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Abstract
We consider sequential maximization of perfor-
mance metrics that are general functions of a
confusion matrix of a classifier (such as preci-
sion, F-measure, or G-mean). Such metrics are,
in general, non-decomposable over individual in-
stances, making their optimization very challeng-
ing. While they have been extensively studied
under different frameworks in the batch setting,
their analysis in the online learning regime is very
limited, with only a few distinguished exceptions.
In this paper, we introduce and analyze a general
online algorithm that can be used in a straightfor-
ward way with a variety of complex performance
metrics in binary, multi-class, and multi-label clas-
sification problems. The algorithm’s update and
prediction rules are appealingly simple and com-
putationally efficient without the need to store any
past data. We show the algorithm attains O( lnn

n
)

regret for concave and smooth metrics and ver-
ify the efficiency of the proposed algorithm in
empirical studies.

1. Introduction
Many modern applications of machine learning involve op-
timization of complex performance metrics that, unlike mis-
classification error, do not decompose into expectation over
instance-wise quantities. Examples of such measures in-
clude F -measure (Lewis, 1995), the area under the ROC
curve (AUC) (Drummond & Holte, 2005), geometric (Drum-
mond & Holte, 2005; Wang & Yao, 2012; Menon et al.,
2013; Cao et al., 2019) and harmonic mean (Kennedy et al.,
2009), and Matthews coefficient (Baldi et al., 2000).

Complex performance metrics have been studied in bi-
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nary (Ye et al., 2012; Koyejo et al., 2014; Busa-Fekete et al.,
2015; Dembczynski et al., 2017; Singh & Khim, 2022),
multi-class (Narasimhan et al., 2015b; 2022), and multi-
label classification (Waegeman et al., 2014; Koyejo et al.,
2015; Kotłowski & Dembczyński, 2017) under different
theoretical frameworks. The population utility (PU) frame-
work focuses on building a model being close to the optimal
one on the population level (Ye et al., 2012). The expected
test utility (ETU) framework concerns the optimization of
the expected utility computed over a given (known) test
set (Lewis, 1995; Jansche, 2007; Ye et al., 2012). These two
frameworks are different in the formulation of the objec-
tives (more precisely, they differ in the order in which the
expectation and the metric is computed), but they turn out
to be asymptotically equivalent (Dembczynski et al., 2017).
Still, most of the existing works concern a batch setting.

In this paper, we consider an online setting for optimiza-
tion of complex performance metrics. In our framework,
an algorithm observes a sequence of instances, one at a
time, which are drawn i.i.d. from some distribution. At
each iteration, after receiving the input vector, the algorithm
makes a prediction and observes the true label (or vector
of labels). After observing the entire sequence of data, the
algorithm is evaluated by means of a performance metric
computed from its empirical confusion matrix over the data.
We evaluate an algorithm in our setting by means of a regret,
which is the expected (over the data sequence) difference
between the algorithm’s performance and that of the optimal
classifier. The goal is to design no-regret algorithms, that
is, algorithms that guarantee regret converges to zero as the
sequence length grows.

Contrary to most of the online learning work, we do not
assume that predictions of the algorithm are obtained by
means of some parametric function of the input vector (e.g.,
linear or generalized linear models). Instead, we assume
that the algorithm has access to a conditional probability

estimator (CPE), which returns an estimate of the true label
conditional distribution at the input vector, which the algo-
rithm will use to issue its prediction. Such a setup would
be trivial for decomposable performance metrics, where the
optimal decision is fully determined by the label conditional
probabilities. For non-decomposable performance metrics,
however, the optimal decision on different instances are no
longer independent, yet the online setting requires the classi-
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fier to commit to a prediction as soon as it gets the instance,
without any chance to revise decisions that turn out to be
suboptimal in retrospect.

In this paper, we introduce and analyze a general online
algorithm called Online Metric Maximization Algorithm
(OMMA), which can be used in a straightforward way with
a variety of complex performance metrics in binary, multi-
class, and multi-label classification problems, with or with-
out budgeted predictions (i.e., requiring exactly k predic-
tions per instance). The algorithm’s prediction rule is ap-
pealingly simple: at any given trial, the algorithm issues the
prediction that maximizes the expected value (with respect
to the current, not yet seen label, obtained by means of the
CPE) of a linearized version of the metric. Thus, OMMA
is effectively a cost-sensitive classification rule with costs
determined by the gradient of the utility at the current con-
fusion matrix, and computing its prediction boils down to
thresholding or sorting linear functions of the conditional
probabilities. The algorithm is computationally efficient and
does not need to store any past data or predictions beyond
the entries of the confusion matrix, update of which can
be done online in a straightforward manner. The algorithm
attains O( lnn

n
) regret for concave and smooth metrics (up

to the estimation error of its CPE), and O(
p

lnn

n
) regret

without smoothness.

We also verify the efficiency of the proposed algorithm in
empirical studies, where we evaluate it on a wide range of
multi-label benchmarks and performance measures. Our
results show that the proposed algorithms achieve attractive
performance in comparison to similar algorithms that can
only be applied to a limited set of measures or require more
computations and memory.

Our contribution can be summarized as follows:

• We formulate an online learning framework in which
the classifier itself is not parametric but based on a
potentially learnable label probability estimator,

• We provide a simple algorithm with a constant memory
footprint that can optimize general non-decomposable
performance metrics in an online manner across a wide
range of learning tasks, including binary, multi-class,
multi-label, and budgeted-at-k predictions,

• We prove regret bounds for this algorithm, showing
that for concave and smooth metrics, we converge to
the population-optimal at a rate of O( lnn

n
).

• We show that in data sets with large variance, it can
be beneficial for the decision process to ignore the
available label feedback, and instead rely entirely on
the biased, but much more stable, CPE instead.

