
(1) in an exact manner. The other two algorithms compute approximate solutions, but

123

T. Mortier et al.

Ta
bl
e
1

T
he

ut
ili
ty

fu
nc
tio

ns
g(
s)

di
sc
us
se
d
in

th
is
pa
pe
r

N
am

e
g(
s)

A
rt
ic
le

Pr
ec
is
io
n

g
P
(s

)
=

1 s
(D

el
C
oz

et
al
.2

00
9)

R
ec
al
l

g
R
(s

)
=

1
(D

el
C
oz

et
al
.2

00
9)

F β
-m

ea
su
re

g
F

β
(s

)
=

1+
β
2

s+
β
2

(D
el
C
oz

et
al
.2

00
9)

C
re
da
lu

til
ity

g δ
,γ

(s
)
=

δ s
−

γ s2
(Z
af
fa
lo
n
et
al
.2

01
2)

E
xp

.u
til
ity

g δ
(s

)
=

1
−

ex
p

(
−

δ s

)
(Z
af
fa
lo
n
et
al
.2

01
2)

L
og

.u
til
ity

g l
og

(s
)
=

lo
g(
1

+
1 s
)

(Z
af
fa
lo
n
et
al
.2

01
2)

R
ej
ec
to

pt
io
n

g r
ej

(s
)
=

{
1

if
s

=
1

,

1
−

α
if
s

=
K

.
(R
am

as
w
am

y
et
al
.2

01
5)

G
en
.r
ej
ec
to

pt
io
n

g α
,β

(s
)
=

1
−

α
(

s−
1

K
−1

)
β

E
xt
en
si
on

of
(R
am

as
w
am

y
et
al
.2

01
5)

123

Efficient set-valued prediction in multi-class classification

Fig. 1 A visualization of g in function of different values of |Ŷ | and set-based utility functions. K = 100

Algorithm 1 SVBOP – input: u(·), x, Y = {c1, . . . , cK }, PC
1: Ŷ ← ∅, pŶ ← 0, U∗ ← 0 � Initialize the current best solution, its probability and utility
2: PC .initPrediction(x , Y) � Initialize the prediction procedure
3: while (c, pc) ← PC .getNextClass() do � Repeat until all the classes are returned by PC

4: Ŷ ← Ŷ ∪ {c}, pŶ ← pŶ + pc � Update the current solution and its probability

5: UŶ ← pŶ × g(Ŷ) � Compute U (Ŷ , P, u) according to Eq. (3)

6: if U∗ ≤ UŶ then � If the current solution is better than the best solution so far

7: Ŷ ∗
u ← Ŷ , U∗ ← UŶ � Replace the current best solution

8: else break � If there is no improvement break the while loop according to Theorem 2

9: return Ŷ ∗
u � Return the set of classes with the highest utility

yield substantial runtime gains. Those algorithms can be used when the number of
classes is large.

Algorithm 1 presents the generic framework. We use the acronym SVBOP, which
stands for Set-Valued Bayes-Optimal Prediction. SVBOP uses a probabilistic classi-
fier, denoted as PC , that supports two operations. The first operation, initPrediction,
initializes the prediction procedure for a given test example x. The second operation,
getNextClass, placed in the while loop, returns the next class label with respect to
decreasing conditional class probabilities. In each subsequent iteration of the while
loop, the solution of inner maximization (4) is for a given s found by adding the
class with the s-highest conditional class probability to the predicted set. In this way,
U (Ŷ ∗1

u , P, u),…,U (Ŷ ∗s
u , P, u) are computed in a sequential way, till the stopping

criterion of Theorem 2 is satisfied.
This framework can be seen as a generalization of an algorithm introduced by Del

Coz et al. (2009) for optimizing the Fβ -measure in multi-class classification. There is
also a strong correspondence with certain Fβ -maximization algorithms in multi-label
classification (see e.g. Jansche 2007; Ye et al. 2012; Waegeman et al. 2014).

3.1 SVBOP-full

The first algorithm is further referred to as SVBOP-Full, because it computes all con-
ditional class probabilities. PC is here a standard multi-class probabilistic classifier
that returns the estimated conditional class distribution for a given test example x.
Examples of such classifiers are logistic regression, linear discriminant analysis, gra-

123

T. Mortier et al.

Algorithm 2 SVBOP-Full.initPrediction – input: x, Y = {c1, . . . , cK }
1: Q ← ∅ � Initialize a list to store classes and P(c | x)

2: for c ∈ Y do pc ← P(c | x), Q.add
(
(c, pc)

) � Query PC to get P(c | x) for all classes

3: Q.sort() � Sort the list decreasingly according to P(c | x)

Algorithm 3 SVBOP-Full.getNextClass
1: return Q.pop() � Pop the next highest element from the sorted list.

dient boosting trees or neural networks with a softmax output layer. The inference
algorithm starts by querying the underling classifier to get all K conditional class
probabilities P(c | x). Then, the conditional class probabilities are sorted in decreas-
ing order (Algorithm 2). When in Algorithm 1 the next class label is needed, it can
simply be taken from this sorted list (Algorithm 3).

This approach is simple and elegant but requires sorting of all K conditional class
probabilities, which results in an O(K log K) complexity. However, the most costly
operation is usually querying the distribution P to obtain values of conditional prob-
abilities for all K classes. In case of linear models, this cost scales linearly with
the number of classes, multiplied by the number of non-zero feature values. For
problems with a large number of classes, often referred to as extreme classification
problems (Prabhu and Varma 2014), this is usually too costly.

3.2 Hierarchical search with similarity graphs (SVBOP-HSG)

Since only class labels with high probability mass are required, a procedure would
be desirable that returns the top classes without the need to compute conditional
class probabilities for all classes. To accomplish this, we leverage approaches for
approximate nearest neighbor search (Yagnik et al. 2011; Shrivastava and Li 2014;
Johnson et al. 2017) and adapt them to our setting. The use of suchmethods essentially
becomes possible through two problem transformations: first, we reduce maximum
probability search to maximum inner product search, which we then in turn reduce to
nearest neighbor search. In the following, we briefly comment on both reduction steps
and eventually on the approximate nearest neighbor search itself.

As for the first step, note that most learning algorithms produce class probability
estimates in the last step of the learning procedure by mapping scores to probabilities.
A typical example, which is also used in our approach, is the softmax transformation:

P(c | x) = exp(wc · x)
∑

c′∈Y exp(wc′ · x)
. (11)

Obviously, as long as the probability is a monotone function of an inner product
wc · x between the query instance x and a weight vector wc, like in (11), finding
arg max

c
P(c | x) is equivalent to finding arg max

c
wc · x. More generally, finding the

top-s inner products corresponds to finding the top-s probabilities. Furthermore, there
is no need to compute the value of the partition function, i.e., the denominator of

123

Efficient set-valued prediction in multi-class classification

(11), to find the optimal set-valued prediction. For a given x, the value of the partition
function is constant for all c and since arg max f (x) = arg max a × f (x), for any
constant a > 0, the lack of normalization does not affect the result of both inner (4)
and outer (5) maximization.

As for the second step, let us assume that, as discussed before, we have a linear
model for each class c, which is represented by a vector wc in a suitable (perhaps
transformed) feature space X (e.g., the last but one layer in a neural network, which
is mapped to the output via softmax). Now, since the squared Euclidean distance
betweenwc and x is given by d(wc, x) = ‖wc‖2−2wc · x+‖x‖2, maximizingwc · x
is “almost” equivalent to minimizing d(wc, x). More specifically, it is equivalent to
minimizing the distance d(w′

c, x
′) between two expanded vectors w′

c and x′. The
former is obtained by adding an entry −√‖wc‖2 to wc, and the latter by adding a
0 to x. Consequently, maximizing inner products in X is equivalent to minimizing
distances in the augmented space X ′.1

A reduction, as outlined above, is interesting because many methods for efficient
nearest neighbor search have been proposed in the literature. In this work, we use
Hierarchical Navigable Small World (H-NSW) graphs, introduced by Malkov and
Yashunin (2018). This method is based on the concept of a similarity graph (Navarro
2002), in which edges connect similar objects. In our case, these objects are weight
vectors wc. H-NSW uses multiple such graphs, each on a different level. The lowest
level contains all objects, while higher levels contain successively sparser subsets of
these objects. Roughly speaking, the idea is to search the nearest neighbors of the query
x level-wise (by traversing the graph for the layer in a greedy way), starting with the
highest level. The neighbors found on each level do not necessarily correspond to the
true neighbors of x on the lowest level, but should at least indicate the region in which
these neighbors are located, and hence provide a good entry point for refining the
search on the next level. For technical details and the complete pseudocode of the H-
NSWmethod, we refer toMalkov andYashunin (2018).What the algorithm eventually
returns is a list of s weight vectors wc for the s classes that have (approximately) the
highest inner products with the test example x.

We conclude this section with two remarks. First, finding the top-s classes may not
be enough to satisfy the stopping criterion of Theorem 2. To solve this problem, we use
a simple doubling strategy. When PC is requested to provide the (s + 1)-st class, we
double the value of s and query the H-NSW index again. Since the nearest neighbor
search is approximate, we append all new labels to the original list. In this way, we
do not omit any new label with a probability higher than the minimum probability of
labels found in the previous query. Second, this search method should lead to a faster
inference than SVBOP-Full, as the number of inner products should be lower than
a number required to compute all conditional class probabilities. While this method
significantly speeds up inference, it adds additional cost to the training phase, due to
the need to construct the H-NSW index. For training, one also relies on multi-class
classifiers that scale linearly with the number of classes.