Related work. Despite an extensive and long line of re-
search on complex performance metrics in the batch setting,
the analysis of these metrics in the online setting is quite
limited, with only a few distinguished exceptions. Below
we briefly describe the main results obtained so far.

The online problem has been tackled by optimizing a sur-
rogate loss/reward function convex with respect to model
parameters, which are updated in an online fashion. Kar
et al. (2014) proposed an online gradient descent method
for structural surrogates (Joachims, 2005). Narasimhan et al.
(2015a) considered optimizing metrics being functions of
true positive and true negative rate, which are then replaced
by convex surrogate rewards. Such approaches may have
high memory cost and do not converge to an optimal model
for a given metric, but to a model optimal for the structural
surrogate, and these two do not necessarily coincide (within
the considered parametric class of functions).

The setup closest to ours has been considered in the context
of optimizing the F -measure, where it is known that the op-
timal classifier is obtained by thresholding label conditional
probabilities. In particular, Busa-Fekete et al. (2015) have in-
troduced an online algorithm to simultaneously train a CPE
model and tune the threshold. They have shown that the
algorithm is asymptotically consistent, but the convergence
rate has not been established. Interestingly, this algorithm
can be seen as a special case of our general algorithm. In
a follow-up paper, Zhang et al. (2018) have designed an
algorithm in which the threshold is updated using stochas-
tic gradient descent of a strongly convex function, which
reflects a specific property of the optimal threshold. The
algorithm has a convergence rate of O( lnnp

n
).

For a wider class of functions, one can directly exploit the
connection to cost-sensitive classification. Yan et al. (2017)
has considered simultaneously learning multiple classifiers
with different cost vectors together with an online algorithm
that learns to select the best one. An alternative approach
is to devise a method that finds the optimal costs in the
space of confusion matrices, for example, by adapting the
Frank-Wolfe algorithm previously used in batch learning
for smooth and concave metrics (Narasimhan et al., 2015b;
2022; Schultheis et al., 2024). Such an approach can be
then naı̈vely applied to the online setting by running it in
exponentially growing time intervals to amortize the cost of
rerunning the algorithm on the entire batch. We use such an
approach as a baseline in our experimental studies.

Let us notice that our contribution does not coincide with
any of the online/stochastic Frank-Wolfe methods known in
the literature (Hazan & Kale, 2012; Reddi et al., 2016), as
these concern minimization of an objective that is either a
finite sum or an expectation, and thus linearly decomposes
between the trials. In our case, the objective is a global,
non-linear function of all past predictions and labels.
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Online algorithms and regret minimization have been ex-
tensively studied in the online convex optimization (OCO)
framework (Cesa-Bianchi & Lugosi, 2006; Hazan, 2016;
Shalev-Shwartz, 2012). Our setup, however, substantially
differs from OCO. On the one hand, we aim at optimizing
a more difficult, non-linear function of the entire sequence
of prediction, and we need stochastic (i.i.d.) assumption on
the data sequence, as otherwise, no algorithm can guarantee
vanishing regret (Appendix C). On the other hand, our algo-
rithm is equipped with the CPE, which gives an approximate
distribution of labels at the moment of prediction.

2. Problem setup
Let x 2 X be the input instance and y 2 Y ✓ {0, 1}m the
output label vector, jointly distributed according to (x, y) ⇠
P. We let PX denote the marginal distribution x, and ⌘(x)
the label conditional probability, ⌘(x) = Ey|x[y]. In multi-

class classification, the label vector y is a one-hot encoding
of one out of m classes, Y = {y 2 {0, 1}m :

P
j
yj = 1},

while ⌘(x) = (⌘1(x), . . . , ⌘m(x)) is the label conditional
distribution with ⌘j(x) = P(yj = 1|x) denoting the condi-
tional probability of class j. Whereas in multi-label classifi-

cation y 2 {0, 1}m denotes a vector of relevant labels and
⌘(x) = (⌘1(x), . . . , ⌘m(x)) is vector of label marginal

conditional probabilities, ⌘j(x) = P(yj = 1|x). Note that
in the multi-label case, ⌘(x) is not the conditional distri-
bution P(y|x) (which is a joint distribution over {0, 1}m),
but in the context of this paper, it will always suffice to
only operate on its marginals; we will thus sometimes use
y ⇠ ⌘(x) to denote a multi-label vector drawn fromP(y|x)
with marginals ⌘(x) if no other property of the distribution
matters, and we will call ⌘ the conditional distribution to
simplify the presentation.

We consider an online (stochastic) setting in which
the algorithm observes a sequence of instances
(x1, y1), (x2, y2), . . . , (xn, yn), drawn i.i.d. from P.
At each iteration t = 1, 2, . . . , n, after receiving input xt

drawn from PX , the algorithm makes a prediction byt, and
next observes the true output yt drawn from P(y|xt). We
assume that the algorithm has access to a conditional proba-

bility estimator (CPE) b⌘t, which at trial t returns an estimate
b⌘t(xt) of the true conditional distribution ⌘(xt), which

for t = 1, . . . , n do
Observe input instance xt drawn from PX
Receive conditional probability estimate b⌘t(xt)
Predict label byt based on b⌘t(xt)
Receive true label yt drawn from P(·|xt)

Evaluate based on  (C(yn, byn))

Figure 1. The online protocol.

the algorithm will use for issuing its prediction byt. We
put the time subscript in b⌘t as we allow the CPE to change
over time (e.g., it can be produced by an external online
learner run on the same sequence of instances); we assume,
however, that b⌘t can only depend on the observed data xt,
(x1, y1), . . . , (xt�1, yt�1) (i.e., does not depend on yt and
all the future instance). The CPE could be, for instance, a
neural network or boosted decision trees trained (possibly
online) by minimizing some proper scoring loss. In this
work, we do not focus on the way the CPE is learned, and all
our bounds on the performance of the algorithm will depend
on the estimation error of b⌘t with respect to true conditional
distribution ⌘. We outline the online protocol in Figure 1.

Given a sequence of labels1 yn = (y1, . . . , yn) and a
sequence of algorithm’s predictions byn = (by1, . . . , byn),
we let C(yn, byn) denote the (empirical) confusion ma-

trix. In multi-class classification, it is an m ⇥ m matrix
C with entries defined as Cj` = 1

n

P
n

t=1 ytjbyt`, where
ytj is the j-th entry of vector yt. Thus, Cj` contains
the fraction of times an instance from class j was pre-
dicted as being in class `. Note that for binary classifi-
cation (m = 2), we get the usual true-positive (C11), false-
negative (C10), false-positive (C01), true-negative (C00)
entries, where we index the entries from 0 to stick to a
more convenient notation. In turn, in multi-label classifi-
cation, the confusion matrix is an m ⇥ 2 ⇥ 2 tensor C,
where Cjuv = 1

n

P
n

t=1 1{ytj = u}1{bytj = v},2 where
j 2 {1, . . . , m} and u, v 2 {0, 1}. In other words, C is
a sequence of m binary confusion matrices, separately for
each label. In a given problem, we let C denote the set of all
achievable confusion matrices, that is the set of confusion
matrices that can be formed from allowed label and predic-
tion vectors yt, byt for any t. Note that, independent of the
considered problem, the confusion matrix can always be
written as C(yt, byt) = 1

t

P
t

i=1 C(yi, byi) (with C(yi, byi)
being confusion matrices computed out of a single label yi

and prediction byi), which gives a simple online update:

C(yt, byt) =
t � 1

t
C(yt�1, byt�1) +

1

t
C(yt, byt) . (1)

In this work, we focus on online maximization of per-
formance metrics that do not decompose into a sum
over instances but are general functions of the confusion
matrix of the algorithm. Specifically, after observing the
entire sequence of n instances, the algorithm is evaluated
by means of a utility metric  =  (C(yn, byn)). For
binary classification, examples of such measures include
the F -measure, geometric and harmonic mean, area
under the ROC curve, recall, precision, etc. We present

1Generally, by vt we denote a sequence (v1, . . . ,vt); f(vt)
denotes (f(v1), . . . , f(vt)).

21(S) is the indicator function equal one when S holds.
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Table 1. Examples of binary and multi-class confusion matrix measures. Binary measures are expressed in terms of true-positives
(tp = C11), false-negatives (fn = C10), false-positives (fp = C01), and true-negatives (tn = C00).

Metric  (C2⇥2)  (Cm⇥m) Metric  (C2⇥2)  (Cm⇥m)

Accuracy tp + tn
Pm

i=1 Cii G-mean
q

tp·tn
(tp+fn)(tn+fp)

⇣Q
m

j=1
CjjPm
i=1 Cji

⌘1/m

Balanced Acc. tp
2(tp+fn) + tn

2(tn+fp)
P

m

i=1
Cii

m
Pm

j=1 Cij
H-mean 2

⇣
tp+fn

tp + tn+fp
tn

⌘�1
m

⇣P
m

j=1

Pm
i=1 Cji

Cjj

⌘�1

Recall tp
tp+fn micro- or macro-avg. Q-mean 1�

s
1
2

✓⇣
fn

tp+fn

⌘2
+
⇣

fp
tn+fp

⌘2
◆

1�

r
1
m

P
m

j=1

⇣
1� CjjPm

i=1 Cji

⌘2

Precision tp
tp+fp micro- or macro-avg. Jaccard tp

tp+fp+fn micro- or macro-avg.

F�-measure (1+�
2)tp

(1+�2)tp+�2fn+fp micro- or macro-avg. Matthews coeff. tp·tn�fp·fnp
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

micro- or macro-avg.

their definitions in Table 1. Most of these metrics have
multi-class (some also presented in Table 1) as well as
multi-label extensions in the micro- and macro-averaged
variants. By rewriting the multi-class Cm⇥m confusion
matrix into a multi-label confusion tensor Cm⇥2⇥2,

Cm⇥2⇥2(Cm⇥m) :=

2

4

0

@
Cjj

P
i 6=j

Cij

P
i 6=j

Cji

P
i 6=j,` 6=j

Ci`

1

A

3

5

m

j=1

,

we can define the micro- and macro-averaged metrics for
both multi-class and multi-label classification as:

Micro- (Cm⇥2⇥2) :=  

✓
1

m

mX

j=1

Cj

◆
,

Macro- (Cm⇥2⇥2) :=
1

m

mX

j=1

 (Cj) .

All the metrics presented above can be considered under
the standard as well as budgeted at k variant (Schultheis
et al., 2023; 2024), where the classifier is required to predict
exactly k classes per instance (by 2 bYk = {by 2 {0, 1}m :P

j
byj = k}). The main difficulty in maximizing  comes

from the fact that the algorithm is only evaluated at the
end of the sequence by a (possibly complex) function of all
the labels and predictions, while each prediction byt must
be made immediately upon observing xt, and cannot be
changed in the future.

Regret. Since without imposing assumptions on the data
distribution P one cannot meaningfully bound the  -
accuracy of the algorithm in the absolute terms, the goal
is to compare the algorithm’s performance relative to that
of the optimal predictor. Note, however, that defining the
optimal predictions y?n simply as those maximizing the
value of the utility, y?n = argmaxbyn  (C(yn, byn)), leads
(for essentially all reasonable utilities) to a trivial solution
y?n = yn, which gives the maximum possible value  ,

and is thus not achievable by any algorithm, no matter how
large n is. Thus, we proceed differently, defining a classifier

h : X ! Y to be a function from the inputs to the out-
puts, and the optimal predictions y?n = h?(xn) to be those
generated by a classifier h? which maximizes the expected

(with respect to the data sequence) value of the utility:3

h? := argmax
h

E(x,y)n [ (C(yn, h(xn)))] , (2)

where the maximization is with respect to all (measurable)
classifiers. We define the (expected) regret of the algorithm
as the difference between its expected performance in terms
of  , and the performance of the optimal classifier h?:

Rn := E [ (C(yn, h?(xn)))] � E [ (C(yn, byn))] .