1 Practically, this augmentation is often omitted for simplicity.

123

T. Mortier et al.

Algorithm 4 SVBOP-HSG.initPrediction – input: x, Y = {c1, . . . , cK }
1: Q ← ∅ � Initialize a list of classes with their inner prod. wc · x
2: i ← 0 � Initialize the class counter
3: Q′ ← H-NSW Index.query(x, k) � Query for initial top-k elements
4: for c ∈ Q′ do � For initial top-k classes
5: Q.add((c, exp(wc · x))) � Transform inner prod. to unnorm. P(c|x) and add to list

Algorithm 5 SVBOP-HSG.getNextClass
1: i ← i + 1 � Increment class counter
2: if |Q| < i then � If class counter is greater than size of list of classes
3: Q′ ← H-NSW Index.query(x, 2 × |Q|) � Perform doubling
4: for c ∈ Q′/Q do � For each new class found by index
5: Q.add((c, exp(wc · x))) � Transform inner prod. to unnorm. P(c|x) and add to list

6: return Q.at(i) � Return next class from the list

3.3 Hierarchical factorization of the conditional distribution (SVBOP-HF)

To have a compatible probabilistic classifier that allows for efficient prediction of top-s
classes, while having amuch faster training at the same time, we investigate in this sub-
section a solution based on a hierarchical factorization of the distribution P(c | x). This
approach underlies many popular algorithms, such as nested dichotomies (Fox 1997;
Frank and Kramer 2004; Melnikov and Hüllermeier 2018), conditional probability
estimation trees (Beygelzimer et al. 2009), probabilistic classifier trees (Dembczyński
et al. 2016), or hierarchical softmax (Morin and Bengio 2005), often used in neural
networks as an output layer.

With a hierarchical tree structure over the classes, where the root represents the
class space and leafs the singleton sets of classes, one can express the conditional
class probability P(c | x) via the chain rule of probability:

P(c | x) =
∏

v∈Path(c)
P(v |Parent(v), x) , (12)

where Path(c) is a set of nodes on the path connecting the leaf and the root of the
tree structure. Parent(v) gives the parent of node v, and for the root node r we have
P(r |Parent(r), x) = 1. In each node of the tree, we train a multi-class probabilistic
classifier of choice.

For inference, we adapt an A∗-style algorithm, closely related to search methods
used with probabilistic tree classifiers (Dembczyński et al. 2012, 2016; Mena et al.
2017). It uses a priority queue for storing visited nodes in the order of their decreasing
conditional class probabilities. The queue is initialized with the root node (Algo-
rithm 6). In the main loop, for each iteration, the next label is returned in order of
decreasing conditional class probabilities. This is achieved by visiting nodes one by
one, taking them from the queue and adding for each visited node its children to the
queue (Algorithm 7).

On average, this search should result in significantly faster inference than the stan-
dard SVBOP-Full algorithm, as only a part of the tree will be explored. Optimistically,

123

Efficient set-valued prediction in multi-class classification

Algorithm 6 SVBOP-HF.initPrediction – input: x, Y = {c1, . . . , cK }
1: Q = ∅ � Initialize a priority queue
2: Q.add((vroot, P(vroot|x)) � Add the tree root with the corresponding P(v|x)

Algorithm 7 SVBOP-HF.getNextClass
1: while Q �= ∅ do � While a priority queue is not empty
2: (v, pv) ← Q.pop() � Pop the node with highest P(v|x) from the queue
3: if v is a leaf then � If the node is a leaf node
4: return (Class(v), pv) � Return corresponding class and P(c|x)

5: for v′ ∈ Children(v) do � Else for all child nodes of v

6: pv′ ← pv × P(v′|v, x) � Computed probability estimate to the child node
7: Q.add((v′, , x)) � Add the child node and its P(v′|x) to the priority queue

the speedup can be even exponential (i.e., the query for a single x can proceed in log-
arithmic time in the number of classes K), Yet, in the worst case, the algorithm can
visit all nodes in the tree, a number that is upper bounded by 2K − 1. With specific
optimization algorithms, such as the ones used for hierarchical softmax implementa-
tions in deep neural networks, the hierarchical factorization might also lead to much
faster training. One only needs to update nodes on a path from the root to a leaf corre-
sponding to the class label of the example. This results in logarithmic training times
in terms of the number of classes, assuming that the tree is balanced.

Similarly, as in the previous approach, there is an additional step required for build-
ing the hierarchical structure before training. This structure can be obtained from data.
For example, Huffman trees are commonly used for similar algorithms in natural lan-
guage processing problems (Mikolov et al. 2013). More involved learning algorithms,
such as the one used in (Prabhu et al. 2018) run hierarchical balanced 2-means on
class profiles. In some applications, a natural hierarchy may exist and this one can be
used as well, as we will show in the experiments.

4 Related work

The paper that is the closest to our work is (Del Coz et al. 2009), in which an efficient
algorithm for the Fβ -measure is proposed. Our work extends this paper in two direc-
tions: 1) we introduce a general optimization framework that generalizes the results
of Del Coz et al. (2009) to other utility functions, and 2) we also develop efficient
algorithms that further improve their algorithm, which can be interpreted as a specific
case of the SVBOP-Full algorithm.

We discussed several papers that introduce various set-based utility functions
(Corani and Zaffalon 2008, 2009; Zaffalon et al. 2012; Yang et al. 2017b; Nguyen
et al. 2018; Ramaswamy et al. 2015). Those papers mainly highlight the usefulness
and properties of these functions, while focussing less on algorithmic aspects. From
that perspective, we rather see our work as complementary instead of competing.

In the literature, one can find several simple approaches to generate set-valued
predictions. Arguably, the most simple approach is to look at the conditional class
probabilities, and return a predefined number of s classes; the classes with the highest

123

T. Mortier et al.

conditional class probabilities (top-s prediction). The main downside of this approach
is that set-valued predictions for different instances will have the same cardinality. In
practice, this is often unwanted; small sets should be returned when the uncertainty
about the true class label is small, while bigger sets are needed when the uncertainty
becomes larger. Another simple approach is thresholding on conditional class prob-
abilities. One can define a fixed threshold for P(c | x) and return those classes that
exceed this threshold, or one can define a threshold on the cumulative probability of
the resulting set. In the latter case, one first sorts the classes in decreasing order of
conditional class probabilities. For a user-defined θ ∈ [0, 1], one then returns the top-s
classes for which s is given by

inf
{
s :

s∑

i=1

P(c(i) | x) ≥ θ
}

, (13)

with c(1), . . . , c(K). Both thresholding approaches have a clear disadvantage: they only
look at a specific threshold, and do not account for the fact that the size of the predicted
set might considerably change if the threshold is slightly changed. Thresholding will
be suboptimal in view of optimizing (1). This can be best observed from (8), which
proves that the Bayes-optimal set not only depends on the sum of the first s conditional
probabilites, but also on the next probability in the sorted list, i.e., ps+1. Nonetheless,
top-s prediction and thresholding are two obvious baselines that will be analyzed in
our experiments.

In the work of Stock et al. (2016), Fagin’s algorithm and Fagin’s thresholding algo-
rithm are described for computing the top-s efficiently in a wide range of multi-target
prediction settings, including multi-label classification, dyadic prediction and collab-
orative filtering. Interestingly, both algorithms can be applied in combination with the
proposed SVBOP-Full algorithm, as well as top-s prediction. The two algorithms are
guaranteed to find the top-s by using data structures that avoid the iteration over all
labels. They can realize a speed-up compared to a naive implementation that iterates
over all labels, especially in situations where the dimensionality of learned hidden
representations in deep learning models or input space for linear models is low.

Set-valued predictions are also considered in hierarchical multi-class classification,
mostly in the form of internal nodes of the hierarchy (Freitas 2007; Rangwala andNaik
2017; Yang et al. 2017a). Compared to the “flat” multi-class case, the prediction space
is thus restricted, because only sets of classes that correspond to nodes of the hierarchy
can be returned as a prediction. In this paper, we do not consider such a setup, but the
SVBOP-HF algorithm could be adjusted for that purpose.

Set-based utility functions have been analyzed in the context of hierarchical multi-
class classification. For example, Yang et al. (2017a) evaluate various members of
the uδ,γ family in a framework where hierarchies are considered for computational
reasons, while Oh (2017) optimizes recall by fixing |Ŷ | as a user-defined parameter.
Popular in hierarchical multi-label classification is the tree-distance loss, which could
also be interpreted as a way of evaluating set-valued predictions (see e.g. (Bi and
Kwok 2015)). This loss is not a member of the family (2), however. Besides, from the

123

Efficient set-valued prediction in multi-class classification

perspective of abstention in the case of uncertainty, it appears to be a less useful loss
function, because it has the tendency to return large sets.

Set-valued predictions are also produced in the framework of conformal prediction
(CP) (Vovk et al. 2003; Shafer andVovk 2008; Balasubramanian et al. 2014; Denis and
Hebiri 2017). This framework is rooted in statistical hypothesis testing, and in a sense
can be seen as a “frequentist statistics” counterpart to our approach, which is more in
the spirit of Bayesian decision theory. More specifically, given a new query instance
x, CP constructs a prediction set or prediction region Y ⊆ Y that is guaranteed to
cover the true outcome y with a pre-defined probability 1− ε (for example 95%). To
this end, the hypothesis that y = ŷ is tested for each candidate prediction ŷ ∈ Y , and
only those candidates for which the test can be rejected are excluded from Y . The test
itself is non-parametric and leverages a “nonconformity” function s : X × Y → R

that assigns scores s(x, y) ∈ R to input/output tuples; the latter can be interpreted as
a measure of “strangeness” of the pattern (x, y), i.e., the higher the score, the less the
data point (x, y) conforms to what one would expect to observe. Roughly speaking,
the hypothesis y = ŷ is then rejected if the nonconformity score s(x, ŷ) is among the
ε% highest of all scores s(x1, y1), . . . , s(xN , yN) observed in the (training) data so
far. Conformal prediction has originally been introduced as an online learningmethod,
but inductive variants have been developed as well (Papadopoulos 2008).

As we are maximizing a set-based utility function, our work is also somewhat con-
nected to submodular optimization in machine learning (Syed 2016; Vondrak 2019).
From (3) it follows that U (Ŷ , P, u) is either a submodular or supermodular function,
when g is concave or convex, respectively. In the first case, when g is decreasing and
concave, then g(|Ŷ |) is submodular, and because P(Ŷ | x) is modular, U (Ŷ , P, u)

must be submodular. One could therefore think of using submodular optimization
algorithms to solve (1), but we believe that such algorithms would not be very useful.
Theorem 1made us conclude that the combinatorial problem (1) could be reduced to a
line search on K +1 sets. In contrast, a line search cannot be applied in combinatorial
machine learning problems that are solved with submodular optimization techniques.
To give one example, submodular optimization of (1) by means of a continuous relax-
ation via the Lovasz extension (Vondrak 2019) would still require the computation of
P(c | x) for all classes c, whereas the algorithms that we introduce avoid this.

Currently, the development of efficient algorithms is an active theme of research in
the area of extreme classification. The overwhelmingmajority of algorithms developed
in this area focus onmulti-label classification, but also some algorithms for multi-class
problems, with a large number of classes, have been proposed. Such algorithms are
not immediately applicable to the setting of set-valued prediction. We believe that the
proposed framework, albeit with some modifications, together with the approximate
inference algorithms could be an interesting direction for extreme multi-label clas-
sification with set-valued predictions. The idea of sorting probabilities is commonly
used in extreme multi-label classification, for optimizing specific loss functions, such
as the Fβ -measure, precision, and normalized discounted cumulative gain, see e.g.
(Waegeman et al. 2014; Babbar and Dembczyński 2018). For several of those mea-
sures, one typically either selects the top-s scoring labels (with s predefined), or those
labels for which the marginal probability exceeds a threshold. Those two approaches
are suboptimal in view of optimizing (1), but it is interesting to see how much we

123

T. Mortier et al.

Table 2 Summary of image (top) and text (bottom) datasets used in all experiments. Notation: K – number
of classes, D – number of features, N – number of samples

Dataset K D Ntrain Ntest

MNIST (LeCun and Cortes 2010) 10 32 33600 8400

VOC 2006 (Everingham et al. 2006) 10 25088 1398 1477

VOC 2007 (Everingham et al. 2007) 20 25088 2808 2841

Caltech-101 (Li et al. 2003) 97 25088 4338 4339

Caltech-256 (Griffin et al. 2007) 256 25088 14890 14890

ALOI.BIN (Geusebroek et al. 2005) 1000 636911 90000 8000

DBpedia (Ofer 2019) 219 483214 240942 96797

Bacteria (RIKEN 2013) 2659 2472 10587 2294

Proteins (Li et al. 2018) 3485 26276 11830 10179

DMOZ (Partalas et al. 2015) 11939 833484 335068 38340

LSHTC1 (Partalas et al. 2015) 12166 381571 93805 34905

gain with our more complicated algorithms. That is something we will analyze in the
experiments.

Finally, set-valued prediction is also closely connected to uncertainty modelling for
multi-class classification. For safety-critical applications such as self-driving cars and
medical decisionmaking, it is important to have an indication of uncertaintywhenmak-
ing decisions. Some recently developedmethodsmake a distinction between epistemic
and aleatoric uncertainty, see e.g. (Hüllermeier andWaegeman 2019) for an overview.
The former type of uncertainty arises due to a lack of data for training, whereas the
latter alludes to uncertainty that cannot be reduced by collecting more data, e.g. mea-
surement noise, low-quality features, etc. In our framework, we only consider aleatoric
uncertainty, because we produce a set based on the estimated conditional class proba-
bilities P(c | x). Approaches that analyze epistemic uncertainty take other properties of
the data into account, such as generalizations of probability theory (Senge et al. 2014;
Nguyen et al. 2018) or measures based on dropout resampling at test time (Kendall
and Gal 2017; Depeweg et al. 2018). Very recently, Ziyin et al. (2019) combine the
idea of set-based utility maximization with density estimation, producing an empty set
in case of high epistemic uncertainty. This might also be an interesting path for future
work.

5 Experiments

We perform three types of experiments to illustrate and benchmark the algorithms that
we introduce. The datasets for all experiments are shown in Table 2. In the following
section,we first illustrate the practical relevance of set-valued prediction on both image
and text classification datasets. In Sect. 5.2, we evaluate the proposed exact algorithm,
together with simple baseline methods that produce sets, for different set-based utility
functions on a wide range of practical datasets. For the last group of experiments,

123

Efficient set-valued prediction in multi-class classification

(a) (b)

(c)

Fig. 2 Set-valued predictions with SVBOP-Full and utility function gFβ illustrated on MNIST, VOC 2006
and DBpedia. Ground truths are underlined in each prediction

in Sect. 5.3, we compare the proposed exact and approximate algorithms by looking
at runtime efficiency versus predictive performance. For a general discussion on the
experimental setup, we refer the reader to the appendix.

5.1 Illustrations on image datasets

In the illustrative experiments, we provide some examples that emphasize the practical
usefulness of set-valued prediction. In Fig. 2a we show predictions obtained by the
SVBOP-Full algorithm with utility function gFβ , on three MNIST test samples. From
left to right, we show three test instances for which the uncertainty (in the conditional
class probabilities) is increasing. To this end, uncertainty is expressed by the Shannon
entropy

123

T. Mortier et al.

H =
K∑

i=1

P(ci | x) log P(ci | x) .

From top to down, we show predictions for each image in function of decreasing
β ∈ {5, 2, 1}. For increasing β and uncertainty, the SVBOP-Full algorithm typically
predicts larger sets. For the last image, corresponding to number two, one can see
that predicting the class with the highest conditional class probability, i.e., the first
element in the predicted set,2 would result in a false positive. However, for β ∈ {2, 5},
the ground truth is returned as candidate solution in the set-valued predictions.

We further illustrate the usefulness of set-valued prediction by looking at another
image (VOC 2006) and a couple of text (DBpedia) examples in Fig. 2b and c. There we
show top-5 predictions and predictions obtained by SVBOP-Full (denoted in bold),
by using utility function gF1. For the VOC 2006 test image, with a cow and sheep in
the background, the uncertainty reflected in the conditional class probabilities is high,
most likely due to taking the picture in low light conditions. Again, returning the label
with the highest conditional class probability (i.e., sheep) results in a false positive. A
set-valued prediction by means of the simple top-5 or SVBOP-Full method, however,
includes the ground truth as candidate solution for this particular case. A second
observation is the suboptimality of the top-5 method, compared to SVBOP-Full. As
the size of the prediction does not depend on the conditional class probabilities, but
is rather fixed, we are at risk of including irrelevant candidates in the predicted set.
These irrelevant candidates are most often characterized by low conditional class
probabilities, for which an inclusion would result in a drop of expected utility in the
SVBOP-Full algorithm (Algorithm1). For example, for the image of the cow inFig. 2b,
two irrelevant candidates {car ,motorbike} are included in the top-5 prediction. The
same can be observed for the examples in Fig. 2c.

5.2 Comparison of different utility functions and baselines

The goal of the second type of experiments is to evaluate the SVBOP-Full algorithm for
several utility functions. Two different parameterizations of the uδ,γ and uFβ families
are studied, leading to four utility functions in total. We benchmark the SVBOP-
Full algorithm against several baselines (which are all described in the related work
section):

1. Thresholding: predicting those classes for which the total cumulative probability
mass exceeds a user-defined threshold, as explained by (13). For each of the four
utility functions we tune the threshold on a validation set, by considering ten
equally-spaced values. As a result, we obtain four different thresholding strategies,
each of them tailored for a specific utility function.

2. Top-s: predicting a set consisting of the s classes with highest conditional class
probabilities. Here we consider three versions, with s ∈ {1, 3, 5}. As discussed in
the related work section, top-s returns a fixed number of classes for each instance,

2 Note that the candidate solutions in the set are sorted in decreasing order of conditional class probability.

123

Efficient set-valued prediction in multi-class classification

Ta
bl
e
3

C
om

pa
ri
so
n
of

SV
B
O
P-
Fu

ll
w
ith

ba
se
lin

es
(t
hr
es
ho

ld
in
g,

to
p-
s
an
d
in
du

ct
iv
e
co
nf
or
m
al

pr
ed
ic
tio

n)
in

te
rm

s
of

op
tim

iz
in
g
di
ff
er
en
t
ut
ili
ty

fu
nc
tio

ns
(l
is
te
d
in

de
cr
ea
si
ng

or
de
r
of

co
nv
ex
ity

:u
δ
=1

.6
,γ

=0
.6

,
u
F
1
,
u
δ
=2

.2
,γ

=1
.2
an
d
u
F
5
)
fo
r
al
ld

at
as
et
s.