Our goal is to design no-regret algorithms, that is, algo-
rithms that guarantee Rn ! 0 as n ! 1. In the next sec-
tion, we propose a computationally- and memory-efficient
algorithm, which guarantees (under certain assumptions on
the utility) Rn = O

�
lnn

n

�
up to the estimation error of

CPE.

Note that when n ! 1, h? coincides with the  -optimal
population-level classifier. Approximating h? in the batch
setting is a task which was tackled in a series of past works
spanning binary classification (Ye et al., 2012; Menon et al.,
2013; Koyejo et al., 2014; Narasimhan et al., 2014), multi-
class classification (Narasimhan et al., 2015b; 2022), and
multi-label classification (Waegeman et al., 2014; Koyejo
et al., 2015; Kotłowski & Dembczyński, 2017; Schultheis
et al., 2024), and boils down to, under certain mild assump-
tions on the data distribution, finding the optimal threshold
on the conditional probability ⌘(x) (for binary classifica-
tion), or finding the optimal ensemble of cost-sensitive clas-
sifiers with an iterative convex optimization algorithm, such
as the Frank-Wolfe method or gradient descent (for multi-
class and multi-label classification).4 In this light, the results

3Recall that h(xn) stands for (h(x1), . . . ,h(xn)).
4In the past papers, the optimal classifier is allowed to be
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Algorithm 1 Online Measure Maximization Algorithm
Initialization: confusion matrix C0

for t = 1, . . . , n do
Receive input xt and probability estimate b⌘t(xt)
Predict byt = argmaxbyr (Ct�1)·

�
Eyt⇠b⌘t(xt)[C(yt, by)]

�

Receive label yt and update Ct = t�1
t Ct�1 + 1

tC(yt, byt)

of our paper can be interpreted as proposing a simple and
efficient iterative algorithm, which does only a single pass
over the data while achieving performance that is very close
to that of the aforementioned batch optimization methods.
Remark 2.1 (Adversarial sequence of inputs). One might
consider a setup in which the input instances xn are not
drawn i.i.d. from a fixed distribution, but rather form an
arbitrary (possibly even adversarial) sequence, and the goal
is to analyze the worst case with respect to xn (note that the
labels remain stochastic, being drawn from ⌘(x)). Unfortu-
nately, this setting turns out to be too difficult in the worst
case: in Appendix C, we show that there exists a conditional
probability function ⌘ (which we even make known to the
algorithm), and a sequence of inputs xn, on which no algo-
rithm can have a vanishing regret. Thus, a stochastic data
generation mechanism seems crucial for the existence of a
no-regret learner.

3. The algorithm
In this section, we introduce our algorithm, called Online

Metric Maximization Algorithm (OMMA). To define the
algorithm, we need to make the following assumption:
Assumption 3.1. The utility  (C) is differentiable in C.

This property is shared by all performance metrics com-
monly used in practice.5 Let r (C) be the matrix of deriva-
tives of  with respect to C, which is of the same shape as
C (m ⇥ m for multi-class, and m ⇥ 2 ⇥ 2 for multi-label
case). To simplify notation, we let Ct := C(yt, byt) denote
the confusion matrix of the algorithm after t trials. At trial t,
given past labels yt�1, past predictions byt�1, new input xt

and the conditional probability estimate b⌘t(xt), the OMMA
algorithm predicts byt which maximizes the expected (with
respect to b⌘t) linearized (at Ct�1) version of the utility:6

byt = argmax
by

r (Ct�1) ·
�
Eyt⇠b⌘t(xt) [C(yt, by)]

�
, (3)

where the maximization is over the allowed predictions

randomized, that is to take values in the convex hull of Y . All
of our analysis effortlessly extends to such a setup, but we do
not consider it for the clarity of the presentation. Moreover, our
algorithm never needs to randomize its predictions.

5In case of non-differentiable and concave metrics, one can
still use a supergradient in place of gradient.

6The algorithm is well-defined, as C(yt, by) is linear in labels
and thus its expectation only depends on marginals b⌘t(xt).

by (e.g., one-hot vectors in multi-class classification), and
the operator “·” denotes the matrix/tensor dot product
(which is a standard vector dot product between vectorized
matrix/tensor arguments). Note that the last element in
(3) is a confusion matrix computed from only a single

observation yt and a single prediction by. The algorithm
does not need to store any past data or predictions beyond
the entries of the confusion matrix, as the update of matrix
can be done online using (1). Due to the linearity of (3),
OMMA is effectively a cost-sensitive classification rule
with costs determined by the gradient of the utility at the
current confusion matrix. In what follows, we will show
that formula (3) leads to a very simple rule, boiling down
to thresholding or sorting linear functions of b⌘t(xt).

Motivation. OMMA can be derived from considering a
greedy method, which, given past labels yt�1 and predic-
tions byt�1, chooses its prediction byt in order to maximize
the expected utility including iteration t (where the expec-
tation is with respect to label yt, which is unknown at
the moment of making prediction), that is, to maximize
F (byt) = Eyt⇠b⌘t(xt) [ (C(yt, byt))]. By using a Taylor-
expansion of F (byt) with respect to yt, it turns out that
maximizing F (byt) and maximizing (3) are equivalent up to
O(1/t2) (see Appendix A for details). At the same time,
our algorithmic update (3) is based on a linear objective
and, therefore, more straightforward to calculate, as well
as easier to analyze. In the experiment section, we show
that both updates indeed behave very similarly to each other,
being essentially indistinguishable for larger values of n.