M
et
ho

d
V
O
C
20

06
V
O
C
20

07

u
δ
=1

.6
,γ

=0
.6

u
F
1

u
δ
=2

.2
,γ

=1
.2

u
F
5

u
δ
=1

.6
,γ

=0
.6

u
F
1

u
δ
=2

.2
,γ

=1
.2

u
F
5

SV
B
O
P-
Fu

ll-
u
δ
=1

.6
,γ

=0
.6

91
.0
3

91
.1
1

91
.7
3

92
.5
1

88
.9
3

89
.0
1

89
.6
2

90
.3
9

SV
B
O
P-
Fu

ll-
u
F
1

91
.1
3

91
.2
2

91
.9
0

92
.8
2

88
.8
4

88
.9
4

89
.6
4

90
.6
2

SV
B
O
P-
Fu

ll-
u
δ
=2

.2
,γ

=1
.2

91
.1
4

91
.3
1

92
.6
1

94
.2
7

88
.7
3

88
.9
1

90
.2
7

92
.0
6

SV
B
O
P-
Fu

ll-
u
F
5

87
.7
6

88
.3
5

90
.7
4

97
.1
2

83
.6
0

84
.2
9

86
.8
0

94
.7
4

T
hr
es
ho

ld
-u

δ
=1

.6
,γ

=0
.6

87
.8
4

88
.4
0

90
.6
4

96
.7
3

83
.7
2

84
.3
6

86
.4
3

94
.1
8

T
hr
es
ho

ld
-u

F
1

87
.8
4

88
.4
0

90
.6
4

96
.7
3

83
.7
2

84
.3
6

86
.4
3

94
.1
8

T
hr
es
ho

ld
-u

δ
=2

.2
,γ

=1
.2

87
.8
4

88
.4
0

90
.6
4

96
.7
3

83
.7
2

84
.3
6

86
.4
3

94
.1
8

T
hr
es
ho

ld
-u

F
5

86
.9
2

87
.5
4

89
.8
0

96
.7
1

83
.7
2

84
.3
6

86
.4
3

94
.1
8

To
p-
1

90
.7
2

90
.7
2

90
.7
2

90
.7
2

88
.9
5

88
.9
5

88
.9
5

88
.9
5

To
p-
3

45
.9
1

49
.1
9

59
.0
3

91
.3
5

44
.9
4

48
.1
5

57
.7
8

89
.4
3

To
p-
5

29
.4
6

33
.1
8

39
.0
1

86
.2
6

29
.0
3

32
.6
9

38
.4
4

84
.9
9

IC
P ε

=0
.0
1

87
.0
6

87
.6
4

90
.0
9

96
.2
3

70
.4
4

71
.6
7

74
.6
5

92
.4
5

IC
P ε

=0
.1
0

89
.7
2

89
.7
2

89
.7
2

89
.7
2

88
.9
4

89
.0
2

89
.6
4

90
.4
0

C
al
te
ch
-1
01

D
B
pe
di
a

SV
B
O
P-
Fu

ll-
u
δ
=1

.6
,γ

=0
.6

95
.2
9

95
.3
6

95
.8
3

96
.4
9

88
.4
7

88
.5
0

88
.7
6

89
.0
8

SV
B
O
P-
Fu

ll-
u
F
1

95
.2
4

95
.3
3

95
.8
4

96
.6
7

88
.4
9

88
.5
2

88
.8
2

89
.1
8

SV
B
O
P-
Fu

ll-
u
δ
=2

.2
,γ

=1
.2

94
.7
3

94
.8
6

95
.7
7

97
.0
8

88
.6
5

88
.7
2

89
.2
9

89
.9
9

SV
B
O
P-
Fu

ll-
u
F
5

87
.8
9

88
.4
1

90
.1
0

96
.9
3

88
.5
7

88
.7
6

90
.0
7

91
.9
1

T
hr
es
ho

ld
-u

δ
=1

.6
,γ

=0
.6

81
.9
0

82
.3
1

83
.3
1

91
.6
4

88
.4
8

88
.7
0

90
.2
2

92
.3
7

T
hr
es
ho

ld
-u

F
1

81
.9
0

82
.3
1

83
.3
1

91
.6
4

88
.4
8

88
.7
0

90
.2
2

92
.3
7

T
hr
es
ho

ld
-u

δ
=2

.2
,γ

=1
.2

81
.9
0

82
.3
1

83
.3
1

91
.6
4

88
.0
9

88
.3
8

90
.3
0

93
.1
6

123

T. Mortier et al.

Ta
bl
e
3

co
nt
in
ue
d

C
al
te
ch
-1
01

D
B
pe
di
a

T
hr
es
ho

ld
-u

F
5

81
.9
0

82
.3
1

83
.3
1

91
.6
4

87
.4
6

87
.8
4

90
.1
8

93
.8
8

To
p-
1

95
.0
7

95
.0
7

95
.0
7

95
.0
7

88
.2
2

88
.2
2

88
.2
2

88
.2
2

To
p-
3

46
.0
2

49
.3
1

59
.1
7

91
.5
7

45
.4
8

48
.7
3

58
.4
7

90
.4
9

To
p-
5

29
.3
7

33
.0
8

38
.9
0

86
.0
1

29
.2
2

32
.9
1

38
.7
0

85
.5
6

IC
P ε

=0
.0
1

89
.3
1

89
.8
3

91
.6
4

97
.6
9

65
.0
4

66
.3
9

72
.3
0

89
.8
4

IC
P ε

=0
.1
0

95
.3
4

95
.3
4

95
.3
4

95
.3
4

88
.0
4

88
.1
1

88
.6
6

89
.3
5

C
al
te
ch
-2
56

A
L
O
I.
B
IN

SV
B
O
P-
Fu

ll-
u
δ
=1

.6
,γ

=0
.6

81
.9
0

82
.0
4

83
.0
6

84
.4
6

96
.3
8

96
.4
1

96
.6
6

96
.9
7

SV
B
O
P-
Fu

ll-
u
F
1

81
.9
1

82
.0
9

83
.2
1

85
.0
2

96
.3
4

96
.3
8

96
.6
5

97
.0
2

SV
B
O
P-
Fu

ll-
u
δ
=2

.2
,γ

=1
.2

80
.9
7

81
.2
7

83
.3
9

86
.3
9

96
.2
5

96
.3
3

96
.8
6

97
.5
6

SV
B
O
P-
Fu

ll-
u
F
5

69
.4
7

70
.6
0

73
.7
4

89
.0
6

94
.0
4

94
.2
8

95
.2
3

98
.0
4

T
hr
es
ho

ld
-u

δ
=1

.6
,γ

=0
.6

69
.7
3

70
.4
8

72
.2
8

85
.5
9

89
.5
6

89
.8
0

90
.5
4

94
.1
4

T
hr
es
ho

ld
-u

F
1

69
.7
3

70
.4
8

72
.2
8

85
.5
9

89
.5
6

89
.8
0

90
.5
4

94
.1
4

T
hr
es
ho

ld
-u

δ
=2

.2
,γ

=1
.2

69
.7
3

70
.4
8

72
.2
8

85
.5
9

89
.5
6

89
.8
0

90
.5
4

94
.1
4

T
hr
es
ho

ld
-u

F
5

69
.7
3

70
.4
8

72
.2
8

85
.5
9

89
.5
6

89
.8
0

90
.5
4

94
.1
4

To
p-
1

81
.4
6

81
.4
6

81
.4
6

81
.4
6

96
.4
3

96
.4
3

96
.4
3

96
.4
3

To
p-
3

42
.5
2

45
.5
6

54
.6
7

84
.6
1

46
.1
0

49
.3
9

59
.2
6

91
.7
2

To
p-
5

27
.7
7

31
.2
7

36
.7
8

81
.3
1

29
.3
8

33
.0
9

38
.9
1

86
.0
3

IC
P ε

=0
.0
1

45
.4
3

46
.7
7

49
.4
9

75
.2
3

93
.3
3

93
.6
2

94
.7
1

98
.0
0

123

Efficient set-valued prediction in multi-class classification

Ta
bl
e
3

co
nt
in
ue
d

C
al
te
ch
-2
56

A
L
O
I.
B
IN

IC
P ε

=0
.1
0

77
.1
0

77
.7
7

80
.9
5

87
.8
0

96
.1
8

96
.1
8

96
.1
8

96
.1
8

B
ac
te
ri
a

Pr
ot
ei
ns

SV
B
O
P-
Fu

ll-
u
δ
=1

.6
,γ

=0
.6

94
.5
0

94
.5
4

94
.8
7

95
.2
9

83
.3
0

83
.3
4

83
.5
9

83
.9
5

SV
B
O
P-
Fu

ll-
u
F
1

94
.5
5

94
.6
0

94
.9
6

95
.4
4

83
.2
9

83
.3
3

83
.6
1

84
.0
1

SV
B
O
P-
Fu

ll-
u
δ
=2

.2
,γ

=1
.2

94
.4
2

94
.5
0

95
.1
3

95
.9
4

83
.3
4

83
.4
2

83
.9
6

84
.6
9

SV
B
O
P-
Fu

ll-
u
F
5

93
.4
2

93
.6
6

94
.9
8

97
.4
6

83
.0
4

83
.2
8

84
.4
5

87
.0
2

T
hr
es
ho

ld
-u

δ
=1

.6
,γ

=0
.6

93
.8
5

94
.0
5

95
.1
7

97
.2
3

81
.3
1

81
.5
2

82
.5
0

84
.9
2

T
hr
es
ho

ld
-u

F
1

93
.8
5

94
.0
5

95
.1
7

97
.2
3

81
.3
1

81
.5
2

82
.5
0

84
.9
2

T
hr
es
ho

ld
-u

δ
=2

.2
,γ

=1
.2

93
.8
5

94
.0
5

95
.1
7

97
.2
3

81
.3
1

81
.5
2

82
.5
0

84
.9
2

T
hr
es
ho

ld
-u

F
5

92
.4
8

92
.8
0

94
.2
2

97
.7
2

81
.3
1

81
.5
2

82
.5
0

84
.9
2

To
p-
1

94
.2
9

94
.2
9

94
.2
9

94
.2
9

83
.0
7

83
.0
7

83
.0
7

83
.0
7

To
p-
3

46
.2
0

49
.5
0

59
.4
0

91
.9
3

42
.8
4

45
.9
0

55
.0
8

85
.2
5

To
p-
5

29
.4
1

33
.1
2

38
.9
4

86
.1
0

27
.7
0

31
.2
0

36
.6
9

81
.1
2

123

T. Mortier et al.

Ta
bl
e
3

co
nt
in
ue
d

B
ac
te
ri
a

Pr
ot
ei
ns

IC
P ε

=0
.0
1

89
.5
4

90
.0
7

92
.2
5

97
.8
7

52
.4
4

53
.3
5

55
.8
6

68
.6
8

IC
P ε

=0
.1
0

94
.7
7

94
.7
7

94
.7
7

94
.7
7

81
.1
8

81
.5
8

83
.1
1

87
.8
7

D
M
O
Z

L
SH

T
C
1

SV
B
O
P-
Fu

ll-
u
δ
=1

.6
,γ

=0
.6

41
.1
4

41
.4
8

43
.3
5

46
.8
5

42
.6
1

42
.7
2

43
.5
2

44
.6
0

SV
B
O
P-
Fu

ll-
u
F
1

40
.4
3

40
.9
1

42
.8
3

48
.2
8

42
.6
3

42
.7
8

43
.6
6

45
.0
6

SV
B
O
P-
Fu

ll-
u
δ
=2

.2
,γ

=1
.2

39
.5
1

40
.1
4

43
.3
1

49
.8
0

42
.6
5

42
.8
8

44
.4
9

46
.7
5

SV
B
O
P-
Fu

ll-
u
F
5

19
.1
4

19
.9
7

21
.4
2

39
.7
6

39
.1
4

40
.0
1

42
.4
6

54
.0
2

T
hr
es
ho

ld
-u

δ
=1

.6
,γ

=0
.6

10
.7
3

10
.8
8

11
.0
6

17
.5
4

35
.9
2

36
.1
8

37
.0
1

41
.3
6

T
hr
es
ho

ld
-u

F
1

10
.7
3

10
.8
8

11
.0
6

17
.5
4

35
.9
2

36
.1
8

37
.0
1

41
.3
6

T
hr
es
ho

ld
-u

δ
=2

.2
,γ

=1
.2

10
.7
3

10
.8
8

11
.0
6

17
.5
4

35
.9
2

36
.1
8

37
.0
1

41
.3
6

T
hr
es
ho

ld
-u

F
5

10
.7
3

10
.8
8

11
.0
6

17
.5
4

35
.9
2

36
.1
8

37
.0
1

41
.3
6

To
p-
1

40
.4
1

40
.4
1

40
.4
1

40
.4
1

42
.0
0

42
.0
0

42
.0
0

42
.0
0

To
p-
3

25
.9
9

27
.8
4

33
.4
1

51
.7
1

27
.1
3

29
.0
6

34
.8
8

53
.9
8

To
p-
5

18
.2
7

20
.5
7

24
.1
9

53
.4
9

18
.9
6

21
.3
5

25
.1
0

55
.5
0

IC
P ε

=0
.0
1

1.
39

1.
45

1.
57

2.
99

2.
46

2.
61

2.
84

6.
32

IC
P ε

=0
.1
0

2.
55

2.
82

3.
10

13
.3
0

14
.4
6

15
.0
9

16
.3
0

29
.5
9

In
th
e
di
ff
er
en
tc
ol
um

ns
,w

e
re
po

rt
th
e
pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

w
.r.
t.
th
os
e
fo
ur

ut
ili
ty

fu
nc
tio

ns
as

ev
al
ua
tio

n
m
ea
su
re
.I
n
ea
ch

co
lu
m
n
th
e
op

tim
al
pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

is
un

de
rl
in
ed

123

Efficient set-valued prediction in multi-class classification

which can be considered as a limitation. However, it is interesting to see how this
suboptimal approach performs w.r.t. set-based utility functions.

3. Inductive conformal prediction (ICP): we experiment with the commonly-used
nonconformity function s(x, y) = 1 − P(y | x) , and consider two fixed signifi-
cance levels ε ∈ {0.01, 0.10}.
Table 3 shows for all methods the results obtained on test sets, where the highest

obtained utilities are underlined. The utility functions are ordered in decreasing order
of convexity: uδ=1.6,γ=0.6, uF1, uδ=2.2,γ=1.2 and uF5. The first three utility functions
all behave very similar to precision, which explains why the results are similar. Due
to a higher convexity, these utility functions give a high reward to small sets, such that
the top-1 in general yields very good results for those utility functions. At the other
side, for uF5 the picture looks different; there top-3 or top-5 are often much better
than top-1, because this utility function gives a higher reward to larger sets.

The performance of the SVBOP-Full algorithm is in accordancewith our theoretical
results. In general, it is one of the best-performing methods for all datasets and utility
functions that were analyzed. However, the differences with the other methods are
small. This is, of course, not very surprising because all tested inference algorithms
depart from the same conditional class probabilities. Differences in performance can
only be attributed to (relatively small) differences in the inference algorithms. As
discussed in Sect. 4, thresholding is not Bayes-optimal w.r.t. (1), but on the analyzed
datasets it performs quite well. We can conclude that the theoretical shortcomings of
thresholding will only lead to small performance drops in practice.

Finally, inductive conformal prediction performs quite well on some datasets, but
this method yields bad results on other datasets. This can, of course, be explained
by the fact that inductive conformal prediction does not intend to maximize a utility
function. As explained in Sect. 4, this method rather intends to return sets that contain
the true class label with high confidence. This phenomenon is especially visible on the
LSHTC and DMOZ datasets, where K is large. Then, inductive conformal prediction
will produce very large sets, when it wants to cover the true class with high probability.

5.3 Comparison of exact and approximate algorithms on large datasets

In the final group of experiments, we would like to compare the proposed exact
and approximate algorithms by looking at runtime efficiency versus predictive perfor-
mance.

Additionally, we also compare our proposed work with Fagin’s algorithm (Fagin)
and Fagin’s thresholding algorithm (Faginthr). Table 4 summarizes the results for
the SVBOP-Full, SVBOP-Fagin, SVBOP-Faginthr , SVBOP-HSG, and SVBOP-HF
approaches, obtained on the five largest datasets (w.r.t. the number of classes). We use
the same weights for SVBOP-Full, SVBOP-Fagin, SVBOP-Faginthr , and SVBOP-
HSG algorithms. For SVBOP-HF, we consider a predefined hierarchy (HFp), if
available, and a hierarchy constructed during training by means of hierarhical bal-
anced 2-means on class profiles (HFc), as explained in Sect. 3. For each algorithm
we optimize two different utility functions: uF1 and uδ=2.2,γ=1.2. We report train and
test time, as well as average utility, recall (1yi∈Ŷ (xi)

) and size of the predicted sets.