Example: binary classification. To simplify the presenta-
tion, we switch from one-hot vector notation to scalars and
denote by yt 2 {0, 1} a label at time t (yt = 0 corresponds
to yt = (1, 0), and yt = 1 to yt = (0, 1)); similarly byt 2

{0, 1} denotes the prediction and ⌘(xt) = P (yt = 1|xt).
The confusion matrix Ct�1 = C(yt�1, byt�1) consists of
four entries

Ct�1,j` =
X

it�1

1{yi = j}1{byi = `}, j, ` 2 {0, 1} . (4)

Let us abbreviate @

@Cj`
 (Ct�1) as rj`, and b⌘t(xt) as b⌘t.

Since

Eyt⇠b⌘t [C(yt, by)] =


(1 � b⌘t)(1 � by) (1 � b⌘t)by

b⌘t(1 � by) b⌘tby

�
,

equation (3) boils down to maximizing a cost-sensitive clas-
sification accuracy:

r00(1�b⌘t)(1�by)+r01(1�b⌘t)by+r10b⌘t(1�by)+r11b⌘tby, (5)

which can also be rewritten, up to terms independent of by,
as by(↵b⌘t � �), with

↵ = r11 + r00 �r01 �r10, � = r00 �r01,
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a cost-sensitive prediction rule (Elkan, 2001; Natarajan et al.,
2018). Since all utilities used in practice are non-decreasing
with true positives and true negatives (r11,r00 � 0),
and non-increasing with false negatives and false positives
(r01,r10  0), we get a � 0, and thus maximizing
by(↵b⌘t � �) boils down to choosing byt = 1 whenever the
conditional probability b⌘t(xt) exceeds a threshold �/↵. It
is well-known that, under mild assumptions on the input
distribution PX and the metric  , thresholding ⌘(x) is the
optimal classification rule for maximizing the population-
level version of  (Koyejo et al., 2014; Narasimhan et al.,
2014). Thus, OMMA mimics the optimal classification rule,
with a threshold computed based on the empirical data.

Example: multi-label classification (with a budget).
Here yt and byt are label and prediction vectors of length
m, and ⌘(xt) is the vector of marginal label probabilities.
Ct�1 is a sequence of binary confusion matrices Cj

t�1,
j = 1, . . . , m. Abbreviating @

@C
j
uv
 (Ct�1) as r

j

uv
, and

b⌘t(xt) as b⌘t allows us to write down the objective (3) as
a direct extension of the one from binary classification (5),
summed over m labels:

mX

j=1

byj(↵jb⌘tj � �j) (6)

with ↵j = r
j

11 + r
j

00 � r
j

01 � r
j

10, �j = r
j

00 � r
j

01.
Maximizing (6) amounts to setting bytj = 1 whenever
↵jb⌘tj � �j � 0, or b⌘tj � �j/↵j . In the budgeted-at-k
variant, where the algorithm must predict exactly k labels
each time, the prediction amounts to sorting the labels by
means of ↵jb⌘tj � �j in descending order, and setting the
top k of them to 1. Interestingly, this is closely related to the
optimal population-level prediction rule for the budgeted
setting (Schultheis et al., 2024).

4. Theoretical analysis
In order to prove a bound on the regret of OMMA algorithm,
we need to make additional assumptions on the utility  .
Assumption 4.1.  (C) is differentiable, concave, L-
Lipschitz, and M -smooth in C, that is for any C1, C2 2 C,
 (C1)   (C2) + r (C2)>(C1 � C2), | (C1) �

 (C2)k  LkC1 � C2k, and kr (C1) � r (C2)k 

MkC1 � C2k, where k · k denotes the entrywise L2-norm.
Remark 4.2. Our algorithm generally requires smoothness
of the objective to converge. The assumption can be waived
by running it on a smoothed version of the metric. This,
however, comes at the price of a slower convergence rate
O(

p
ln n/n). As non-smooth metrics are not commonly

employed in machine learning, we relegate the discussion
to Appendix B.2
Theorem 4.3. Let Assumption 4.1 hold. Then the OMMA

algorithm has its regret bounded by:

Rn 
Ma(1 + ln n)

n
+

2bL

n

nX

t=1

E [k⌘(xt) � b⌘t(xt)k]

where a = 1, b = 1 for multi-class, and a = m, b =
p

2 for

multi-label classification.

The proof is given in Appendix B.1. The bound in The-
orem 4.3 consists of two parts: (1) the first term of order
O( lnn

n
) can be interpreted as the regret of OMMA had it

been equipped with the true conditional probability ⌘ (that
is, the estimator is exact); (2) the estimation error of b⌘t

averaged over trials t = 1, . . . , n. If the estimation error
converges to zero with n ! 1, OMMA becomes a no-
regret learning algorithm.
Remark 4.4. In the proof of Theorem 4.3, the Lipschitzness
and the smoothness properties are invoked along the param-
eter path of the algorithm, {Ct}

n

t=1, in order to control the
progress in optimizing the utility. These properties might
not necessarily hold globally (for every confusion matrix)
for utilities given in Table 1, for instance when the observed
labels lead to severe class imbalance. However, adding a
small constant to the denominator in the definition of a util-
ity stabilizes its values and ensures its global Lipschitzness
and smoothness. This is also the approach we take in the
experiments to keep our algorithm stable over the initial part
of the data sequence.