123

T. Mortier et al.

Ta
bl
e
4

Pe
rf
or
m
an
ce

ve
rs
us

ru
nt
im

e
fo
r
th
e
SV

B
O
P-
Fu

ll,
SV

B
O
P-
Fa
gi
n,

SV
B
O
P-
Fa
gi
n t
hr
,S

V
B
O
P-
H
SG

an
d
SV

B
O
P-
H
F
al
go
ri
th
m
s,
te
st
ed

on
fiv

e
be
nc
hm

ar
k
da
ta
se
ts

fo
r
F1

-m
ea
su
re

ut
ili
ty

(u
F
1
)
an
d
cr
ed
al
ut
ili
ty

w
ith

δ
=

2.
2
an
d

γ
=

1.
2
(u

δ
,γ
)

D
at
as
et

A
lg
o.

t t
i.
tr

t t
i.
te

t t
ra

in
To

p-
1

u
F
1

R
|Ŷ

|
t t
es
t

u
δ
,γ

R
|Ŷ

|
t t
es
t

A
L
O
I.
B
IN

Fu
ll

–
–

50
65

96
.4
3

96
.3
8

97
.1
1

1.
03

4.
89

96
.8
6

97
.6
8

1.
05

4.
74

Fa
gi
n

50
67

96
.4
3

96
.3
8

97
.1
1

1.
03

5.
96

96
.8
6

97
.6
8

1.
05

6.
67

Fa
gi
n t
hr

50
67

96
.4
3

96
.3
8

97
.1
1

1.
03

6.
30

96
.8
6

97
.6
8

1.
05

6.
45

H
SG

50
87

96
.4
1

96
.2
3

96
.9
6

1.
04

2.
55

96
.6
6

97
.5
4

1.
05

3.
11

H
F c

16
3

93
.1
5

93
.4
6

95
.1
6

1.
06

0.
28

93
.9
7

95
.4
4

1.
10

0.
28

B
ac
te
ri
a

Fu
ll

13
.7

0.
30

63
03

94
.2
4

94
.6
0

95
.5
5

1.
04

3.
84

95
.1
2

96
.1
2

1.
06

5.
22

Fa
gi
n

63
14

94
.2
4

94
.6
0

95
.5
5

1.
04

52
.2
0

95
.1
2

96
.1
2

1.
06

53
.0
6

Fa
gi
n t
hr

63
14

94
.2
4

94
.6
0

95
.5
5

1.
04

47
.0
0

95
.1
2

96
.1
2

1.
06

49
.5
7

H
SG

63
23

92
.4
5

93
.1
6

94
.1
1

1.
09

1.
83

93
.5
6

95
.3
4

1.
12

1.
92

H
F
p

36
0

94
.1
1

94
.4
6

95
.5
3

1.
05

0.
26

95
.5
6

96
.4
6

1.
07

0.
28

H
F c

70
93

.8
1

93
.3
8

95
.2
0

1.
06

0.
14

94
.4
6

96
.6
4

1.
11

0.
16

Pr
ot
ei
ns

Fu
ll

2.
77

0.
21

21
92

83
.5
9

83
.8
9

84
.7
4

1.
06

13
.5
3

84
.5
4

85
.5
0

1.
10

14
.2
8

Fa
gi
n

21
98

83
.5
9

83
.8
9

84
.7
4

1.
06

55
.9
7

84
.5
4

85
.5
0

1.
10

61
.9
2

Fa
gi
n t
hr

21
98

83
.5
9

83
.8
9

84
.7
4

1.
06

52
.7
7

84
.5
4

85
.5
0

1.
10

59
.3
1

H
SG

26
72

69
.5
8

69
.8
3

70
.6
1

1.
22

10
.9
5

69
.4
6

70
.3
8

1.
27

11
.3
5

H
F
p

77
81

.8
6

81
.1
7

82
.5
4

1.
03

0.
24

82
.3
6

82
.7
1

1.
05

0.
25

123

Efficient set-valued prediction in multi-class classification

Ta
bl
e
4

co
nt
in
ue
d

D
at
as
et

A
lg
o.

t t
i.
tr

t t
i.
te

t t
ra

in
To

p-
1

u
F
1

R
|Ŷ

|
t t
es
t

u
δ
,γ

R
|Ŷ

|
t t
es
t

H
F c

22
79

.9
9

80
.1
8

80
.8
9

1.
04

0.
11

80
.5
8

81
.0
9

1.
06

0.
11

D
M
O
Z

Fu
ll

–
–

82
87

2
40

.4
1

40
.9
1

51
.3
3

3.
52

55
.0
4

43
.3
1

52
.4
6

2.
73

54
.4
7

Fa
gi
n

82
88

9
40

.4
1

40
.9
1

51
.3
3

3.
52

62
0.
54

43
.3
1

52
.4
6

2.
73

64
5.
75

Fa
gi
n t
hr

82
88

9
40

.4
1

40
.9
1

51
.3
3

3.
52

18
0.
17

43
.3
1

52
.4
6

2.
73

23
8.
89

H
SG

83
18

1
39

.9
7

40
.1
3

49
.6
6

3.
26

2.
67

42
.0
2

50
.0
5

2.
36

2.
72

H
F c

72
2

38
.0
3

22
.7
9

46
.7
0

7.
15

10
.9
4

25
.7
9

45
.4
4

5.
32

10
.0
1

L
SH

T
C
1

Fu
ll

–
–

71
50

9
42

.0
0

42
.7
8

45
.3
8

1.
29

46
.1
3

44
.4
9

47
.2
4

1.
44

48
.3
7

Fa
gi
n

71
51

5
42

.0
0

42
.7
8

45
.3
8

1.
29

67
2.
71

44
.4
9

47
.2
4

1.
44

64
5.
89

Fa
gi
n t
hr

71
50

9
42

.0
0

42
.7
8

45
.3
8

1.
29

37
5.
24

44
.4
9

47
.2
4

1.
44

40
9.
13

H
SG

72
36

1
41

.5
2

42
.3
0

44
.8
6

1.
30

8.
28

43
.9
9

46
.7
1

1.
44

9.
71

H
F
p

55
7

39
.8
2

40
.9
6

44
.7
9

1.
42

0.
52

43
.2
0

47
.2
1

1.
60

0.
60

H
F c

33
8

38
.5
3

39
.1
9

43
.3
6

1.
48

1.
15

41
.3
8

45
.7
8

1.
66

1.
24

N
ot
at
io
n:

R
–
re
ca
ll,

u
–
ut
ili
ty

va
lu
e,

|Ŷ
|–

pr
ed
ic
tio

n
si
ze
,t
ti

.t
r
–
C
PU

tim
e
fo
r
ca
lc
ul
at
in
g
tf
-i
df

re
pr
es
en
ta
tio

ns
on

tr
ai
ni
ng

se
ti
n
se
co
nd
s,
t t
i.
te

–
C
PU

tim
e
fo
r
ca
lc
ul
at
in
g

tf
-i
df

re
pr
es
en
ta
tio

ns
on

te
st
se
ti
n
m
ill
is
ec
on
ds

/n
um

be
r
of

te
st
sa
m
pl
es
,t
tr
ai
n
–
C
PU

tr
ai
n
tim

e
in

se
co
nd
s,
t t
es
t
–
C
PU

te
st
tim

e
in

m
ill
is
ec
on
ds

/n
um

be
r
of

te
st
sa
m
pl
es
,

p
–
pr
ed
efi
ne
d
hi
er
ar
ch
y,
c
–
hi
er
ar
ch
y
bu
ilt

w
ith

hi
er
ar
ch
ic
al
ba
la
nc
ed

2-
m
ea
ns

cl
us
te
ri
ng

123

T. Mortier et al.

We also report the times for calculating the hidden representations during training
and testing, except for the datasets where hidden representations are provided (i.e.,
ALOI.BIN, DMOZ and LSHTC1). Additionally, we also include average recall for
top-1 predictions; this is in essence accuracy.

For almost all datasets, SVBOP-Full yields the best predictive performance while
being, as expected, always the slowest. For all datasets, SVBOP-HSG achieves a
predictive performance that is very close to SVBOP-Full, while being at the same time
even a few times faster in inference on DMOZ and LSTHC1 datasets. Unsurprisingly,
hierarchical factorization leads to the highest speedup both in training and inference.
However, for most datasets, it comes at the expense of predictive performance. Only
for datasets where a meaningful natural hierarchy is given (i.e. biological datasets),
SVBOP-HFp outperforms SVBOP-Full and SVBOP-HFc.

In general, we observe that for almost all datasets, both approximate algorithms
behave similarly to SVBOP-Full and manage to significantly improve recall with
an only small increase in average prediction size. At the same time, the approximate
algorithms improve the test times at the cost of predictive performance. This is not very
surprising, as onemight expect a clear trade-off between the two. Furthermore, one can
see that both Fagin’s algorithms always yield exactly the same predictive performance
as the SVBOP-Full algorithm, yet their runtime is much longer. In practice, the choice
of a particular method should depend on the desired trade-off between runtime and
predictive performance.

6 Conclusion

We introduced a decision-theoretic framework for a general family of set-based utility
functions, including most of the measures used in the literature so far, and developed
three Bayes-optimal inference algorithms that exploit specific assumptions to improve
runtime efficiency. Depending on the concrete dataset, those assumptions may or may
not affect predictive performance.

In future work, we plan to extend our decision-theoretic framework toward uncer-
tainty representations more general than standard probability, for example taking up a
distinction between so-called aleatoric and epistemic uncertainty recently put forward
by several authors (Senge et al. 2014; Kendall and Gal 2017; Depeweg et al. 2018;
Nguyen et al. 2018). Finally, some of the proposed algorithms could also be exploited
in a set-valued prediction framework for multi-label classification.

Acknowledgements For this work Willem Waegeman received funding from the Flemish Government
under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” Programme.

A Regret bounds for the utility functions

In this part we present a short theoretical analysis that relates the Bayes optimal
solution for the set-based utility functions to the solution obtained on the probabilities
given by a trained model. The goal is to upper bound the regret of the set-based utility

123

Efficient set-valued prediction in multi-class classification

functions by the L1 error of the class probability estimates. The analysis is performed
on the level of a single x.

Let P̂(x) be the estimate of the true underlying distribution P(x). Let U∗(P, u)

denote the optimal utility for P obtained by the optimal solution Ŷ ∗ (this solution does
not have to be unique). Now, let Ŷ denote the optimal solution with respect to P̂(x).
We define the regret of Ŷ as:

regu(Ŷ) = U∗(P, u) −U (Ŷ , P, u)

=
∑

c∈Y
u(c, Ŷ ∗)P(c | x) −

∑

c∈Y
u(c, Ŷ)P(c | x)

=
∑

c∈Y

(
u(c, Ŷ ∗) − u(c, Ŷ)

)
P(c | x)

We bound regu(P̂(x)) in terms of the L1-estimation error, i.e.:

∑

c∈Y
|P(c | x) − P̂(c | x)|

Note that if Ŷ ∗ = Ŷ the regret is 0. Otherwise, we need to have

U (Ŷ , P̂, u) ≥ U (Ŷ ∗, P̂, u)

Thus, we can write

regu(Ŷ) ≤ U∗(P, u) −U (Ŷ , P, u) +U (Ŷ , P̂, u) −U (Ŷ ∗, P̂, u)

=
∑

c∈Y

(
u(c, Ŷ ∗) − u(c, Ŷ)

)
P(c | x) +

∑

c∈Y

(
u(c, Ŷ) − u(c, Ŷ ∗)

)
P̂(c | x)

=
∑

c∈Y
u(c, Ŷ ∗)

(
P(c | x) − P̂(c | x)

)
+

∑

c∈Y
u(c, Ŷ)

(
P̂(c | x) − P(c | x)

)

≤
∑

c∈Y
u(c, Ŷ ∗)

∣
∣
∣P(c | x) − P̂(c | x)

∣
∣
∣ +

∑

c∈Y
u(c, Ŷ)

∣
∣
∣P̂(c | x) − P(c | x)

∣
∣
∣(14)

=
∑

c∈Y

(
u(c, Ŷ ∗) + u(c, Ŷ)

) ∣
∣
∣P(c | x) − P̂(c | x)

∣
∣
∣

≤ 2
∑

c∈Y

∣
∣
∣P(c | x) − P̂(c | x)

∣
∣
∣ (15)

The inequality in (14) follows from the properties of the absolute function, a ≤ |a|,
while the one in (15) holds because the utility functions are from the bounded interval,
u(·, ·) ∈ [0, 1]. We clearly see that the regret is upper bounded by the quality of the
estimated probability distribution.

123

T. Mortier et al.

B Generalized reject option utility and parameter bounds

In this part we analyze which values α and β can take so that the gα,β family is
lower bounded by precision. This family is visualized in Fig. 3. For a given K , the
following inequality must hold ∀s ∈ {1, . . . , K }, such that gα,β(s) is lower bounded
by precision:

gα,β(s) ≥ gP(s) ,

with utilities:

gα,β(s) = 1 − α
(s − 1

K − 1

)β

, gP(s) = 1

s
.

When looking at the boundary cases (i.e., s = 1, s = K), we find that:

α ≤ K − 1

K
.

By fixing α = K−1
K , the above inequality can be rewritten, ∀s ∈ {2, . . . , K − 1}, as:

1 −
(K − 1

K

)(s − 1

K − 1

)β ≥ 1

s

⇔
(s − 1

K − 1

)β ≤ K

s

(s − 1

K − 1

)

⇔ β ≥ log s−1
K−1

K

s
+ 1

⇒ β ≥ log 1
K−1

K

2
+ 1

Fig. 3 A visualization of gα,β in function of different values of |Ŷ | and K

123

Efficient set-valued prediction in multi-class classification

Note that in the limit, when K → ∞, we obtain the following upper and lower bound
for α and β, respectively:

lim
K→∞

K − 1

K
= 1 , lim

K→∞ log 1
K−1

K

2
+ 1 = 0 .

C Experimental setup

For all image datasets, except ALOI.BIN, we use hidden representations obtained by
convolutional neural networks, whereas for the text datasets (bottom part of Table 2)
tf-idf representations are used. The dimensionality of the representations are denoted
by D. For theMNIST dataset we use a convolutional neural networkwith three consec-
utive convolutional, batchnorm and max-pool layers, followed by a fully connected
dense layer with 32 hidden units. We use ReLU activation functions and optimize
the categorical cross-entropy loss by means of Adam optimization with learning rate
η = 1e − 3. For the VOC 2006,3 VOC 2007,3 Caltech-101 and Caltech-256, the
hidden representations are obtained by resizing images to 224x224 pixels and pass-
ing them through the convolutional part of an entire VGG16 architecture, including a
max-pooling operation (Simonyan and Zisserman 2014). The weights are set to those
obtained by training the network on ImageNet. For all convolutional neural networks,
the number of epochs are set to 100 and early stopping is applied with a patience of
five iterations. For ALOI.BIN, we use the ALOI4 dataset with precalculated random
binning features (Rahimi and Recht 2008). Training is performed end-to-end on a
GPU, by using the PyTorch library (Paszke et al. 2017) and infrastructure with the
following specifications:

– CPU: i7-6800K 3.4 GHz (3.8 GHz Turbo Boost) – 6 cores / 12 threads.
– GPU: 2x Nvidia GTX 1080 Ti 11GB + 1x Nvidia Tesla K40c 11GB.
– RAM: 64GB DDR4-2666.

For the bacteria dataset, tf-idf representations are calculated by using 3-, 4-, and
5-grams extracted from each 16S rRNA sequence in the dataset (Fiannaca et al. 2018).
For the proteins dataset, we consider 3-grams in order to calculate the tf-idf represen-
tation for each protein sequence. To comply with literature, we concatenate the tf-idf
representations with functional domain encoding vectors, which provide distinct func-
tional and evolutional information about the protein sequence. For more information
about the functional domain encodings, we refer the reader to (Li et al. 2018). Precal-
culated tf-idf representations were provided with the DMOZ and LSHTC1 dataset.5

Finally, we use the learned hidden representations for the image datasets and cal-
culate tf-idf representations for the text datasets to train the probabilistic models using
a dual L2-regularized logistic regression model. For the DMOZ and LSHTC1 dataset
we enforce sparsity by clipping all the learned weights less than a threshold η = 0.1

3 The multi-label VOC datasets are transformed to multi-class by removing instances with more than one
label.
4 LIBSVM datasets collection https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
5 http://lshtc.iit.demokritos.gr/.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://lshtc.iit.demokritos.gr/

T. Mortier et al.

to zero (Babbar and Schölkopf 2017). We implemented all SVBOP algorithms in C++
using the LIBLINEAR library (Fan et al. 2008) and H-NSW implementation from
NMSLIB (Naidan and Boytsov 2015). All experiments were conducted on Intel Xeon
E5-2697 v3 2.60GHz (14 cores) with 64GB RAM. We include detail information
about selection of hyperparameters for all the models in the next section.

D Hyperparameters

For the LIBLINEAR library, used for the implementations of all SVBOP algorithms,
as well as the baselines, we tuned two parameters: C – inverse of the regularization
strength and εl – tolerance of termination criterion. For SVBOP-HSG and the under-
lying H-NSW indexing method, we tuned four parameters: M – the maximum number
of neighbors in the layers of H-NSW index, efc – size of the dynamic candidate list
during H-NSW index construction, and k – initial size of the query to H-NSW index
and efs – size of the dynamic candidate list during H-NSW index query, that both
were always set to the same value. For balanced 2-means tree building, we tuned
two parameters: l – the maximum number of leaves on the last level of a tree and
εc – §tolerance of termination criterion of the 2-means algorithm. We list all the
hyperparameters we used to obtained all the results presented in Sects. 5.2 and 5.3 in
Table 5.

Table 5 Values of hyperparameters used for SVBOP-Full, SVBOP-HSG, and SVBOP-HF algorithms for
different datasets

Dataset Full HSG HF

C εl M efc k/efs C εl l εc

VOC 2006 100 0.1 – – – – – – –

VOC 2007 100 0.1 – – – – – – –

Caltech-101 100 0.1 – – – – – – –

Caltech-256 100 0.1 – – – – – – –

ALOI.BIN 100 0.1 10 50 10 500 0.1 20 0.001

DBpedia 105 0.1 – – – – – – –

Bacteria 106 0.1 50 200 100 106 0.1 20 0.001

Proteins 106 0.1 50 200 200 109 0.1 20 0.001

Dmoz 1000 0.1 20 100 100 50 0.1 100 0.001

LSHTC1 1000 0.1 20 100 100 50 0.1 100 0.001

123

Efficient set-valued prediction in multi-class classification

References

Babbar R, Dembczyński K (2018) Extreme classification for information retrieval. Tutorial at ECIR 2018,
http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf

Babbar R, Schölkopf B (2017) Dismec: Distributed sparse machines for extreme multi-label classification.
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, DOI
10(1145/3018661):3018741

Balasubramanian V, Ho S, Vovk V (eds) (2014) Conformal Prediction for Reliable Machine Learning:
Theory. Morgan Kaufmann, Adaptations and Applications

Beygelzimer A, Langford J, Lifshits Y, Sorkin G, Strehl A (2009) Conditional probability tree estimation
analysis and algorithms. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, AUAI Press, Arlington, Virginia, United States, UAI ’09, pp 51–58

Bi W, Kwok J (2015) Bayes-optimal hierarchical multilabel classification. IEEE Trans Knowl Data Eng
27:1–1

Corani G, Zaffalon M (2008) Learning reliable classifiers from small or incomplete data sets: the naive
credal classifier 2. J Mach Learn Res 9:581–621

Corani G, Zaffalon M (2009) Lazy naive credal classifier. In: Proceedings of the 1st ACM SIGKDD
Workshop on Knowledge Discovery from Uncertain Data, ACM, pp 30–37

Del Coz JJ, Díez J, Bahamonde A (2009) Learning nondeterministic classifiers. JMach Learn Res 10:2273–
2293