An alternative approach is to use the fact that most utilities
in Table 1 are Lipschitz and smooth when label frequencies
in the confusion matrix are bounded away from zero. Tak-
ing into account that these properties are applied along the
path of the algorithm, and using concentration inequalities
on the label frequencies, we show in Appendix E that as
long as the probabilities of labels P(yj = 1) are bounded
away from zero, the regret of OMMA converges at a rate
of O(

p
ln n/n) with high probability. Motivated by this

fact, we also propose to use a regularization technique that,
additionally to using a small constant in the denominator
of some metrics, also adds the small value � to the initial
entries of the confusion matrix. With the updates of the
confusion matrix, this value diminishes, being �

t
at iteration

t of the algorithm. This simple technique turns out to be
helpful for some metrics.

5. Alternative variants of the algorithm

Internal semi-empirical confusion matrix. In the exper-
iment, we also use an alternative version of the OMMA
algorithm called OMMA(b⌘), outlined in Algorithm 2. Note
that in the algorithm’s description we use C(b⌘t, byt) =
Eyt⇠b⌘t

C(yt, byt) which follows from the fact that the con-
fusion matrix is linear in labels and that Eyt⇠b⌘t

[yt] = b⌘t.
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Algorithm 2 OMMA(b⌘)
Initialization: confusion matrix C0

for t = 1, . . . , n do
Receive input xt and probability estimate b⌘t := b⌘t(xt)
Predict byt = argmaxbyr (Ct�1)·C(b⌘t, by)
Update Ct = t�1

t Ct�1 + 1
tC(b⌘t, byt)

The only difference between OMMA and its modification is
that OMMA(b⌘) updates its running confusion matrix Ct by
means of b⌘t instead of the true label yt. In fact, OMMA(b⌘)
does not use the true labels at all, fully trusting its CPE. We
remark that Ct does not correspond to any empirical con-
fusion matrix (as it is not based on the labels), so it should
rather be treated as an internal parameter of OMMA(b⌘).
In Appendix D we show that if the algorithm’s probabil-
ity estimator is exact, that is b⌘t ⌘ ⌘ for all t, OMMA(b⌘)
achieves (under the same assumptions as before) a regret
bound Rn 

Ma(2+lnn)
n

, which is very similar to that of
the original OMMA algorithm in Theorem 4.3. It is, how-
ever, unclear whether the modified algorithm converges for
a non-exact CPE. Still, it turns out that OMMA(b⌘) performs
surprisingly well in the experiments.

Sparse variant for a large number of labels. The intro-
duced OMMA algorithm requires calculating the derivative
with respect to every entry of the confusion matrix at each
step, resulting in the total complexity of O(nm) over the
entire sequence of data (assuming constant time for the gra-
dient calculation of a single entry). Even this can be fairly
expensive in case of a large number of labels (e.g., in recom-
mendation or extreme classification); in these multi-label
problems, however, the number of positive labels per sample
is much smaller than the total number of label, kyk1 ⌧ m,
and often most of the conditional probabilities in ⌘(x) are
0 or very close to 0. Many recommenders and extreme clas-
sifiers are naturally designed to predict only top-k0 entries
with the highest values of ⌘(x). We can then leverage the
sparsity of top-k0 assuming ⌘(x) = 0 for the rest of the
labels and calculate the gradient with respect to entries of
the confusion matrix that correspond to non-zero values of
⌘(x), resulting in a total complexity of O(nk0) on the en-
tire data sequence. With reasonably selected k0, according
to Theorem 4.3, we should only slightly increase the regret.

6. Empirical study
To demonstrate the practicality and generality of the in-
troduced OMMA algorithm, we test it on a wide range of
multi-label and multi-class benchmark datasets that differ
substantially in the number of labels, ranging from tens to
a few thousands, and in the imbalance of the label distribu-

tion 7. For multi-class experiments, we use News20 (Lang,
1995), Ledgar-LexGlue (Chalkidis et al., 2022) with tf-idf
features, Caltech-256 (Griffin et al., 2007) with features
obtained using VGG16 (Simonyan & Zisserman, 2014)
trained on ImageNet, and for multi-label experiments, we
use YouTube, Flickr (Tang & Liu, 2009) with DeepWalk
features (Perozzi et al., 2014), Eurlex-LexGlue (Chalkidis
et al., 2021), Mediamill (Snoek et al., 2006), RCV1X (Lewis
et al., 2004), and AmazonCat (McAuley & Leskovec, 2013;
Bhatia et al., 2016) with tf-idf features. We conduct two
types of experiments:

1. With fixed conditional probability estimator (CPE) –
we train the CPE using L2-regularized logistic loss on
the provided training sets and use the obtained CPE
to predict all b⌘ for the test set, which are then used in
the online algorithms on the test set using the protocol
from Figure 1. For benchmarks without default train
and test sets, we split them randomly in proportion
70/30.

2. With online CPE – instead of training CPE on a sepa-
rate training set, it incrementally updated on observed
instances in the sequence. In this case, we concatenate
train and test sets to create one long sequence used
in the online protocol. We report the results of this
experiment in Appendix H.

Each experiment is repeated five times, each time randomly
shuffling the sequence. We report the mean results over all
runs. In Appendix F, we include more details regarding the
experimental setup.

We compare OMMA with the following algorithms:

• Top-k(b⌘(x)) – a classifier that selects k labels with
the highest values in b⌘(x). It is used as a baseline in
multi-class and multi-label problems with the budget
k constrain. For multi-class problems we use k = 1 if
the budget is not specified.

• b⌘(x) > 0.5 – a classifier with a constant threshold that
predicts a label as positive if its conditional probability
is greater than 0.5. It is used as a baseline in multi-label
problems without the budget k constrain.

• OFO – a consistent online algorithm for the (micro-
and macro-averaged) F-measure in the multi-label set-
ting (Busa-Fekete et al., 2015; Jasinska et al., 2016).

• Greedy – an algorithm that given past labels and predic-
tions chooses its next prediction in order to maximize
the expected utility. It might be seen as a close approxi-
mation of the OMMA algorithm. It has been motivated

7Code to reproduce the experiments:
https://github.com/mwydmuch/xCOLUMNs
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Table 2. Results of the different online algorithms on multi-label problems, averaged over 5 runs, reported as %. In this table we report
the final performance obtained on the sequence of n samples. The best result on each metric is in bold, the second best is in italic. We
additionally report basic statistics of the benchmarks: number of labels m and instances in the test sequence n. ⇥ – means that the
algorithm does not support the optimization of that metric.

Method Micro Macro Micro Macro
F1 F1 F1@3 Rec.@3 Pr.@3 G-mean H-mean F1 F1 F1@3 Rec.@3 Pr.@3 G-mean H-mean

YOUTUBE (m = 46, n = 7926) EURLEX-LEXGLUE (m = 100, n = 5000)

Top-k / ⌘̂>0.5 31.20 22.74 30.99 42.13 26.39 32.82 24.46 70.99 52.43 46.35 36.67 74.70 62.33 55.95

OFO 43.71 36.15 ⇥ ⇥ ⇥ ⇥ ⇥ 73.23 58.93 ⇥ ⇥ ⇥ ⇥ ⇥
Greedy ⇥ 36.32 34.72 45.84 67.18 77.98 77.93 ⇥ 59.83 54.19 52.67 88.21 89.74 89.73
Online-FW 43.67 36.00 34.38 45.83 38.92 77.96 77.91 73.68 59.53 54.18 52.68 58.76 89.69 89.75
Online-FW(⌘̂) 43.69 36.47 35.43 45.89 50.12 77.92 77.93 73.22 59.78 54.34 53.87 51.37 89.91 89.84

OMMA 43.73 36.34 34.81 45.85 67.74 77.98 77.93 73.29 59.85 54.15 52.67 88.41 89.74 89.73
OMMA(b⌘) 43.72 36.47 35.38 45.89 65.49 77.98 77.93 73.22 59.84 54.37 53.85 84.99 89.92 89.85

MEDIAMILL (m = 101, n = 12914) FLICKR (m = 195, n = 24154)

Top-k / ⌘̂>0.5 52.45 4.06 4.43 4.35 7.42 4.62 3.65 29.46 18.27 26.39 38.96 21.38 27.08 20.02

OFO 56.99 12.36 ⇥ ⇥ ⇥ ⇥ ⇥ 41.05 30.46 ⇥ ⇥ ⇥ ⇥ ⇥
Greedy ⇥ 12.43 10.29 9.41 22.54 65.68 66.48 ⇥ 30.90 30.42 46.41 57.55 83.39 83.37
Online-FW 56.98 12.22 10.18 9.16 12.70 64.73 65.68 41.05 30.60 29.58 46.38 28.66 83.37 83.28

Online-FW(⌘̂) 56.99 14.33 11.97 16.43 17.35 65.37 65.56 41.02 31.17 29.65 46.28 25.73 83.37 83.20

OMMA 57.00 12.39 10.25 9.39 22.85 65.67 66.48 41.01 30.90 30.39 46.41 58.35 83.39 83.37
OMMA(b⌘) 56.99 14.34 11.87 16.43 18.31 65.93 65.35 41.02 31.15 30.55 46.33 55.56 83.41 83.23

RCV1X (m = 2456, n = 155962) AMAZONCAT (m = 13330, n = 306784)

Top-k / ⌘̂>0.5 68.57 11.29 5.34 4.59 13.24 16.01 12.36 67.77 28.76 14.98 11.18 30.98 33.93 30.03

OFO 69.83 20.26 ⇥ ⇥ ⇥ ⇥ ⇥ 70.38 39.60 ⇥ ⇥ ⇥ ⇥ ⇥
Greedy ⇥ 20.80 16.01 21.20 30.91 69.07 67.04 ⇥ 44.20 43.64 57.81 54.00 80.86 80.04
Online-FW 69.83 19.82 15.33 21.09 19.88 69.07 67.04 70.61 42.42 40.20 57.74 40.10 80.86 80.04
Online-FW(⌘̂) 69.79 20.40 15.55 22.21 22.17 69.06 67.04 70.34 47.32 44.63 58.87 49.68 80.86 80.04
OMMA 69.77 20.57 15.87 21.08 30.39 69.07 67.04 69.90 43.04 42.14 57.80 52.04 80.86 80.04
OMMA(b⌘) 69.71 20.71 16.07 22.23 30.38 69.06 67.04 70.02 47.67 45.06 58.89 51.52 80.86 80.04

by a similar algorithm recently introduced for batch
multi-label classification with predictions budgeted at
k (Schultheis et al., 2023). An efficient implementation
is possible for metrics that linearly decompose over
labels (e.g., macro-averaged metrics).

• Online-FW – an adaptation of the Frank-Wolfe algo-
rithm, used earlier for batch multi-class (Narasimhan
et al., 2015b; 2022) and (budgeted at k) multi-label
problems (Schultheis et al., 2024), to the online set-
ting. It re-runs the batch algorithm on all instances
observed so far (which need to be stored in memory) in
exponentially growing intervals of 10 ⇥ 1.1i instances
with i 2 {0, 1, 2, 3, . . . }, which we found to provide
frequent enough updates for achieving good predictive
performance. Since this algorithm, similar to OMMA,
can be run for all metrics considered in the study, we
treat it as the main baseline for our algorithm. For a
fair comparison, we also introduce an alternative vari-
ant that uses b⌘ instead of true labels y to estimate its
internal confusion matrix. We denote this algorithm as
Online-FW(b⌘). Note that despite calling this method

“online,” it requires storing all previously seen instances
in memory and thus does not fully adhere to the online
paradigm.