Dembczyński K, Waegeman W, Cheng W, Hüllermeier E (2012) An analysis of chaining in multi-label
classification. In: Proceedings of the European Conference on Artificial Intelligence

Dembczyński K, Kotłowski W, Waegeman W, Busa-Fekete R, Hüllermeier E (2016) Consistency of prob-
abilistic classifier trees. In: ECML/PKDD

Denis C, Hebiri M (2017) Confidence sets with expected sizes for multiclass classification. J Mach Learn
Res 18:102–128

Depeweg S, Hernández-Lobato JM, Doshi-Velez F, Udluft S (2018) Decomposition of uncertainty in
Bayesian deep learning for efficient and risk-sensitive learning. ICML,PMLR,Proceedings ofMachine
Learning Research 80:1192–1201

EveringhamM, Eslami ASM, Gool LV,Williams CKI,Winn J, Zisserman A (2006) The pascal visual object
classes challenge 2006 (VOC2006) results. Int J comput vision 111(1):98–136

Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes
challenge 2007 (VOC2007) results

FanRE,ChangKW,HsiehCJ,WangXR,LinCJ (2008) LIBLINEAR: a library for large linear classification.
J Mach Learn Res 9:1871–1874

Fiannaca A, Paglia LL, Rosa ML, Bosco GL, Renda G, Rizzo R, Gaglio S, Urso A (2018) Deep learning
models for bacteria taxonomic classification of metagenomic data. BMC Bioinformat 19:61–76

Fox J (1997) Applied regression analysis, linear models, and related methods. Sage,
Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class problems. In: Proceedings of

the Twenty-first International Conference on Machine Learning, ACM, New York, NY, USA, ICML
’04, pp 39

Freitas A (2007) A tutorial on hierarchical classification with applications in bioinformatics. In: Research
and Trends in Data Mining Technologies and Applications„ pp 175–208

Geusebroek JM, Burghouts G, Smeulders A (2005) The amsterdam library of object images. Int J Comput
Vision 61(1):103–112

GriffinG,HolubA, Perona P (2007)Caltech-256 object category dataset. TechRep 7694,California Institute
of Technology

Hüllermeier E, Waegeman W (2019) Aleatoric and epistemic uncertainty in machine learning: A tutorial
introduction. arXiv:1910.09457

Jansche M (2007) A maximum expected utility framework for binary sequence labeling. In: Association
for Computational Linguistics, pp 736–743

Johnson J, Douze M, Jégou H (2017) Billion-scale similarity search with gpus. arXiv preprint
arXiv:1702.08734

Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision?
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4–9 December 2017. Long Beach, CA, USA, pp 5580–5590

123

http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1702.08734

T. Mortier et al.

LeCun Y, Cortes C (2010) MNIST handwritten digit database. Tech rep Courant Institute, Google Labs,
http://yann.lecun.com/exdb/mnist/

Li FF, Andreetto M, Ranzato MA (2003) Caltech101 image dataset. Tech. rep, California Institute of
Technology

Li Y, Wang S, Umarov R, Xie B, Fan M, Li L, Gao X (2018) Deepre: sequence-based enzyme EC number
prediction by deep learning. Bioinformatics 34(5):760–769

Malkov YA, Yashunin DA (2018) Efficient and robust approximate nearest neighbor search using hierarchi-
cal navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence
pp 1–1

Melnikov V, Hüllermeier E (2018) On the effectiveness of heuristics for learning nested dichotomies: an
empirical analysis. Mach Learn 107(8–10):1537–1560

Mena D, Montañés E, Quevedo JR, del Coz JJ (2017) A family of admissible heuristics for A* to perform
inference in probabilistic classifier chains. Mach Learn 106(1):143–169

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and
phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger
KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp 3111–
3119

Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In: Proceedings of the
Tenth InternationalWorkshoponArtificial Intelligence andStatistics, Society forArtificial Intelligence
and Statistics, pp 246–252

Naidan B, Boytsov L (2015) Non-metric space library manual. CoRR arXiv:1508.05470
Navarro G (2002) Searching in metric spaces by spatial approximation. VLDB J 11(1):28–46. https://doi.

org/10.1007/s007780200060
Nguyen V, Destercke S, Masson M, Hüllermeier E (2018) Reliable multi-class classification based on

pairwise epistemic and aleatoric uncertainty. In: IJCAI, ijcai.org, pp 5089–5095
Ofer D (2019) Dbpedia classes. https://www.kaggle.com/danofer/dbpedia-classes/metadata
Oh S (2017) Top-k hierarchical classification. In: AAAI, AAAI Press, pp 2450–2456
Papadopoulos H (2008) Inductive conformal prediction: theory and application to neural networks. Tools

Artif Intel 18(2):315–330
Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, Androutsopoulos I, Amini M,

Gallinari P (2015) LSHTC: A benchmark for large-scale text classification. CoRR arXiv:1503.08581
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017)

Automatic differentiation in pytorch. In: NIPS-W
Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label

learning. In: KDD
Prabhu Y, Kag A, Harsola S, Agrawal R, Varma M (2018) Parabel: Partitioned label trees for extreme

classification with application to dynamic search advertising. In: Proceedings of the International
World Wide Web Conference

Rahimi A, Recht B (2008) Random features for large-scale kernel machines. Adv Neural Inform Process
Syst 20:1177–1184

Ramaswamy HG, Tewari A, Agarwal S (2015) Consistent algorithms for multiclass classification with a
reject option. CoRR arXiv:5050.4137

Rangwala H, Naik A (2017) Large scale hierarchical classification: foundations, algorithms and applica-
tions. In: The European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases

RIKEN (2013) Genomic-based 16s ribosomal rna database. https://metasystems.riken.jp/grd/download.
html

Senge R, Bösner S, Dembczyénski K, Haasenritter J, Hirsch O, Donner-Banzhoff N, Hüllermeier E (2014)
Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Inf Sci
255:16–29

Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421
Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips).

In: Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2321–2329

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556

123

http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1508.05470
https://doi.org/10.1007/s007780200060
https://doi.org/10.1007/s007780200060
https://www.kaggle.com/danofer/dbpedia-classes/metadata
http://arxiv.org/abs/1503.08581
http://arxiv.org/abs/5050.4137
https://metasystems.riken.jp/grd/download.html
https://metasystems.riken.jp/grd/download.html
http://arxiv.org/abs/1409.1556

Efficient set-valued prediction in multi-class classification

Stock M, Dembczynski K, Baets BD, Waegeman W (2016) Exact and efficient top-k inference for multi-
target prediction by querying separable linear relational models. Data Min Knowl Discov 30(5):1370–
1394. https://doi.org/10.1007/s10618-016-0456-z

Syed S (2016) Submodularity in machine learning. MLRG Summer School, https://www.stat.ubc.ca/~saif.
syed/papers/mlrg_submodularity.pdf

Vondrak J (2019) Optimization of submodular functions tutorial. https://theory.stanford.edu/~jvondrak/
data/submod-tutorial-1.pdf

Vovk V, Gammerman A, Shafer G (2003) Algorithmic Learning in a Random World. Springer-Verlag,
Waegeman W, Dembczyński K, Jachnik A, Cheng W, Hüllermeier E (2014) On the Bayes-optimality of

F-measure maximizers. J Mach Learn Res 15:3333–3388
Yagnik J, StrelowD,RossDA, sungLinR (2011)Thepower of comparative reasoning. In: 2011 International

Conference on Computer Vision, pp 2431–2438
Yang G, Destercke S, Masson MH (2017a) Cautious classification with nested dichotomies and imprecise

probabilities. Soft Comput 21:7447–7462
Yang G, Destercke S, Masson MH (2017b) The costs of indeterminacy: how to determine them? IEEE

Transact Cybernet 47:4316–4327
Ye N, Chai K, Lee WS, Chieu HL (2012) Optimizing f-measures: a tale of two approaches. In: Proceedings

of the International Conference on Machine Learning
Zaffalon M, Giorgio C, Mauá DD (2012) Evaluating credal classifiers by utility-discounted predictive

accuracy. Int J Approx Reasoning 53:1282–1301
Ziyin L, Wang Z, Liang PP, Salakhutdinov R, Morency LP, Ueda M (2019) Deep gamblers: Learning to

abstain with portfolio theory. arXiv:1907.00208

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10618-016-0456-z
https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf
https://www.stat.ubc.ca/~saif.syed/papers/mlrg_submodularity.pdf
https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf
https://theory.stanford.edu/~jvondrak/data/submod-tutorial-1.pdf
http://arxiv.org/abs/1907.00208

	Efficient set-valued prediction in multi-class classification
	Abstract
	1 Introduction
	1.1 Set-based utility maximization
	1.2 Contributions and outline

	2 Theoretical results
	2.1 General results
	2.2 Considerations w.r.t. specific utility functions

	3 Algorithmic solutions
	3.1 SVBOP-full
	3.2 Hierarchical search with similarity graphs (SVBOP-HSG)
	3.3 Hierarchical factorization of the conditional distribution (SVBOP-HF)

	4 Related work
	5 Experiments
	5.1 Illustrations on image datasets
	5.2 Comparison of different utility functions and baselines
	5.3 Comparison of exact and approximate algorithms on large datasets

	6 Conclusion
	Acknowledgements
	A Regret bounds for the utility functions
	B Generalized reject option utility and parameter bounds
	C Experimental setup
	D Hyperparameters
	References