• Offline-FW – the batch variant of the Frank-Wolfe
algorithm used earlier in (Narasimhan et al., 2015b;
Schultheis et al., 2024), trained using the same training
set that was used to obtain CPE. It then uses the same
probability estimates as online methods for inference
on the test sequence without further updates to the clas-
sifier. The comparison with this algorithm is reported
in Appendix G.

As discussed in Remark 4.4, we add both small constant
✏ = 1e-9 to the denominators in all metrics, as well as
the regularization value � 2 {0, 1e-6, 1e-3, 0.1, 1} to the
entries of the confusion matrix used in all online algorithms
(Greedy, OFO, Online-FW, and OMMA).

We use the following popular metrics for evaluating the al-
gorithms: Micro and Macro-averaged F1, which are widely
used to evaluate classifiers in many domains such as infor-
mation retrieval; budgeted at k = 3 Macro F1, Macro Recall,

8
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Table 3. Results of the online algorithms on multi-class problems,
averaged over 5 runs, reported as %. In this table we report the
final performance obtained on the sequence of n samples.

Method Macro Multi-class means
F1 F1@3 Rec.@3 Pr.@3 G- H- Q-

NEWS20 (m = 20, n = 7532)

Top-k 83.37 49.23 94.78 33.95 82.51 81.66 80.12

Greedy 82.44 72.69 94.89 83.89 ⇥ ⇥ ⇥
On.-FW 82.88 54.10 94.88 19.90 82.68 82.35 80.95
On.-FW(⌘̂) 82.55 56.06 95.01 15.58 82.78 82.57 80.97

OMMA 82.11 72.84 94.89 83.88 82.72 82.08 80.95
OMMA(b⌘) 83.07 73.41 95.01 83.30 82.77 82.18 81.00

LEDGAR-LEXGLUE (m = 100, n = 10000)

Top-k 79.06 51.80 92.04 38.88 0.00 0.00 69.21

Greedy 79.30 78.08 93.26 91.17 ⇥ ⇥ ⇥
On.-FW 79.22 70.94 93.30 54.52 62.31 75.81 74.59
On.-FW(⌘̂) 79.22 73.85 93.38 49.63 78.02 77.58 74.50

OMMA 79.28 78.10 93.26 91.41 77.48 74.62 74.59
OMMA(b⌘) 79.34 78.22 93.39 90.10 78.03 76.08 74.53

CALTECH-256 (m = 256, n = 14890)

Top-k 79.45 46.82 89.85 32.58 77.32 75.69 74.53

Greedy 79.59 79.02 90.20 96.61 ⇥ ⇥ ⇥
On.-FW 79.15 70.29 90.20 63.22 78.31 77.99 76.00
On.-FW(⌘̂) 79.29 72.97 90.34 65.42 78.41 78.08 76.07

OMMA 79.54 78.96 90.20 96.77 78.33 77.12 76.15
OMMA(b⌘) 79.66 79.11 90.35 96.96 78.36 77.01 75.99

and Macro Precision being well-suited to recommendation
systems and extreme classification; and Macro G-mean and
H-mean for multi-label problems and Multi-class G-mean,
H-mean and Q-mean for multi-class problems, which are
frequently used in class imbalance problems. Note that
OMMA and Online-FW can target these metrics directly,
while the scope of other algorithms is limited.

We present the results of the experiment with fixed CPE
in Tables 2 and 3. We report the mean performance on the
entire sequence of n instances for the best value of �. Addi-
tionally, we present incremental performance on Figure 2
and the effect of using different � values on Figure 3 for the
Flickr dataset. The introduced OMMA algorithm matches
the performance of the online Frank-Wolfe algorithm for
most of the measures, performing much better on Macro-
Precision@3, which is not Lipschitz. Concurrently, OMMA
uses less time and memory as it does not require storing all
previously seen instances. We also observe that OMMA,
as an approximation of Greedy, matches its performance
on metrics supported by this method. This is additionally
confirmed by the plots where we can observe that the perfor-
mance of these algorithms is very close to each other at each
iteration t. Surprisingly, OMMA(b⌘) often performs better
on macro-averaged metrics, especially on benchmarks with
a large number of labels, where many of them have only
a small number of positive samples. In these cases, the
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Figure 2. Comparison of the incremental performance of the online
algorithms on the Flickr dataset. Averaged over 5 runs, the opaque
fill indicates the standard deviation at given iteration t.
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Figure 3. Impact of � on the results of the online algorithms on the
Flickr dataset. Averaged over 5 runs.

variance reduction effect of using b⌘ seems to compensate
the estimation error of ⌘. It is also much less sensitive to the
selection of �, as small probability values that are added to
many entries of the confusion matrix give the same effect as
the regularization value �. Extended results with additional
algorithms, standard deviations, running times, and plots for
the rest of the datasets can be found in Appendix G.

7. Discussion
In our framework, the algorithm aims to maximize the em-
pirical value of the utility of the observed data sequence,
 (C(yn, byn)). An interesting direction of research is an
alternative online framework, in which the goal is to se-
quentially learn a classifier bhn : X ! Y , which is then
evaluated on the entire population by means of  (C(bhn)),
where C(bhn) = E(x,y)[C(y, bhn(x))] is the population
confusion matrix of bhn.

In the analysis of the algorithm, we assumed the concav-
ity of the metric. On one hand, some assumption of this
type seems essential for no-regret learning; for instance, in
multi-class macro-averaged F -measure learning, the utility
belongs to function class, optimizing which is, in general,
NP-hard (Narasimhan et al., 2016). On the other hand, our
concavity assumption excludes an important class of linear-
fractional functions (such as binary or micro-averaged F -
measure), for which a specialized version of our algorithm
is known to converge, although without providing a conver-
gence rate (Busa-Fekete et al., 2015). The analysis of our
method for linear-fractional utilities is an interesting direc-
tion for future research, especially given that our algorithm
works very well on these metrics in the experiments.
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